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QUANTUM EQUATION OF MOTION AND TWO-LOOP

CUTOFF RENORMALIZATION FOR φ3 MODEL

Abstract. We present two-loop renormalization of φ3 model ef-
fective action by using the background field method and cutoff mo-
mentum regularization. In this paper we also study a derivation of
the quantum equation of motion and its application to the renor-
malization procedure.

§1. Introduction

Renormalization theory (see [1]) plays a crucial role in the quantum field
theory and largely depends on the regularization. This work is devoted
to the cutoff momentum one, which has its pros and cons. On the one
hand it breaks invariance and adds the non-logarithmic divergences, but
on the other hand it is more physical and retains the dimension. As a rule,
for studying the properties of regularization and renormalization we often
choose the simplest theory (not necessarily physical one), which clearly
shows the process. We are going to work with a scalar φ3 model, which
was used in the study of dimensional regularization in the four- (see [2])
and six-dimensional (see [3]) cases as well as for more intricate versions of
the theory [4–10].

In the paper we present two-loop renormalization of the scalar φ3 theory
with cutoff momentum regularization in 3, 4, 5 dimensions (super-renorma-
lizable cases), and in six dimensions (renormalizable case). We are going to
use the background field method (see [11–14]), obtain a quantum equation
of motion, and explain its applications to the renormalization theory.

First of all we need to introduce a Lagrangian density of the euclidian
φ3 model

L[φ](x) = 1

2
∂µφ(x)∂

µφ(x) +
1

2
m2φ2(x)− g

6
φ3(x), x ∈ R

n, (1)

Key words and phrases: quantum equation of motion, cubic model, renormalization,
cutoff momentum, background field, regularization, effective action, coupling constant.

This work was supported by the Russian Science Foundation (project 19-11-00131).
A. V. Ivanov is a Young Russian Mathematics award winner and would like to thank

its sponsors and jury.

151



152 A. V. IVANOV, N. V. KHARUK

where m is a mass parameter, g is a coupling constant, and n is a dimen-
sion. Then we can define an action of the theory as S[φ] =

∫

Rn

dnxL[φ](x).
Next we assume that the scalar field φ has a decreasing at infinity so one
can integrate by parts and obtain a crucial property

S[φ+B] = S[B] + (M,φ) +
1

2
(Nφ, φ) − g

6

∫

Rn

dnxφ3(x), (2)

where an operator N and a field M in the point x ∈ R
n are defined by the

formulas

N(x) = −∂µ∂
µ +m2 − gB(x),

M(x) = −∂µ∂
µB(x) +m2B(x)− g

2
B2(x),

(3)

and where B is a background field, which will be defined below (see Sec. 5).

§2. Green function and heat kernel

Let us introduce some extra definitions related to the operator N(x).
By G(x, y) and K(x, y; τ) we denote a Green function and a heat kernel
respectively which satisfy the problems

N(x)G(x, y) = δ(x, y),

{

(

∂
∂τ +N(x)

)

K(x, y; τ) = 0;

K(x, y; 0) = δ(x− y),
(4)

for all x, y ∈ R
n and τ ∈ R+. Under the conditions described above, we

have

δ

δB(z)
G(x, y) = g G(x, z)G(z, y),

δ

δB(z)
K(x, y; τ) = g

τ
∫

0

dsK(x, z; τ − s)K(z, y; s).

(5)

To prove the last formulas we need to apply the functional derivative,
which satisfies the equality

δB(y)

δB(x)
= δ(x− y), (6)

to the problems (4) for the Green function and the heat kernel. Then we
introduce a logarithm of determinant of the oparetor N as the following
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integral (see [15])

ln det (N/N |B=0) = −
∫

Rn

dnx

∞
∫

0

dτ

τ
[K(x, x; τ) − e−m2τ ]. (7)

Therefore, using the equality for the heat kernel
∫

Rn

dnxK(z, x; τ)K(x, y; s) = K(z, y; τ + s), (8)

one can find the first variation

δ

δB(x)
ln det(N) = −g G(x, x). (9)

This equality makes sense for the regularized objects. Additional properties
one can find in the Appendix A.

§3. Diagram technique

For clarity it is convenient to introduce a diagram technique. We will
denote the Green function G(x, y) by a line with two indices x and y,
and the integration – by a dot. Let us give some examples of using the
technique.

