Е. С. Краско, И. Н. Лабутин, А. В. Омельченко

ПЕРЕЧИСЛЕНИЕ ПОМЕЧЕННЫХ И НЕПОМЕЧЕННЫХ ГАМИЛЬТОНОВЫХ ЦИКЛОВ В ПОЛНЫХ *k*-ДОЛЬНЫХ ГРАФАХ

§1. Введение

Задачи перечисления гамильтоновых циклов в графах того или иного вида являются актуальными как с теоретической, так и с прикладной точек зрения. Подобного рода задачи возникают, например, в теоретической физике [1], химии, биологии и биоинформатике [2], а также в теории алгоритмов. Например, гамильтоновы циклы и пути могут служить простыми моделями при исследовании термодинамики полимеров и анализе плотноупакованных глобулярных белков [3]. В физике интерес к гамильтоновым циклам возникает, например, при изучении магнитных систем с дополнительной симметрией [1]. Наконец, задачи точного перечисления гамильтоновых циклов могут быть полезными при разработке статистических алгоритмов, создающих случайные выборки из множества таких циклов.

Определение того, является ли граф гамильтоновым, является сложной (NP-полной) задачей. Ещё сложнее выяснить, сколько именно различных гамильтоновых циклов содержит граф. В силу трудности этой задачи подсчет количества гамильтоновых циклов существенным образом использует специфику тех или иных классов графов. При этом в ряде случаев удается получить точное решение, например с помощью метода трансфер-матриц [4]. Для некоторых других классов графов разрабатываются специализированные перечислительные алгоритмы [5]. Известно также большое число результатов, посвященных доказательству верхних и нижних оценок на количество гамильтоновых циклов [6–10]).

Ключевые слова: гамильтоновы циклы; полный n-дольный граф; хордовая диаграмма; линейная диаграмма; перечисление помеченных и непомеченных объектов.

Публикация подготовлена в результате проведения работы (грант No. 19-01-004) в рамках Программы "Научный фонд Национального исследовательского университета "Высшая школа экономики" (НИУ ВШЭ)" в 2019 г. и в рамках государственной поддержки ведущих университетов Российской Федерации "5-100".

¹¹⁹

Рис. 1. Хордовая диаграмма.

Отдельно можно выделить класс задач перечисления гамильтоновых циклов в графах, относящихся к определенному параметризованному семейству и имеющих высокую степень симметрии. Для многих таких семейств известно, что они гамильтоновы, и основная задача стоит в определении точного числа гамильтоновых циклов. В представленной статье мы рассматриваем полные *n*-дольные графы $K_{d,d,...,d}$, имеющие *d* вершин в каждой доле. В случае d = 2 такие графы и гамильтоновы циклы в них оказываются тесно связаны с так называемыми хордовыми диаграммами (см. [11–13]). Хордовая диаграмма строится на 2n точках, расположенных равномерно по окружности и пронумерованных числами 1, 2, ..., 2n по кругу; эти точки разбиваются хордами на пары (рис. 1). Говорят, что хорда является петлей, если она соединяет две соседние точки (как хорда $\{1, 2\}$ на рис. 1). Беспетлевая диаграмма — это диаграмма, не содержащая петель.

В работе [13] была отмечена следующая биекция между гамильтоновыми циклами в *n*-мерных октаэдрах и беспетлевыми хордовыми диаграммами. Возьмем *n*-мерный октаэдр с выделенным гамильтоновым циклом (рис. 2(a)) и нарисуем его на плоскости так, чтобы этот цикл образовывал окружность (рис. 2(b)). Теперь удалим все ребра, не относящиеся к гамильтоновому циклу, и добавим ребра, которые в графе отсутствовали (рис. 2(c)). В результате мы получим хордовую диаграмму, которая обязательно является беспетлевой: двигаясь по гамильтонову циклу в исходном графе $K_{2,2,...,2}$, мы не можем перейти за один шаг от одной вершины какой-то доли к другой вершине этой же доли. Очевидно, такое преобразование обратимо.

Рис. 2. Соответствие между гамильтоновыми циклами в октаэдрах и хордовыми диаграммами.

В общем случае полного *n*-дольного графа $K_{d,d,...,d}$, любому гамильтоновому циклу в таком графе можно однозначно сопоставить так называемую обобщенную хордовую диаграмму $B_n^{(d)}$, построенную на $n \cdot d$ вершинах (рис. 3(a)). В роли хорд здесь выступают подграфы, изоморфные K_d и соединяющие d точек на такой диаграмме (например, хорда {1,5,10} на рис. 3(b)). Петлей в обобщенной хордовой диаграмме мы будем считать ребро некоторого подграфа K_d , соединяющее какие-то две соседние точки этой диаграммы. Уточним, что один подграф K_d может задавать несколько петель. Аналогично случаю d = 2, гамильтоновому циклу в произвольном графе $K_{d,d,...,d}$ будут отвечать обобщенные хордовые диаграммы, в которых должны отсутствовать петли.

В первой части данной статьи мы выводим явную формулу (1), выражающую число $b_n^{(d)}$ беспетлевых хордовых диаграмм $B_n^{(d)}$ в терминах количества $a_{n,k}^{(d)}$ так называемых обобщенных беспетлевых линейных диаграмм. В дополнение к этому, мы получаем рекуррентные соотношения (2)–(3) для этих чисел $a_{n,k}^{(d)}$.

Использование полученных рекуррентных соотношений оказывается вычислительно неэффективным: они представляют собой систему $n \cdot (d-1)$ уравнений для заданного значения n. Используя дополнительные комбинаторные соображения, мы упрощаем эту систему и получаем систему (9), состоящую лишь из d уравнений.

Рис. 3

В зависимости от того, какие диаграммы считать изоморфными, мы можем перечислять их либо с точностью до вращений, либо с точностью до всех симметрий: вращений и отражений. Классы изоморфных диаграмм в обоих случаях называют непомеченными диаграммами. Для непомеченных диаграмм мы получаем системы рекуррентных соотношений, позволяющие перечислить их, а значит, и гамильтоновы циклы в графах $K_{d,d,...,d}$, как с точностью до вращений, так и с точностью до всех симметрий.

