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NOTES ON FUNCTIONAL INTEGRATION

Abstract. This work is devoted to the construction of an “integ-
ral” on an infinite-dimensional space which combines the approaches
proposed earlier and at the same time is the simpliest one. We give
a new definition of the construction and study its properties on a
special class of functionals. We also consider the introduction of
a quasi-scalar product, an orthonormal system, and applications in
physics (path integral, loop space, functional derivative). In addition

the paper contains a discussion of generalized functionals.

§1. Introduction

The term “functional integral” has a long history and was first proposed
by Daniell [1] in 1919 and since then it has been playing an important
role in theoretical (see [2,3]) and mathematical physics (see [4]). There are
many ways to understand this construction, each of which contains deep
mathematical problems. To begin the description of the ideas of the paper
it is necessary to mention the major ways of the construction developments,
to point out some problems, and also to emphasize necessary properties
which functional integral should satisfies.

The first way to define the construction has a probabilistic nature and
was proposed and developed by many authors (for example see [4–6]). It
is related to the study of Gaussian measures in the infinite-dimensional
spaces. It is known that Wick’s theorem holds in this case but there is a
big problem with Kolmogorov’s zero-one law, which leads to divergences. It
is also not clear how to define a measure on the chosen infinite-dimensional
subsets.

The second way was proposed by Feynman [7] and it is more physical in
nature. The main idea is to use a limit of piecewise constant functions. It

means that we consider a transition from N
N
∑

k=1

(xk+1 − xk)
2 to

1
∫

0

ds v̇2(s),
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when N → ∞ and where v is a limit function. There are several challenges.
The main ones are the lack of information about the function v (smooth-
ness, number of break points) and the difference of countable and uncoun-
table sets. Of course, the approach keeps Wick’s theorem and linearity of
the path integral, but at the same time it does not allow you to make
estimates.

There are many other ways, proposed by Wiener [8], Kac [9], Smolyanov
and Shavgulidze [10], and many other authors. The main aim of this work
is to introduce an object, which would combine the features of the first
two approaches. It means that we should have such properties as Wick’s
theorem, a complex linearity, and an "integration of inequality", and at
the same time we want to have an explicit way to do integration. Also we
are going to give a physical meaning of the "integral", not by functions
from a domain, but by means of a spectral parameter which corresponds
to a Sturm–Liouville problem.

§2. The main construction

Let V = R∞ be a Cartesian product of infinite number of R with the
Tikhonov topology. Elements of the space V are sequences, so if x ∈ V then
x = {xk}∞k=1. A scalar product is the real one and defined by the formula

(x, y) =
∞
∑

j=1

xjyj . By symbol xα, where x and α are from V, we will denote

the sequence {αkxk}∞k=1 as alement from V. Then we introduce two sets
which will be used in the next sections:

A = {x ∈ V : xk ∈ N ∪ {0} for all k} , B = {x ∈ V : xk > 0 for all k} . (1)

2.1. Definition. First of all we need to introduce some extra notations.
Let x be from V then by Xn we will denote an element from V according
to the formula: (Xn)k = xk for k ∈ (1, . . . , n), and (Xn)k = 0 for k > n.
For instance, under the conditions described above, we have (Xα

n ,Xn) =
n
∑

k=1

αkx
2
k for all α from V. If y ∈ V and β ∈ B, then we can give a definition

of a functional in the following way

Φy
β(F ) = lim

n→∞

∫

Rn+iYn

dnXn e
−

1

2
(Xβ

n,Xn)F (Xn)

n
∏

k=1

(

βk
2π

)
1

2

, (2)
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where Rn + iYn = {z ∈ Cn : Re(z) ∈ Rn and Im(z)k = yk for k ∈
(1, . . . , n)}, and F is a functional on V.