1) Let a functional ρ(g,B) equals to one-particle irreducible (1PI) dia-
grams and their products from

e
g
6

∫

Rn
dnx ( δ

δη(x) )
3

e
1
2 (Gη,η)

∣

∣

∣

∣

∣

η=0

. (10)

It is just a sum of 1PI vacuum diagrams (and their products). On the
Figure 1 one can see the first two terms of the expansion in powers of the
coupling constant g. The next correction is multiplied by g4.

ρ(g, B) = 1 + 1

12
g2 + O(g4).

Figure 1. The main terms of the ρ(g,B).
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2) Let us define an extended Green function G(x, y) as a sum of all 1PI
contributions to the functional

δ

δη(x)

δ

δη(y)
e

g
6

∫

Rn
dnx ( δ

δη(x) )
3

e
1
2 (Gη,η)

∣

∣

∣

∣

∣

η=0

, (11)

then it takes the following view

y + O(g4).G(x, y) = x y + 1

4
g2 x

Figure 2. The extended Green function with the first correction.

Lemma 1. Under the conditions described above ρ(g,B)G(x, y) equals
to 1PI diagrams and their products from the functional (11).

This statement can be proved using combinatorial methods and bino-
mial coefficients.

§4. Background field method

Primarily we need to enter an effective action W as the path integral

e−W =

∫

H

Dφ e−S[φ], (12)

where H is a functional set, which is determined by using physical reasons.
Actually the effective action is a function of the set H . Then, according
to the background field method, we do a shift φ → φ + B. So, using the
formula (2), we get

e−W [B] = e−S[B]

∫

H0

Dφ e
−(M,φ)− 1

2 (Nφ,φ)+ g
6

∫

Rn
dnxφ3(x)

, (13)

where H0 = {φ−B : φ ∈ H} is a new set of integration after the shift H →
H0. We suppose that the dependence of W = W [B] on H is dictated by
the background field B, which will be defined below by using the quantum
equation of motion. Then we do one more shift φ → φ+Gη, where G is an
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integration operator with the kernel G(x, y) and η is a smooth auxiliary
field. In this case we have
∫

H0

Dφ e
−(M,φ)− 1

2 (Nφ,φ)+ g
6

∫

Rn
dnxφ3(x)

= det(N)−1/2 e
−(M, δ

δη
)+ g

6

∫

Rn
dnx ( δ

δη(x) )
3

e
1
2 (Gη,η)

∣

∣

∣

∣

∣

η=0

, (14)

where we fixed the normalization property of the measure from the formula
(12) by using the following condition

∫

H0

Dφ e−
1
2 (Nφ,φ) = [det(N)]−1/2. (15)

§5. Quantum equation of motion

Let us obtain the equation of motion. For this purpose we need to find
two kinds of contributions to the effective action W [B].

Lemma 2. The coefficient for (GM,M) in W [B], consisting of 1PI dia-
grams and their products, equals to 1

2ρ(g,B).

Lemma 3. The effective action W [B] contains terms, which have one M -
vertex and can be represented as a product of 1PI diagrams. The sum of
all such contributions equals to − g

2ρ(g,B)
∫

Rn

dnxGM(x)G(x, x).

Proof. To find the contribution we need to consider the chain of equalities.
The first one is

− (M,
δ

δη
)e

g
6

∫

Rn
dnx ( δ

δη(x) )
3

e
1
2 (Gη,η)

∣

∣

∣

∣

∣

η=0

= − e
g
6

∫

Rn
dnx ( δ

δη(x) )
3

(GM, η)e
1
2 (Gη,η)

∣

∣

∣

∣

∣

η=0

.

(16)

Then we need to use properties of the functional derivative in the form
[

e
g
6

∫

Rn
dnx ( δ

δη(x) )
3

, (GM, η)

]

=
g

2
e

g
6

∫

Rn
dnx ( δ

δη(x) )
3 (

GM,
δ2

δη2

)

. (17)

Finally, the statement follows from Lemma 1. �
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Therefore we can give a definition of the quantum equation of motion.
Using the results of Lemmas 2 and 3, one can write down the equation in
the following form

M(x) =
g

2
G(x, x), (18)

where x ∈ R
n. Of course, it contains the divergencies, so we should under-

stand it in the regularization sence. It is very easy to see that the equation
is nonlinear with respect to the background field. In particular case, after
regularization we can express a trace part of the Green function

G(x, x) =
2

g
M(x) +O(g2). (19)

Now we can define the background field B as a solution of the problem
which consists of the quantum equation of motion (18) and asymptotic
behaviour at infinity. The last condition is taken from the definition of H .