§2. Перечисление обобщенных хордовых диаграмм $B_n^{(d)}$

Вместо непосредственного перечисления хордовых диаграмм $B_n^{(d)}$ нам будет удобно вначале перечислить обобщенные линейные диаграммы. Для получения линейной диаграммы из хордовой, разрежем обобщенную хордовую диаграмму (рис. 4(a)) по дуге, соединяющей точки 1 и $n \cdot d$ — то есть перестанем считать эти точки соседними (рис. 4(b)). Заметим, что если исходная диаграмма $B_n^{(d)}$ была беспетлевой, то таковой будет и получившаяся линейная диаграмма $A_n^{(d)}$.

Введем числа $a_{n,k}^{(d)}$, равные количеству обобщенных линейных диаграмм $A_{n,k}^{(d)}$, построенных на $d \cdot n$ точках, состоящих из n полных подграфов K_d и имеющих k петель, $0 \leq k \leq n(d-1)$. Покажем, что количество $b_n^{(d)}$ обобщенных хордовых диаграмм без петель выражается

Рис. 4. Хордовая и соответствующая линейная диаграмма.

через числа $a_{n,k}^{(d)}$ по формуле

$$b_n^{(d)} = a_{n,0}^{(d)} - \sum_{k=0}^{d-2} \binom{d(n-1) - k - 1}{d-2 - k} a_{n-1,k}^{(d)}.$$
 (1)

Действительно, среди всех $a_{n,0}^{(d)}$ обобщенных линейных диаграмм $A_{n,0}^{(d)}$ без петель нас интересуют лишь те, у которых первая и последняя точки не соединены между собой дугой. Предположим, что при удалении содержащего такую дугу подграфа K_d в получающейся обобщенной линейной диаграмме образуется k петель. Подсчитаем количество способов получить обобщенную линейную диаграмму $A_{n,0}^{(d)}$ из произвольной обобщенной линейной диаграммы $A_{n-1,k}^{(d)}$. Заметим, что в диаграмме $A_{n-1,k}^{(d)}$ имеется d(n-1) + 1 позиций для расстановки вершин подграфа K_d . Нам нужно поставить на первую и последнюю позиции диаграммы по вершине, расставить k из оставшихся (d-2)-х вершин полного подграфа K_d по k петлям, а затем распределить d-2-k оставшихся вершин по оставшимся d(n-1)-1-k позициям. Последнее мы можем сделать $\binom{d(n-1)-k-1}{d-2-k}$ количеством способов. Суммируя теперь $\binom{d(n-1)-k-1}{d-2-k}a_{n-1,k}^{(d)}$ по всем возможным k, мы и получаем количество всех возможных диаграмм $A_{n,0}^{(d)}$, у которых первая и последняя вершины соединены между собой дугой.

Итак, для подсчета чисел $b_n^{(d)}$ по формуле (1) нам нужны рекуррентные соотношения на числа $a_{n,k}^{(d)}$, $k = 0, \ldots, d-2$. Нам будет легче вначале получить рекуррентные соотношения на числа $a_{n,k}^{(d)}$ для более широких значений параметра k. Именно, покажем, что для k = $0, \ldots, n(d-1)$ справедливы соотношения вида

$$a_{n,k}^{(d)} = \sum_{t=k-d+1}^{k+d-1} c_{n,k,t}^{(d)} \cdot a_{n-1,t}^{(d)}, \qquad n > 0, \quad 0 \le k \le n(d-1),$$
(2)

$$c_{n,k,t}^{(d)} = \sum_{i=0}^{d-1} {d-1 \choose i} {t \choose t+i-k} {d(n-1)-t \choose d-2i-t+k-1},$$
(3)

$$a_{0,0}^{(d)} = 1, \quad a_{n,k}^{(d)} = 0$$
для $n < 0, \, k < 0$ и $k > n(d-1).$

В основе доказательства соотношений (2)–(3) вновь лежит процедура удаления из обобщенной линейной диаграммы $A_{n,k}^{(d)}$ подграфа K_d , содержащего крайнюю правую точку этой диаграммы. Так как при удалении K_d мы можем добавить или удалить как максимум d-1 петлю, то после удаления K_d мы получаем некоторую обобщенную линейную диаграмму $A_{n-1,t}^{(d)}$ с t петлями, $t \in [k - (d-1), k + (d-1)]$.

Рис. 5. Обобщенная линейная диаграмма $A_{3,8}^{(6)}$.

В качестве примера на рис. 5 показана обобщенная линейная диаграмма $A_{n,k}^{(d)}$, построенная для случая n = 3, d = 6 и k = 8. Удаление подграфа K_6 , содержащего крайне правую вершину 18 этой диаграммы, приводит к появлению обобщенной линейной диаграммы $A_{2,6}^{(6)}$.

Обратно, предположим, что у нас имеется некоторая диаграмма $A_{n-1,t}^{(d)}$. Подсчитаем количество способов сделать из нее диаграмму $A_{n,k}^{(d)}$, добавив к ней полный подграф K_d , содержащий правую точку диаграммы $A_{n,k}^{(d)}$. Обозначим через *i* количество петель, образованных соседними вершинами подграфа K_d при его добавлении к $A_{n-1,t}^{(d)}$ (i = 3 для подграфа K_5 , изображенного на рис. 5). Для того, чтобы в диаграмме $A_{n,k}^{(d)}$ после добавления K_d оказалось ровно k петель, нам в процессе добавления K_d нужно уничтожить t+i-k петель (t+i-k = 1 для диаграммы $A_{2,6}^{(6)}$), поставив внутрь этих петель вершины подграфа K_d . Наконец, у нас остается d(n-1) - t позиций, на которые мы можем поставить оставшиеся d-i-1-(t+i-k) вершин подграфа K_d

(6 позиций для одной вершины для примера, показанного на рис. 5). Подсчитывая количество способов произвести эти комбинаторные действия, мы и приходим к формулам (2)–(3).