2.2. Basic properties.

Lemma 1. Let y ∈ V and c ∈ C. Let also F and G be functionals on V

such that Φy
β(F ) and Φy

β(G) are finite. Then Φy
β(F +G) and Φy

β(cF ) are

finite and we have the following equalities

Φy
β(F +G) = Φy

β(F ) + Φy
β(G), Φy

β(cF ) = cΦy
β(F ). (3)

Lemma 2. Let y ∈ V. Let also F and G be functionals on V such that

Φy
β(FG) is finite. Then, Φ−y

β (FG) is also finite and we have

Φy
β(FG) = Φ−y

β (FG). (4)

Lemma 3. Let F be a functional on V such that for all x ∈ V we have

the inequality F [x] > 0. Then, we have

Φ0
β(F ) > 0. (5)

From the last properties it is easy to see that we can introduce an
operation according to the formula 〈F,G〉β = Φ0

β(FG) on a set of functio-
nals. Indeed, from Lemma 1 we have linearity by the first argument and
the Hermitian symmetry. From Lemma 3 the positive definiteness follows,
but there is no the property: 〈F, F 〉β = 0 if and only if F = O. So, we will
name it quasi-scalar product.

2.3. Examples. Let β ∈ B be fixed. By symbol β̃ we denote an element
from V, which is defined by the formula β̃ = {β−1

k }∞k=1. Further we are
going to work with such functionals F on V, which satisfy the conditions
of view: there is such C ∈ R+, n ∈ N, α ∈ B, and z ∈ V, that for all x ∈ V

we have
∣

∣

∣

∣

F (x)e−(z,x)

1 + (xα, x)n

∣

∣

∣

∣

6 C, (zβ̃, z) < +∞, {αkβ̃k}∞k=1 ∈ l1. (6)

The functionals which obey the last condition we will name as functionals
from a valid class, denoted by Sβ . In fact it is a monoid with respect to
the standard product. The set Sβ is quite natural in theoretical physics,
because it contains the polynomials and exponentials. Let us give some
examples of the functionals from the set Sβ and there norms, which will
be useful in further reasoning.
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1) If F (x) = xkj , where x ∈ V and k, j ∈ N, then we can write

〈F, F 〉β =

∫

R

dxj e
− 1

2
βjx

2

jx2kj

(

βj

2π

)
1

2

= β−k
j (2k − 1)!!. (7)

2) Let us introduce the Hermite polynomials. It is known that they are
defined by the formula

Hn(x) = (−1)nex
2/2∂nx e

−x2/2, n > 0. (8)

If we take a functional like Hn,j[x] = (n!)−1/2Hn(β
1

2

j xj), where j > 0 and
n > 0, then

〈Hn,j , Hn,j〉β =

∫

R

dxj e
− 1

2
βjx

2

j (n!)−1H2
n(β

1

2

j xj)

(

βj

2π

)
1

2

= 1. (9)

3) If G±iy[x] = exp(±i(x, y)), where x, y ∈ V, then 〈G±iy , G±iy〉β = 1.

4) Let us take G± 1

2
y[x], where x, y ∈ V. We need to do the change of

variables in such form xj → xj ± yjβ
−1
j for j > 0, then we obtain

〈G± 1

2
y, G± 1

2
y〉β = lim

n→∞
exp

(

1

2
(Yβ̃

n,Yn)

)

. (10)

From the last formula one can see that the answer depends on y ∈ V

and β ∈ B and can have the values from the closed interval [1,+∞]. If

(yβ̃, y) < +∞, then G±
1

2
y ∈ Sβ .

5) If x is from V, α is from B, and F (x) = exp
(

− 1
4 (x

α, x)
)

, then

〈F, F 〉β = lim
n→∞

n
∏

k=1

(

βk
αk + βk

)
1

2

. (11)

The last answer depends on a choice of β and α. If {αkβ̃k}∞k=1 ∈ l1 (see [11])
then 0 < 〈F, F 〉β 6 1, in other cases we have 〈F, F 〉β = 0.