Theorem 1. Under the conditions described above for all x from R
n we

have in the regularization sence

δ

δB(x)
W [B] = M(x)− g

2
G(x, x). (20)

The last expression follows from the formulas (3) and (9), and definition
of the function G(x, y). From the equalities (13) and (14) one can express
the effective action, which after using Theorem 1 has the following form

W [B] = S[B] + 1

2
ln det(N)− 1

12
g2 + O(g4).

Figure 3. The effective action with the 1PI corrections.

In particular, it means that diagrams such as “glasses” are cancelled.

§6. Regularization

There are a lot of ways to do regularization (dimensional one, Pauli
Villars one, and other). We are going to use the cutoff momentum reg-
ularization in a special form. It should be noted that we are going to
find infrared divergencies in the coordinate representation. It means one
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should regularize the Green function expansion when x ∼ y. The rules are
following:

(1) The factor r−k with k ∈ N goes to χrΛ>1r
−k;

(2) The factor ln r goes to χrΛ>1 ln r − χrΛ61 ln Λ,

where χ(a,b) is a characteristic function of (a, b), and Λ is a parameter of

regularization. It means that GΛ → G in the sence of generalized functions
when Λ → +∞. In this case one can write down the trace parts of Green
function for n = 3, 4, 5, 6 dimensional cases:

GΛ
3 (y, y) = PS3(y, y); (21)

GΛ
4 (y, y) =

L

8π2
a1(y, y) + PS4(y, y); (22)

GΛ
5 (y, y) = PS5(y, y); (23)

GΛ
6 (y, y) =

L

32π3
a2(y, y) + PS6(y, y), (24)

where the bottom index corresponds to the dimension of the space and L =
ln(Λ/µ). The last equalities do not violate the limit transition for Green
function GΛ(x, y), they just redefine the value on the diagonal x = y. Of
course, the Green function after the cutoff regularization has logarithmic L
and powers Λ singularities. The second kind of ones has a different nature
(see for example [16, 17]).

§7. Renormalization

The process of renormalization is based on redefining of model param-
eters m2, φ, and g. We are going to consider renormalizable case, when
n = 6, and then super-renormalizable cases, when n = 3, 4, 5. For the con-

venience one introduces some extra types of sign “=”. The letters IR (
IR
= )

mean that both sides of an equality contain the same infrared singular
contributions without consideration of parts which are proportional to the
zero or the first degree of the background field B. Let us also note that we
will use the logic and notations proposed in the work [18].

7.1. n=6 dimensional case. In the renormalizable case we have an infi-
nite number of divergencies, and thus we need to find the renormalization
constants Z, Z0, and Zm. Using the fact that the process of renormaliza-
tion is equivalent to the transitions

φ →
√
Zφ, g → Z0Z

−
3
2 g, m2 → ZmZ−1m2, (25)
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which cancel the singularities, we plan to consider two-loop renormaliza-
tion. Using the Lagrangian density (1) one can conclude that only finite
number of the coefficients should be found:

Z0(g) = 1− a12g
2L− a14g

4L− a24g
4L2 + o(g4); (26)

Zm(g) = 1− b12g
2L− b14g

4L− b24g
4L2 + o(g4); (27)

Z(g) = 1− c12g
2L− c14g

4L− c24g
4L2 + o(g4). (28)

Firstly we find the coefficients proportional to g2L. For this purpose we
need to consider a singularity from the one-loop correction. It follows from
the formulas (9) and (54), that the singilar logarithmic part has the fol-
lowing from

ln det(N)
IR
= − L

32π3

∫

R6

d6xa3(x, x). (29)

Thereby the contribution to the effective action has a view

1

2
ln det(N)

IR
=

g2L

6(4π)3
(∂µB, ∂µB)

2
+
m2g2L

(4π)3
(B,B)

2
− g3L

(4π)3
(B2, B)

6
, (30)

and the coefficients are

c12 =
1

6(4π)3
, b12 =

1

(4π)3
, a12 =

1

(4π)3
. (31)

Let us find the coefficients proportional to g4L. They appear from the
two-loop correction. Summig up all terms from the formulas (71)–(72) and
(74)–(75), and using the equalities (58), (13), and (14), one can obtain the
contribution to the effective action as