Отметим важные частные случа
и соотношений (1)–(3). В случае d=2формула (1) превращается
в формулу

$$b_n^{(2)} = a_n^{(2)} - a_{n-1}^{(2)}, \qquad n \ge 2; \qquad b_1^{(2)} = 0, \tag{4}$$

а формулы (2)–(3) переходят в

$$a_{n+1,k}^{(2)} = a_{n,k-1}^{(2)} + (2n-k)a_{n,k}^{(2)} + (k+1)a_{n,k+1}^{(2)},$$

$$a_{n,k}^{(2)} = 0 \quad \text{если } k > n \text{ или } k < 0, \quad a_{0,0}^{(2)} = 1.$$
(5)

Эти результаты согласуются с формулами (1)
и (2) в [13]. В случае d=3выражение для $b_n^{(3)}$ принимает вид

$$b_n^{(3)} = a_{n,0} - (3n-4)a_{n-1,0}^{(3)} + a_{n-1,1}^{(3)},$$

а система (2)-(3) переписывается в виде

$$\begin{aligned} a_{n,k}^{(3)} &= a_{n-1,k-2}^{(3)} + 2\left(3(n-1) - (k-1)\right)a_{n-1,k-1}^{(3)} \\ &\quad + \left(\binom{3(n-1) - k}{2} + 2k \right)a_{n-1,k}^{(3)} \\ &\quad + (k+1)\left(3(n-1) - (k+1)\right)a_{n-1,k+1}^{(3)} + \binom{k+2}{2}a_{n-1,k+2}^{(3)}. \end{aligned}$$

§3. Замкнутая система из d рекуррентных соотношений на числа $a_{n,k}^{(d)}$

Как мы уже отмечали выше, рекуррентные соотношения (2)–(3), в принципе, позволяют получить нужные нам для вычисления $b_n^{(d)}$ значения параметров $a_{n,i}^{(d)}$, $i = 0, \ldots, d-2$. Однако с вычислительной точки зрения этот подход является не самым лучшим – оптимальным вариантом для нас является получение системы соотношений только лишь для тех значений $a_{n,k}^{(d)}$, которые фигурируют в формуле (1). В случае d = 2 изложенный в [13] подход состоял в следующем: система (2)–(3) переписывалась на языке производящих функций, для последовательности $a_{n,k}^{(2)}$ получалась производящая функция w(z,t), в нее подставлялось значение z = 0, и полученная в результате такой подстановки производящая функция $\phi(t) = w(z, 0)$ описывала числа $a_{n,0}^{(2)} \equiv a_n^{(2)}$, необходимые для подсчета чисел $b_n^{(2)}$. Однако в случае d > 2 такой подход уже не работает. Альтернативный вариант состоит в попытке комбинаторного вывода требуемой системы рекуррентных соотношений. Такой вариант прекрасно работает в случае d = 2 (см. работы [12], [13]). Однако уже в случае d = 3 соответствующие комбинаторные рассуждения оказываются довольно громоздкими, а в случае d > 3 подобная задача оказывается практически невыполнимой.

Оказывается, однако, что в рассматриваемой задаче проходит смешанный вариант – использовать наряду с комбинаторными рассуждениями полученные выше рекуррентные соотношения (2)–(3) на числа $a_{n,k}^{(d)}$. При этом в результате мы можем получить замкнутую систему рекуррентных соотношений на числа $a_{n,k}^{(d)}$, $k = 0, \ldots, d-1$, число которых лишь на единицу превосходит количество $a_{n,k}^{(d)}$, входящих в формулу (1). Именно, подставляя в формулу (2) значение k = 0, получаем рекуррентное соотношение вида

$$a_{n,0}^{(d)} = \sum_{t=0}^{d-1} c_{n,0,t}^{(d)} \cdot a_{n-1,t}^{(d)}.$$
 (6)

Рис. 6. Обобщенная линейная диаграмма $A_{3.2}^{(5)}$.

Рис. 7. Редуцированная линейная диаграмма.

Рис. 8. Обобщенная линейная диаграмма $A_{2,2}^{(5)}$

Для значений параметра k от 1 до d-1 соотношения для $a_{n,k}^{(d)}$ мы можем получить, используя комбинаторные рассуждения. Именно, рассмотрим произвольную обобщенную линейную диаграмму $A_{n,k}^{(d)}$, в которой k петель распределены по l подграфам, $1 \leq l \leq k < d$, изоморфным K_d . Разберемся вначале с простейшим случаем l = 1, при котором все k петель образованы одним подграфом K_d (рис. 6, на котором соответствующий подграф K_3 показан синим цветом).

Стягивая петли, мы из K_d получаем подграф K_{d-k} в редуцированной линейной диаграмме без петель (рис. 7). Удаляя такой подграф, мы получаем обобщенную линейную диаграмму $A_{n-1,m}^{(d)}$ с m петлями, $0 \leq m \leq d-k$ (см. рис. 8, отвечающий случаю m = 2). Обратно, возьмем диаграмму $A_{n-1,m}^{(d)}$ и поставим под m петлями по вершине подграфа K_{d-k} . Оставшиеся d-k-m вершин подграфа K_{d-k} мы должны расставить на d(n-1)+1-m позиций количеством способов, равным $\binom{d(n-1)+1-m}{d-k-m}$. Наконец, d-k вершин подграфа K_{d-k} мы должны превратить в подграф K_d , заменив некоторые вершины одной или несколькими петлями — эта операция описывается числом сочетаний с повторениями $\binom{d-k}{k} = \binom{d-1}{k}$. Суммируя по всем m от 0 до d-k, получаем, что в случае l = 1 числа $a_{n,k,l=1}^{(d)}$ рассчитываются по формулам

$$a_{n,k,l=1}^{(d)} = \binom{d-1}{k} \sum_{m=0}^{d-k} \binom{d(n-1)+1-m}{d-k-m} a_{n-1,m}^{(d)}, \qquad k = 1, \dots, d-1.$$
(7)

Рис. 9. Обобщенная линейная диаграмма $A_{4.3}^{(5)}$.