2.4. Orthonormal system. In the priveous section we considered the
normalization properties of the Hermite polynomials. It was seen that we
have functionals Hn,j for n > 0 and j > 0. After using the orthogonality
property for the Hermite polynomials we can write for n, k > 0 and i, j > 0
the equality

〈Hk,i, Hn,j〉β = δknδij + δk0δn0(1− δi,j). (12)

The next step is connected with studying of the products of such functio-
nals when all second indices are different. We are going to give the most
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general definition and then consider the special cases. Let ρ = {ρk}∞k=1 be
from A, and x ∈ V, then we define

Hρ[x] =

∞
∏

k=1

Hρk,k[x] : ∀n > 0 we have Hρ[Xn] =

n
∏

k=1

Hρk,k[Xn]. (13)

To understand the definition it is convenient to consider a few examples:
1) If ρi > 0 for fixed i > 0 and ρl = 0 for l 6= i, then Hρ[x] = Hρi,i[x],

because of H0,k[x] = 1;
2) If ρi, ρj > 0 for some i 6= j, and ρl = 0 for other l, then Hρ[x] =

Hρi,i[x]Hρj ,j[x]. Therefore, using the Hermite polynomial properties we
can write the equality

〈Hρ[x],Hρ̃[x]〉β = δρiρ̃i
δρj ρ̃j

, (14)

where we assume that i and j are fixed, and ρ̃i, ρ̃j > 0.

Lemma 4. Let ρ = {ρk}∞k=1 and ρ̃ = {ρ̃k}∞k=1 be from A and there is

such N > 0 that ρj = ρ̃j = 0 for all j > N . Then, under the conditions

described above, we have the equality

〈Hρ[x],Hρ̃[x]〉β =
N
∏

k=1

δρk ρ̃k
. (15)

Proof follows from the orthogonality property for the Hermite polyno-
mials. It should be noted that Hρ, Hρ̃ and their product are from ∈ Sβ ,
because #ρ < ∞ and #ρ̃ < ∞, where #ρ denotes a number of nonzero
elements. The last Lemma means that we have orthonormal system. In
this case a set of orthonormal elements is {Hρ : ρ ∈ A,#ρ < ∞}. It is
clear that the set is countable. The completeness property is a delicate
matter and it is not discussed here.

2.5. Further properties. Let us formulate properties which play a cru-
cial role in physical applications. For this purpose we need to introduce
a derivative in the form of sequence: if x ∈ V then ∂x = {∂xk

}∞k=1. We
can extend notations as it was done earlier. It means that if x, α ∈ V and
n ∈ N, then ∂

Xα
n

equals to α−1
k ∂xk

for k ∈ (1, . . . , n), and zero for k > n.

Lemma 5. Let F be a functional from Sβ, which can be represented by a

series in powers of x. In this case we have

Φ0
β(F ) = lim

n→∞
F [−∂Yn

] exp

(

1

2
(Yβ̃

n,Yn)

)
∣

∣

∣

∣

y=0

. (16)
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Proof. First of all we are going to take the functional
G−y[x] = exp(−(x, y)) and substitute one into the integrand. Thereby
we can write the equation Φ0

β(F ) = Φ0
β(FG

−y)|y=0. Then, after using

the equality F [x]G−y [x] = F [−∂y]G−y[x], we need to find only Φ0
β(G

−y),
which was calculated in the Section 2.3. �

Lemma 6. Let y ∈ V and β ∈ B, then we have Φy
β(I) = 1.

Proof. Let β̃ and the functional G−iyβ

[x] = exp(−i(yβ, x) be from the
Section 2.3. Then, using the transformation

e−
1

2
(Xβ

n,Xn) → e−
1

2
(Xβ

n,Xn)e−i(Xβ
n,Yn)e

1

2
(Yβ

n,Yn) (17)

after a shift in the following form Xn → Xn + iYn and Lemma 5, we have
the equality

Φy
β(I) = lim

n→∞
e

1

2
(Yβ

n,Yn)G−iyβ

[−∂
Zn

]e
1

2
(Zβ̃

n,Zn)
∣

∣

∣

z=0
. (18)