− 11g4L

36(4π)6
(∂µB, ∂µB)

2
+

m2g4L

6(4π)6
(B,B)

2
− g5L

6(4π)6
(B2, B)

6
. (32)

It means that the coefficients are

c14 = − 11

36(4π)6
, b14 =

1

6(4π)6
, a14 =

1

6(4π)6
. (33)

In the same way, using the formulas (77)–(79), a contribution proportional
to g4L2 is the following

5g4L2

36(4π)6
(∂µB, ∂µB)

2
+

5m2g4L2

4(4π)6
(B,B)

2
− 5g5L2

4(4π)6
(B2, B)

6
, (34)
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so we have

c24 =
5

36(4π)6
, b24 =

5

4(4π)6
, a24 =

5

4(4π)6
. (35)

The coefficients, obtained above, are in full agreement with the results
obtained earlier (see [3]) in the case of dimensional regularization. We
deliberately did not take into account the contributions of the type (73).

A sum of all such terms equals to − 5
6

g2L
2(4π)3

∫

d6x v(x)PS6(x, x) and will

be considered in the Remark 1 in the Section 7.3. Also it should be noted
that the two-loop correction contains a term of view (see formulas (69)
and (76))

gΛ2

2(4π)3

∫

R6

d6x
δ

δB(x)
ln det(N) +

g2Λ2

2(4π)6

∫

R6

d6xa2(x, x). (36)

It seems that the first term contains a high degree of the field B, but it is
not so. One can use the expansion of the quantum equation of motion in
the form (19). Therefore

δ

δB(x)
ln det(N) ∼ −gB2(x) +O(g3), (37)

where the terms proportional to B1 and B0 are not taken into account.
Further using the formula (56), we can rewrite the contribution as

− g2Λ2

(4π)3

(

1− g2

2(4π)3

)

(B,B)

2
. (38)

Actually the singularity Λ2 has a different nature and can be eliminated by
redefining a regularized trace part of Green function, or by renormalization
of the mass parameter.

7.2. n=5 dimensional case. In the five-dimensional case we have only
finite number of divergencies. From the formula (23) it follows that the
one-loop correction does not have singularities. Thereby from the equali-
ties (62)–(66) we obtain a contribution to the effective action:

− g4L

12(4π)4
(B,B)

2
+

gΛ

6(4π)2

∫

R5

d5x
δ

δB(x)
ln det(N), (39)

where the formulas S4 = 8
3π

2 and (9) were used. The second term in
the last formula also can be considered by using the quantum equation of
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motion in the form (37). Therefore to do the renormalization we need to
shift only the mass parameter in the following way

m2 −→ m2 +
g4

12(4π)4
L. (40)

7.3. n=4 dimensional case. The divergencies in the effective action in
the four-dimensional case follow from the equalities (52) and (22), and
formulas (59) and (60). So the contributions from first two loops have a
form

− g2L

(4π)2
(B,B)

2
− g2L

2(4π)2

∫

R4

d4xPS4(x, x). (41)

In this case we have only logarithmic divergencies. To renormalize the
effective action only the mass parameter should be shifted as follows

m2 −→ m2 +
g2

(4π)2
L. (42)

The four-dimensional case is the super-renormalizable one, therefore let us
see how the second singularity in the formula (41) is cancelled. Let σ be a
finite part of the ln det(N) such that

g
δσ

δv(x)
=

δσ

δB(x)
= −gPS4(x, x), (43)

where v(x) = −m2+ gB(x). Hence using the shift (42) the effective action
W [B] after one-loop renormalization contains the term

1

2



σ +
g2L

(4π)2

∫

R4

d4x
δσ

δv(x)





∣

∣

∣

∣

∣

∣

m2
→m2+ g2

(4π)2
L

. (44)

However all objects are constructed by using the Green function. It means
that they are functionals of the field v(x) = −m2 + gB(x). At the same
time the operator

exp





g2L

(4π)2

∫

R4

d4x
δ

δv(x)



 (45)

does a shift in the following form

v(x) −→ v(x) +
g2L

(4π)2
. (46)
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So one can obtain that formula (44) equals to 1
2σ plus term which is

cancelled by the next high loop corrections. It is supposed that the same
calculations can be done for a finite part of the two-loop correction, using
the high loop contributions.