В случае l > 1 рассуждения становятся несколько сложнее. Действительно, пусть $d - r_i$, $i = 1, \ldots, l$, есть количество петель в диаграмме $A_{n,k}^{(d)}$, принадлежащих *i*-му подграфу K_d , причем

$$\sum_{i=1}^{l} (d-r_i) = k, \qquad 1 \leqslant r_1 \leqslant r_2 \leqslant \ldots \leqslant r_l \tag{8}$$

(см. рис. 9, на котором изображена диаграмма $A_{4,3}^{(5)}$ с $l=2,\,r_1=3,\,r_2=4).$

Рис. 10. Редуцированная линейная диаграмма.

Стягивая каждую из этих петель в точку, мы получаем редуцированную линейную диаграмму, в которой имеется n - l подграфов K_{d} , а также l подграфов K_{r_i} (рис. 10).

Рис. 11. Обобщенная линейная диаграмма $A_{2.4}^{(5)}$.

Предположим, что после удаления подграфов K_{r_i} у нас образовалась обобщенная линейная диаграмма $A_{n-l,m}^{(d)}$, $m = 0, \ldots, ld - k$ (см. рис. 11, соответствующий диаграмме $A_{2,4}^{(5)}$). Посмотрим, сколько диаграмм $A_{n,k}^{(d)}$ с k петлями, распределенными по l подграфам K_{r_i} , можно получить из одной такой диаграммы $A_{n-l,m}^{(d)}$.

Рис. 12. Обобщенная линейная диаграмма $A_{2,4}^{(5)}$ с добавленным подграфом K_{r_1} .

Для этого возьмем диаграмму $A_{n-l,m_1}^{(d)}$, $m_1 \equiv m$, и добавим к ней вначале подграф K_{r_1} (рис. 12). В результате добавления такого подграфа часть имеющихся петель может оказаться разрушена вершинами подграфа K_{r_1} . Кроме того, в диаграмме могут появиться дополнительные петли, образованные соседними вершинами подграфа K_{r_1} . Обозначим через s_1 число петель, которые будут разрушены подграфом K_{r_1} , а через j_1 – количество дополнительных собственных петель, образованных вершинами K_{r_1} ($s_1 = 2$, $j_1 = 1$ для диаграммы, показанной на рис. 12).

Рис. 13. Обобщенная линейная диаграмма $A_{2,4}^{(5)}$ с добавленным редуцированным подграфом K_{t_1} .

Рассмотрим тогда вместо K_{r_1} подграф K_{t_1} , $t_1 = r_1 - j_1$, полученный схопыванием j_1 собственных петель подграфа K_{r_1} (рис. 13). Поместить K_{t_1} на исходную диаграмму $A_{n-l,m_1}^{(d)}$ так, чтобы s_1 вершин подграфа K_{t_1} попало в петли диаграммы $A_{n-l,m_1}^{(d)}$, а оставшиеся $t_1 - s_1$ вершин распределились по $v_1 - m_1$ позициям, $v_1 := d(n-l) + 1$, свободным от петель, можно $\binom{m_1}{s_1}\binom{v_1-m_1}{t_1-s_1}$ количеством способов. Наконец, расщенить t_1 вершин подграфа K_{t_1} на r_1 вершин так, чтобы вершины получившегося подграфа K_{r_1} образовали на диаграмме j_1 дополнительных собственных петель, можно количеством способов, равным $\binom{t_1}{j_1} = \binom{r_1-j_1}{j_1} = \binom{r_1-1}{j_1}$. Полученное на первом шаге количество способов

$$\binom{m_1}{s_1} \binom{v_1 - m_1}{r_1 - j_1 - s_1} \binom{r_1 - 1}{j_1}$$

нужно умножить на число

$$\binom{m_2}{s_2}\binom{v_2-m_2}{r_2-j_2-s_2}\binom{r_2-1}{j_2}$$

способов добавить на $v_2 := v_1 + r_1$ позиций подграф K_{r_2} так, чтобы разрушить s_2 петель линейной диаграммы с $m_2 = m_1 + j_1 - s_1$ петлями и добавить j_2 собственных петель.

Продолжая этот процесс далее, мы дойдем до последнего шага, на котором нам нужно будет к линейной диаграмме добавить подграф K_{r_l} . Особенность этого шага состоит в том, что после его добавления петли в диаграмме должны отсутствовать – напомним, что после добавления подграфов K_{r_1}, \ldots, K_{r_l} мы должны получить редуцированную линейную диаграмму без петель (см. рис. 10). Как следствие, на последнем шаге мы должны разрушить все петли, образовавшиеся на предпоследнем шаге (то есть положить $m_l = s_l$). Кроме того, и у самого подграфа K_{r_l} не должно быть никаких собственных петель (то есть $j_l = 0$).

С учетом сказанного выше мы можем окончательно записать следующую формулу для подсчета чисел $a_{n,k}^{(d)}$ в случае l > 1:

$$a_{n,k,l>1}^{(d)} = \sum_{R} \frac{\alpha_R}{\beta_1! \cdot \ldots \cdot \beta_{d-1}!} \sum_{m=0}^{ld-k} p_{n,R,m} \cdot a_{n-l,m}^{(d)}.$$
 (9)

Здесь R представляет собой упорядоченное мультимножество $\{r_1, \ldots, r_l\}$, удовлетворяющее условиям (8), внешнее суммирование проходит по всем таким мультимножествам R,

$$p_{n,R,m} := \sum_{j_1=0}^{r_1-1} \dots \sum_{j_{l-1}=0}^{r_{l-1}-1} \sum_{s_1=0}^{\min\{m_1,r_1-j_1\}} \sum_{s_1=0}^{\min\{m_{l-1},r_{l-1}-j_{l-1}\}} \prod_{i=1}^{l-1} \binom{m_i}{s_i} \binom{v_i - m_i}{r_i - j_i - s_i} \binom{r_i - 1}{j_i} \binom{v_l - m_l}{r_l - m_l},$$

 $m_{i+1} := m_i + j_i - s_i, \ v_{i+1} := v_i + r_i, \ i > 1; \ m_1 := m, \ v_1 := d(n-l) + 1,$

$$\alpha_R := \prod_{i=1}^l \left(\binom{r_i}{d-r_i} \right) = \prod_{i=1}^l \binom{d-1}{r_i-1}.$$

Сомножитель α_R в формуле (9) описывает количество способов превратить подграфы K_{r_i} в подграфы K_d . Коэффициент $1/(\beta_1! \cdots \beta_{d-1}!)$ учитывает тот факт, что мы добавляем подграфы K_{r_i} не одновременно, а по порядку, то есть различаем все клики K_{r_i} с одинаковым числом петель. Как следствие, если мы имеем β_u экземпляров подграфов K_u среди всех клик K_{r_i} , то нам нужно поделить результат на $\beta_u!$.

Заметим, наконец, что в случае l > 1 в формуле (9) для $a_{n,k}^{(d)}$ появляются числа $a_{n-l,m}^{(d)}$, у которых $m \ge d$. Эти числа, однако, мы всегда можем последовательно исключить с помощью рекуррентного соотношения (2), переписанного в форме

$$a_{n-1,k+d-1}^{(d)} = \frac{a_{n,k}^{(d)} - \sum_{t=k-d+1}^{k+d-2} c_{n,k,t}^{(d)} \cdot a_{n-1,t}^{(d)}}{c_{n,k,k+d-1}^{(d)}}.$$
 (10)

Так, например, подставляя в (10) вместо n значение n-1, можно выразить числа $a_{n-2,d}^{(d)}$, $a_{n-2,d+1}^{(d)}$ и т.д. через числа $a_{n-1,k}^{(d)}$ и $a_{n-2,m}^{(d)}$, $0 \leq k, m \leq d-1$. Затем аналогично можно будет выразить числа $a_{n-3,m}^{(d)}$, $a_{n-4,m}^{(d)}$ и т.д. вплоть до чисел $a_{n-l,m}^{(d)}$. Проиллюстрируем описанный выше подход для частных случаев

Проиллюстрируем описанный выше подход для частных случаев d = 2 и d = 3. Подставляя в формулу (6) значение d = 2, получаем рекуррентное соотношение вида

$$a_{n,0}^{(2)} = (2n-2)a_{n-1,0}^{(2)} + a_{n-1,1}^{(2)}.$$

Как видно, в это соотношение наряду с $a_{n,0}^{(2)}$ вошли и числа $a_{n,1}^{(2)}$, описывающие количество $A_{n,1}^{(2)}$ линейных диаграмм с одной петлей. Для этих чисел мы можем использовать рекуррентное соотношение (7). Подставляя в него значения k = 1, d = 2, имеем

$$a_{n,1}^{(2)} = (2n-1)a_{n-1,0}^{(2)} + a_{n-1,1}^{(2)}.$$

Выражая из полученных рекуррентных соотношений числа $a_{n,1}^{(2)}$, получаем известное рекуррентное соотношение второго порядка

$$a_{n+1,0}^{(2)} = (2n+1)a_{n,0}^{(2)} + a_{n-1,0}^{(2)};$$
 $a_{0,0}^{(2)} = 1, \quad a_{1,0}^{(2)} = 0$

для количества беспетлевых линейных диаграмм.

Теперь рассмотрим чуть более содержательный пример d = 3. Подставляя в формулу (6) значение d = 3, имеем

$$a_{n,0}^{(3)} = \binom{3n-3}{2}a_{n-1,0}^{(3)} + (3n-4)a_{n-1,1}^{(3)} + a_{n-1,2}^{(3)}.$$

Соотношение для чисел $a_{n,1}^{(3)}$, а также рекуррентное соотношение для чисел $a_{n,2}^{(3)}$, отвечающее случаю, когда обе петли принадлежат одному и тому же подграфу K_3 , мы получаем из формулы (7):

$$\begin{aligned} a_{n,1}^{(3)} &= 2 \bigg(\binom{3n-2}{2} a_{n-1,0}^{(3)} + (3n-3) a_{n-1,1}^{(3)} + a_{n-1,2}^{(3)} \bigg), \\ a_{n,2,l=1}^{(3)} &= (3n-2) a_{n-1,0}^{(3)} + a_{n-1,1}^{(3)}. \end{aligned}$$

Однако в данном случае, в отличие от случая d = 2, возможен вариант, при котором две петли в диаграмме $A_{n,2}^{(3)}$ относятся к двум различным подграфам K_3 . Для подсчета количества таких диаграмм нам следует воспользоваться формулой (9). В рассматриваемом частном случае имеем

132

$$l = 2, \quad R = \{r_1, r_2\} = \{2, 2\}, \quad \alpha_R = 2 \cdot 2, \quad \beta_2 = 2!, \quad j_1 = j_2 = 1,$$

поэтому

$$a_{n,2,l=2}^{(3)} = \frac{2 \cdot 2}{2!} \sum_{m=0}^{4} \sum_{j=0}^{1} \sum_{s=0}^{\min(m,2-j)} \binom{m}{s} \binom{3(n-2)+1-m}{2-j-s} \times \binom{3(n-2)+3-m-j+s}{2-m-j+s} a_{n-2,m}^{(3)}.$$

При этом входящие в последнюю формулу числа $a_{n-2,3}^{(3)}$ и $a_{n-2,4}^{(3)}$ выражаются через $a_{n-1,i}^{(3)}$ и $a_{n-2,j}^{(3)}$ с помощью соотношения (10):

$$a_{n-2,3}^{(3)} = \frac{a_{n-1,1}^{(3)} - \sum_{t=0}^{2} c_{n-1,1,t}^{(3)} \cdot a_{n-2,t}^{(3)}}{c_{n-1,3,3}^{(3)}},$$
$$a_{n-2,4}^{(3)} = \frac{a_{n-1,2}^{(3)} - \sum_{t=0}^{3} c_{n-1,2,t}^{(3)} \cdot a_{n-2,t}^{(3)}}{c_{n-1,2,4}^{(3)}}.$$