Remark 1. Let us get back to the case n = 6, where we noted that the
term

−5

6

g2L

2(4π)3

∫

d6x v(x)PS6(x, x) (47)

exists. By σ we denote such part of the ln det(N) that δσ
δv(x) = −PS6(x, x).

Drawing an analogy with the n = 4 case we see that the term (47) is a part
of exponential operator which transforms the potential in the σ from the

value v to the v+ 5
6

g2L
(4π)3 v. At the same time after one-loop renormalization

we have the shift

v(x) = −m2 + gB(x) → −ZmZ−1m2 + Z0Z
−1gB(x)

= v − 5

6

g2L

(4π)3
v + . . .

(48)

It means that the shifts cancel each other. A similar procedure should work
in the high loops.

§8. Appendix A

It is very well known (see [19]) that we can represent the heat kernel
K(x, y; τ) as a series in powers of a proper time τ . The coefficients ak(x, y),
k ∈ N, of the expansion satisfy the problem
{

a0(x, y) = 1;

(k + (x − y)µ∂µ)ak(x, y) = (∂µ∂
µ + v(x))ak−1(x, y), k > 0,

(49)

and are called Seeley-DeWitt coefficients. They play an important role
in physics. In particular case, they give an asymptotic expansion for the
Green function Gn(x, y) when x ∼ y. Let us introduce some notations:

(x − y)µ1...µk = (x− y)µ1 . . . (x− y)µk , ∂µ1...µk
= ∂µ1 . . . ∂µk

, (50)

where k ∈ N and µi ∈ {1, . . . , n}. So we can write down the expansions for
n = 3, 4, 5, 6:

G3(x, y) =
1

4πr
− r

8π
a1(x, y) + PS3(x, y) + o(r); (51)
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G4(x, y) =
1

4π2r2
− ln(rµ)2

16π2
a1(x, y)

+
r2 ln(rµ)2

64π2
a2(x, y) + PS4(x, y) + o(r2 ln r2);

(52)

G5(x, y) =
1

8π2r3
+

1

16π2r
a1(x, y)−

r

32π2
a2(x, y)+PS5(x, y)+o(r); (53)

G6(x, y) =
1

4π3r4
+

1

16π3r2
a1(x, y)−

ln(rµ)2

64π3
a2(x, y)

+
r2 ln(rµ)2

256π3
a3(x, y) + PS6(x, y) + o(r2 ln r2),

(54)

where r = |x− y|, PSk(x, y) for k = 3, 4, 5, 6 are regular parts and depend
on µ, although G(x, y) does not (see [20]). The first three coefficients have
the forms (from [21–23]):

a1(x, y) = v(y) +
1

2
(x− y)µ∂µv(y) +

1

6
(x− y)µν∂µνv(y)

+
1

24
(x− y)µνρ∂µνρv(y) +

1

120
(x − y)µνρσ∂µνρσv(y) + o(r4);

(55)

a2(x, y) =
1

6
∂µµv(y) +

1

2
v2(y) +

1

12
(x− y)µ∂µννv(y)

+
1

2
v(y)(x − y)µ∂µv(y) +

1

40
(x− y)νρ∂νρµµv(y)

+
1

8
((x − y)µ∂µv(y))

2

+
1

6
v(y)(x − y)µν∂µνv(y) + o(r2);

(56)

a3(y, y) =
1

60
∂µµννv(y)+

1

6
v3(y)+

1

12
∂µv(y)∂µv(y)+

1

6
v(y)∂µµv(y). (57)

At the same time after applying the operator N(x) to the equality (54)
and using the Green function definition we have the following equality for
n = 6

−a3(y, y)

16π3
− v(y)PS6(y, y)− ∂µ∂

µPS6(x, y)

∣

∣

∣

∣

x=y

= 0. (58)

§9. Appendix B

9.1. n=4: In the four-dimensional case the two-loop diagram contains
only two singularities, which can be obtained by using formulas (52)
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and (55):

3

∫

d4xd4y

(

1

4π2r2

)2(

− ln(rµ)2

16π2
v(y)

)

IR
= − 3S3

28π6

∫

d4y v(y)L2; (59)

3

∫

d4xd4y

(

1

4π2r2

)2

PS4(x, y)
IR
=

3S3

24π4

∫

d4y PS4(y, y)L. (60)

9.2. n=5: In the five-dimensional case we have five terms with singular-
ities, among which there are not only logarithmic. So, to obtain them, we
need to use the expressions (53), (55), (56), and the equality of view