Полученную систему рекуррентных соотношений для случа
яd=3можно упростить, сведя ее к системе вида

$$\begin{aligned} a_{n,0}^{(3)} &= \binom{3n-3}{2} a_{n-1,0}^{(3)} + (3n-4)a_{n-1,1}^{(3)} + a_{n-1,2}^{(3)}, & a_{0,0}^{(3)} = 1, \quad a_{1,0}^{(3)} = 0; \\ a_{n,1}^{(3)} &= 2a_{n,0}^{(3)} + 2(3n-3)a_{n-1,0}^{(3)} + 2a_{n-1,1}^{(3)}, & a_{0,1}^{(3)} = 0, \quad a_{1,1}^{(3)} = 0; \\ a_{n,2}^{(3)} &= 2a_{n,0}^{(3)} + (9n-10)a_{n-1,0}^{(3)} + 5a_{n-1,1}^{(3)} + 2a_{n-2,0}^{(3)}, \quad a_{0,2}^{(3)} = 0, \quad a_{1,2}^{(3)} = 1. \end{aligned}$$

§4. Перечисление непомеченных обобщенных хордовых диаграмм

В этой части мы кратко изложим результаты, относящиеся к задаче перечисления гамильтоновых циклов в непомеченных графах $K_{d,d,...,d}$,

а точнее, к эквивалентной ей задаче перечисления непомеченных обобщенных хордовых диаграмм без петель. Количество $\hat{b}_n^{(d)}$ таких диаграмм можно рассчитать с помощью леммы Бернсайда

$$\widehat{b}_n^{(d)} = \frac{1}{|G|} \sum_{g \in G} |\operatorname{Fix}(g)|.$$
(11)

Здесь |Fix(g)| есть число помеченных диаграмм, остающихся неподвижными под действием элемента g группы G, которая задаёт на множестве диаграмм отношение изоморфизма. В нашем случае G будет либо циклической группой $C_{d\cdot n}$ вращений окружности с $d \cdot n$ точками, либо диэдральной группой $D_{d\cdot n}$ вращений и отражений.

Начнём с более простого случая циклической группы. Обозначим количество обобщённых хордовых диаграмм с $d \cdot n$ точками и n хордами через $\tilde{b}_n^{(d)}$ и рассмотрим действие группы $C_{d \cdot n}$ на множестве таких диаграмм. Пусть m делитель $d \cdot n$, $\phi(m) - \phi$ ункция Эйлера. Всего в группе $C_{d \cdot n}$ есть ровно $\phi(m)$ элементов порядка m. Любой такой элемент оставляет неподвижными одинаковое число $f(d \cdot n, m)$ диаграмм. Назовём такие диаграммы m-симметричными. С учётом этого (11) можно переписать как

$$\widetilde{b}_n^{(d)} = \frac{1}{d \cdot n} \sum_{m \mid d \cdot n} \phi(m) f(d \cdot n, m).$$
(12)

Для подсчета чисел $f(d \cdot n, m)$ нам будет удобно перейти от *m*-симметричных обобщенных хордовых диаграмм к так называемым *m*симметричным линейным диаграммам (рис. 14). Такие диаграммы на $d \cdot n$ точках получаются разрезанием окружности *m*-симметричной хордовой диаграммы на *m* дуг. На каждой дуге остается $v := d \cdot n/m$ точек: разрезы проводятся между точками v и v + 1, 2v и $2v + 1, \ldots, m \cdot v$ и 1. Как и ранее, разрез между точками i и i + 1 означает, что эти точки более не являются соседними, и наличие хорды, соединяющей их, не нарушает свойство диаграммы быть беспетлевой.

Заметим, что 1-симметричные линейные диаграммы — это рассмотренные ранее «обыкновенные» линейные диаграммы.

Обозначим через $A_{v,k}^{(m,d)}$ множество обобщенных *m*-симметричных линейных диаграмм, имеющих ровно *k* петель в каждом из *m* секторов.

Рис. 14

Лемма 4.1. Числа $a_{v,k}^{(m,d)}$ обобщенных *m*-симметричных линейных диаграмм $A_{v,k}^{(m,d)}$ могут быть получены с помощью следующей системы рекуррентных соотношений:

$$a_{v,k}^{(m,d)} = \sum_{l|gcd(m,d)} \sum_{t=k-d/l+1}^{k+d/l-1} c_{v,k,t}^{(m/l,d/l)} \cdot a_{v-d/l,t}^{(m,d)},$$

$$a_{v,k} = 0 \quad npu \quad v \leq 0 \quad unu \quad k < 0, \quad \text{кроме} \quad a_{0,0}^{(m,d)} = 1,$$
(13)

где

$$c_{v,k,t}^{(m,d)} = \sum_{i=0}^{d-1} \binom{d-1}{i} \cdot \binom{t}{t+i-k} \cdot \frac{m^{t+i-k}}{\widehat{v}!} \cdot \widehat{p}_{\widehat{v}}^{(m,v-d-t,t+i-k)}, \quad (14)$$
$$\widehat{v} := d - 2i - t + k - 1,$$

$$\begin{split} \widehat{p}_{k}^{(m,v,l)} = & \sum_{i=0}^{k} (-1)^{i} \cdot \frac{k!}{(k-i)!} \cdot q_{0,k-i}^{(m,v,l)} \quad ecnu \quad v \geqslant 0, \ l \geqslant 0; \\ \widehat{p}_{k}^{(m,v,l)} = 0 \quad uhave, \end{split}$$

а числа $q_{k,t}^{(m,v,l)}$ выражаются из следующего рекуррентного соотношения:

$$\begin{aligned} q_{k,t}^{(m,v,l)} &= (2k-1+l-t) \, q_{k-1,t-1}^{(m,v,l)} + (t+1)(m-1)q_{k-1,t+1}^{(m,v,l)} \\ &+ (m(v+k)+l(m-1)-(2k-2-t)-t(m-1))q_{k-1,t}^{(m,v,l)}, \\ q_{0,0}^{(m,v,l)} &= 1, \quad q_{0,t}^{(m,v,l)} = 0 \quad \partial \mathfrak{A}\mathfrak{R} \ t \neq 0, \\ q_{k,t}^{(m,v,l)} &= 0 \quad \partial \mathfrak{A}\mathfrak{R} \ k < 0 \quad u\mathfrak{A}\mathfrak{U} \ t < 0. \end{aligned}$$
(15)