∫

dnx (xj − yj)
2f(r) =

1

n

∫

dnx r2f(r), j ∈ {1, . . . , n}. (61)

So we have the contributions, which are proportional to Λ2, Λ, and L:

3

∫

d5xd5y

(

1

8π2r3

)2
v(y)

16π2r

IR
=

3S4

211π6

∫

d5y v(y)Λ2; (62)

3

∫

d5xd5y

(

1

8π2r3

)2

PS5(x, y)
IR
=

3S4

26π4

∫

d5y PS5(y, y)Λ; (63)

3

∫

d5xd5y
1

8π2r3

(

v(y)

16π2r

)2
IR
=

3S4

211π6

∫

d5y v2(y)L; (64)

3

∫

d5xd5y

(

1

8π2r3

)2
(x− y)µν∂µνv(y)

6 · 16π2r

IR
=

S4

2115π6

∫

d5y∂µµv(y)L; (65)

3

∫

d5xd5y

(

1

8π2r3

)2
(

− r

32π2
a2(x, y)

)

IR
= − 3S4

212π6

∫

d5y

(

1

3
∂µµv(y) + v2(y)

)

L. (66)

9.3. n=6: In the six-dimensional case we have 13 contributions with sin-
gularities, among which there are not only logarithmic. To calculate the
divergencies, we are going to use the expressions (54), (55), (56), (57), and
(61). Then we have:

3

∫

d6xd6y

(

1

4π3r4

)2
v(y)

16π3r2
IR
=

3S5

210π9

∫

d6y v(y)Λ4; (67)

3

∫

d6xd6y

(

1

4π3r4

)2
(x− y)µν∂µνv(y)

6 · 16π3r2
IR
=

S5

2113π9

∫

d6y∂µµv(y)Λ
2; (68)
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3

∫

d6xd6y

(

1

4π3r4

)2

PS6(y, y)
IR
=

3S5

25π6

∫

d6y PS6(y, y)Λ
2; (69)

3

∫

d6xd6y

(

1

4π3r4

)2
(x− y)µνρσ∂µνρσv(y)

120 · 16π3r2

IR
=

1

2155π6

∫

d6y

(

6
∑

µ,ν=1

∂2
µ∂

2
νv(y)

)

L (70)

∫

d6xd6y

(

v(y)

16π3r2

)3
IR
=

S5

212π9

∫

d6y v3(y)L; (71)

6

∫

d6xd6y
1

4π3r4
v(y)

16π3r2
(x− y)µν∂µνv(y)

6 · 16π3r2

IR
=

S5

2113π9

∫

d6y v(y)∂µµv(y)L; (72)

6

∫

d6xd6y
1

4π3r4
v(y)

16π3r2
PS6(x, y)

IR
=

3S5

25π6

∫

d6y v(y)PS6(y, y)L; (73)

3

∫

d6xd6y

(

1

4π3r4

)2
1

2
(x − y)µν∂µνPS6(x, y)

IR
=

S5

26π6

∫

d6y ∂µµPS6(x, y)

∣

∣

∣

∣

x=y

L; (74)

3

∫

d6xd6y
1

4π3r4

(

(x − y)µ∂µv(y)

2 · 16π3r2

)2
IR
=

S5

213π9

∫

d6y∂µv(y)∂µv(y)L; (75)

3

∫

d6xd6y

(

1

4π3r4

)2(

− ln(rµ)2

64π3
a2(y, y)

)

IR
= − 3S5

29π9

∫

d6y a2(y, y)

(

1

4
Λ2 − 1

2
Λ2L

)

; (76)

3

∫

d6xd6y

(

1

4π3r4

)2(

− ln(rµ)2

64π3

1

2
(x− y)νρ∂νρa2(x, y)

)

IR
=

S5

211π9

∫

d6y

(

1

2
∂µµa2(x, y)|x=y

)

L2; (77)
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3

∫

d6xd6y

(

1

4π3r4

)2(
r2 ln(rµ)2

256π3
a3(y, y)

)

IR
= − 3S5

212π9

∫

d6y a3(y, y)L
2; (78)

6

∫

d6xd6y
1

4π3r4
v(y)

16π3r2

(

− ln(rµ)2

64π3
a2(y, y)

)

IR
=

3S5

211π9

∫

d6y v(y)a2(y, y)L
2. (79)
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