Теорема 4.2. Числа $f(d \cdot n, m)$ могут быть выражены в терминах чисел $a_{v,k}^{(m,d)}$ обобщенных т-симметричных линейных диаграмм $A_{v,k}^{(m,d)}$ по формуле

$$f(d \cdot n, m) = a_{v,0}^{(m,d)} - \sum_{l|gcd(m,d)} \sum_{k=0}^{l-2} \frac{(m/l)^k}{(d/l - 2 - k)!}$$

$$\times \widetilde{p}_{d/l - 2 - k}^{(m/l,v - d/l - k,k)} \cdot a_{v - d/l,k}^{(m,d)}, \quad v := \frac{dn}{m},$$
(16)

где

$$\tilde{p}_{k}^{(m,v,l)} = \sum_{i=0}^{k} \sum_{j=0}^{k-i} (-1)^{i+j} \cdot \frac{k!}{(k-i-j)!} \cdot q_{0,k-i-j}^{(m,v,l)}.$$

Доказательства этих утверждений принципиально не отличаются от доказательств, представленных в предыдущих частях, но при этом являются достаточно громоздкими. Мы опускаем их в этой статье.

Далее перейдем к задаче перечисления неизоморфных диаграмм под действием диэдральной группы $D_{d\cdot n}$. Обозначим количество обобщённых хордовых диаграмм с $d \cdot n$ точками и n хордами через $\bar{b}_n^{(d)}$. Лемма Бернсайда для данного случая может быть переписана как

$$\bar{b}_{n}^{(d)} = \frac{1}{2dn} \sum_{m \mid dn} \phi(m) f(dn, m) + \frac{h^{(0)}(n) + 2h^{(1)}(n) + h^{(2)}(n)}{2}, \quad (17)$$

где через $h^{(i)}(n)$ обозначено число хордовых диаграмм, симметричных относительно отражения, ось которого проходит через *i* точек диаграммы, и содержащих *n* подграфов K_d (см. рис. 15). Следующие результаты, посвященные получению формул для $h^{(i)}(n)$, i = 0, 1, 2, мы также приводим без доказательства.

(а) Диаграмма ${\cal H}^{(0)}(4)$ (b) Диаграмма ${\cal H}^{(1)}(3)$ (c) Диаграмма ${\cal H}^{(2)}(4)$

Рис. 15

Теорема 4.3. Числа $h^{(0)}(n)$ при нечетном d совпадают c числами $a^{(2,d)}_{dn/2,0}$, а в случае четного d вычисляются по формулам

$$h^{(0)}(n) = a_{dn/2,0}^{(2,d)} - 2 \sum_{k=0}^{d/2-1} \alpha_k^{(1)} \cdot a_{d(n-1)/2,k}^{(2,d)} + \sum_{k=0}^{d-2} \alpha_k^{(2)} \cdot a_{d(n-2)/2,k}^{(2,d)} - \sum_{k=0}^{d/2-2} \alpha_k^{(3)} \cdot a_{d(n-2)/2,k}^{(2,d)},$$

где

$$\begin{aligned} \alpha_k^{(1)} &:= \binom{(n-1)d/2 - 1 - k}{d/2 - 1 - k}, \\ \alpha_k^{(3)} &:= \binom{(n-1)d/2 - 1 - k}{d/2 - 2 - k}, \end{aligned}$$

$$\begin{aligned} \alpha_k^{(2)} &:= \sum_{j=0}^{d/2-1} \sum_{s=0}^{\min(k,d/2-1-j)} \binom{d/2-1}{j} \cdot \binom{k}{s} \cdot \binom{(n-2)d/2-k}{d/2-1-j-s} \\ &\times \binom{(n-1)d/2-1-(k+j-s)}{d/2-1-(k+j-s)}. \end{aligned}$$

Теорема 4.4. Числа $h^{(1)}(n)$ выражаются через числа $a^{(2,d)}_{(n-1)d/2,k}$ по формуле

$$h^{(1)}(n) = \sum_{k=0}^{(d-1)/2} \binom{(n-1)d/2 - 1 - k}{(d-1)/2 - k} \cdot a^{(2,d)}_{(n-1)d/2,k}.$$

Теорема 4.5. Числа $h^{(2)}(n)$ в случае четного d могут быть получены по формуле

$$h^{(2)}(n) = \sum_{k=0}^{d/2-1} \alpha_k^{(1)} \cdot a_{(n-1)d/2,k}^{(2,d)}.$$

Для нечетного d числа $h^{(2)}(n)$ могут быть отличны от 0 только если n четно; в этом случае они равны

$$h^{(2)}(n) = \sum_{k=0}^{d-1} \sum_{j=0}^{(d-1)/2} \sum_{s=0}^{\min(k,(d-1)/2-j)} \binom{(d-1)/2}{j} \binom{k}{s} \times \binom{(n-2)d/2 - k}{(d-1)/2 - j - s} \binom{(n-1)d/2 - 1 - (k+j-s)}{(d-1)/2 - (k+j-s)} \cdot a^{(2,d)}_{(n-2)d/2,k}$$

Заключение

Окончательные результаты расчётов количества хордовых диаграмм и соответствующих им гамильтоновых циклов приведены в таблицах 1–4.

n	Линейные, $a_n^{(3)}$	Хордовые помеченные, $b_n^{(3)}$	Непомеченные, $\tilde{b}_n^{(3)}$	Непомеченные, $\bar{b}_n^{(3)}$
1	0	0	0	0
2	1	1	1	1
3	29	22	4	4
4	1721	1415	126	83
5	163386	140343	9367	4848
6	22831355	20167651	1120780	562713
$\overline{7}$	4420321081	3980871156	189565588	94810999
8	1133879136649	1035707510307	43154533233	21577786374
9	372419001449076	343866839138005	12735808866899	6367912802891
10	152466248712342181	141979144588872613	4732638168795171	2366319275431001
11	76134462292157828285	71386289535825383386	2163220895025390670	1081610451348718567
12	45552714996556390334921	42954342000612934599071	1193176166690983987122	596588083450068950934
13	32173493282909179882613934	30482693813120122213093587	781607533669746761791541	390803766837390136477505

Таблица 1. Веспетлевые диаграммы по числу nграфов K_3

Е. С. КРАСКО, И. Н. ЛАБУТИН, А. В. ОМЕЛЬЧЕНКО

n	Линейные, $a_n^{(4)}$	Хордовые помеченные, $b_n^{(4)}$	Непомеченные, $\widetilde{b}_n^{(4)}$	Непомеченные, $\bar{b}_n^{(4)}$
1	0	0	0	0
2	1	1	1	1
3	182	134	15	13
4	94376	75843	4790	2576
5	98371884	83002866	4151415	2081393
6	182502973885	158861646466	6619291247	3309962320
7	551248360550999	490294453324924	17510518983528	8755277273334
8	2536823683737613858	2292204611710892971	71631394311300461	35815698613833466
9	16904301142107043464659	15459367618357013402267	429426878302882412435	214713439275724149414
10	156690501089429126239232946	144663877588996810362218074	3616596939726424941979785	1808298469877117320495867

Таблица 2. Беспетлевые диаграммы по числу n графов K_4

ПЕРЕЧИСЛЕНИЕ ГАМИЛЬТОНОВЫХ ЦИКЛОВ

139

n	Линейные, $a_n^{(5)}$	Хордовые помеченные, $b_n^{(5)}$	Непомеченные, $\tilde{b}_n^{(5)}$	Непомеченные, $\bar{b}_n^{(5)}$
1	0	0	0	0
2	1	1	1	1
3	1198	866	60	42
4	5609649	4446741	222477	112418
5	66218360625	55279816356	2211192688	1105696796
6	1681287695542855	1450728060971387	48357603758012	24178822553773
$\overline{7}$	81644850343968535401	72078730629785795963	2059392303708166507	1029696155560021174
8	6945222145021508480249929	6235048155225093080061949	155876203880714141444480	77938101941693076258854

Таблица 3. Беспетлевые диаграммы по числу n графов K_5

Е. С. КРАСКО, И. Н. ЛАБУТИН, А. В. ОМЕЛЬЧЕНКО

ı	Линейные, $a_n^{(6)}$	Хордовые помеченные, $b_n^{(6)}$	Непомеченные, $\tilde{b}_n^{(6)}$	Непомеченные, $\bar{b}_n^{(6)}$
	0	0	0	0
	8142	5812	335	203
.	351574834	276154969	11508322	5765385
	47940557125969	39738077935264	1324603148183	662305416760
	16985819072511102549	14571371516350429940	404760320241653655	202380163158922023
	13519747358522016160671387	11876790400066163254723167	282780723811372935744420	14139036190835151980792

Таблица 4. Беспетлевые диаграммы по числу nграфов K_6

ПЕРЕЧИСЛЕНИЕ ГАМИЛЬТОНОВЫХ ЦИКЛОВ

141

Список литературы

- 1. B. Nienhuis, Exact critical point and critical exponents of O(n) models in two dimensions. Phys. Rev. Lett. **49** (1982), 1062.
- K. A. Dill, Polymer principles and protein folding. Protein Sci. 8, No. 6 (1999), 1166–80.
- O. Bodroža-Pantić, B. Pantić, I. Pantić, M. Bodroža-Solarov, Enumeration of Hamiltonian cycles in some grid graphs. — Commun. Math. Comput. Chem. 70 (2013), 181–204.
- E. Wynn, Enumeration of nonisomorphic Hamiltonian cycles on square grid graphs. Preprint arXiv:1402.0545 [math.CO], 2014.
- J. L. Jacobsen, Exact enumeration of Hamiltonian circuits, walks and chains in two and three dimensions. — J. Phys. A: Math. Theor. 40, 14667.
- C. Thomassen, On the number of Hamiltonian cycles in bipartite graphs. Combinatorics, Probability and Computing 5 (1996), 437–442.
- N. Alon, The maximum number of Hamiltonian paths in tournaments. --Combinatorica 10, No. 4 (1990), 319–324.
- Endre Szemeredi, G. N. Sarkozya, S. M. Selkowa, On the number of Hamiltonian cycles in Dirac graphs. — Discrete Mathematics 265 (2003), 237–250.
- A. J. Schwenk, Enumeration of Hamiltonian cycles in certain generalized Petersen graphs. — J. Combin. Theory Ser. B 47 (1989), 53–59.
- E. Dixon, S. Goodman, On the number of Hamiltonian circuits in the n-cube. Proceedings of the American Mathematical Society 50 (1975), 500–504.
- D. Singmaster, Hamiltonian circuits on the n-dimensional octahedron. J. Combin. Theory, Ser. B 19, No. 1 (1975), 1–4.
- M. Hazewinkel, V. V. Kalashnikov, *Counting Interlacing Pairs on the Circle*. Department of Analysis, Algebra and Geometry: Report AM. Stichting Mathematisch Centrum, 1995.
- A. V. Omelchenko, E. S. Krasko, Enumeration of chord diagrams without loops and parallel chords. — The Electronic Journal of Combinatorics 24, No. 3 (2017), P3.43.
- 14. R. J. Mathar, A class of multinomial permutations avoiding object clusters. viXra:1511.0015.

Krasko E. S., Labutin I. N., Omelchenko A. V. Enumeration of labelled and unlabelled Hamiltonian cycles in complete k-partite graphs.

We enumerate labelled and unlabelled Hamiltonian cycles in complete *n*-partite graphs $K_{d,d,\ldots,d}$ having exactly *d* vertices in each part (in other words, Turán graphs T(nd, n)). We obtain recurrence relations that allow us to find the exact values $b_n^{(d)}$ of such cycles for arbitrary *n* and *d*.

Национальный

Поступило 18 ноября 2019 г.

исследовательский университет

"Высшая школа экономики";

С.-Петербург, 190008, Россия

E-mail: krasko.evgeniy, labutin.igorl, avo.travel@gmail.com