At the same time we know that

exp(−i(Yβ
n, ∂Zn

))e
1

2
(Zβ̃

n,Zn)
∣

∣

∣

z=0

= e
1

2
(∂

Z
β
n

,∂
Zn

)
exp(−i(Yβ

n,Zn))
∣

∣

∣

z=0
= e−

1

2
(Yβ

n,Yn). (19)

And after substitution the last equality into previous one the statement
follows. �

Actually, the performed proof is very instructive and contains important
equalities which are used in various applications. But it should be noted
that the last Lemma can be proven by using complex analisys. Indeed, we
can use the Cauchy’s theorem and move the contour in the complex plane.

Lemma 7. If F ∈ Sβ, then |Φ0
β(F )| < +∞.

Proof. The requirement F ∈ Sβ means there are such C ∈ R+, n ∈ N,
α ∈ B, and z ∈ V, that for all x ∈ V the conditions (6) hold. Let us define
two functionals by the formulas

G(x) = C(1 + (xα, x)), Gz(x) = e(z,x). (20)

Then, by using Lemma 3, we have the following inequalities

|Φ0
β(F )| 6 Φ0

β(|F |) 6 Φ0
β(GG

z). (21)
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At the same time from the Section 2.3 we know that Φ0
β(G

z) = e
1

2
(zβ̃ ,z).

Thus, from Lemma 5 we obtain

|Φ0
β(F )| 6 G (∂z) e

1

2
(zβ̃ ,z) < +∞, (22)

because of the sums
+∞
∑

n=1
z2nβ̃

k
nα

k−1
n and

+∞
∑

n=1
β̃k
nα

k
n are finite for all k > 1. �

2.6. Delta-functional. In the construction of the classical theory (see
[12]) after the introduction of a set of test functions the generalized func-
tions (or distributions) are defined. They have such features as linearity
and continuity. In the infinite-dimensional case instead of the set of test
functions we have a set of functionals on V. It is obvious that any element
of the set Sβ is also linear generalized functional on the Sβ . Let us give
an example of a special type. If x and y are from V, then a δ-functional
D(y, x) is defined by the formula

D
β(y,Xn) =

n
∏

k=1

(

2π

βk

)
1

2

e
1

2
βkx

2

k δ(yk − xk), ∀n > 0. (23)

The last definition consistent with the construction described above. It can
be verified by substitution that the equality 〈D[y, · ], F 〉β = F [y] holds for
all F ∈ Sβ , for which the limit lim

n→+∞
F (Yn) exists and equals to F [y].

§3. Applications

3.1. Path integral. As it was noted above we are going to connect the
physical meaning of the integral with the parameter β ∈ B, which plays a
role of spectrum for some problem. Of course, it follows from the definition
of the set B that the spectrum should be discrete, infinite, and positive.
The transition to the finite spectrum can be done by using projection of
V on a finite-dimensional subspace.

To see it and to give sufficient definitions we need to introduce some new
notations. First of all we enter an infinite-dimensional basis ψ = {ψk}∞k=1

and a scalar product 〈·, ·〉, such that 〈ψi, ψj〉 = δij . Then by symbol V we
denote (in the sence of generalized functions) a set

{v = (x, ψ) : {xk}∞k=1 ∈ V}, (24)
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where ψ is understood as a function with value in the V. In the same way
we introduce a set

H = {v = (x, ψ) : (xβ , x) <∞}. (25)

Let F be a functional on V. It is clear that we can proceed to consideration
of a functionals F on V by using a substitution xj = 〈v, ψj〉 for all j. So
we have a transition F (x) → F(v), where x ∈ V and v = (x, ψ) ∈ V .

Now we have the ability to introduce an integral. Under the conditions
described above the path integral of the functional F over a set H+ iu is
defined by the formula

∫

H+iu

Dv e−S[v]F(v) = Φy
β(F ), (26)

where S[v] = 1
2 〈vβ , v〉, vβ = (xβ , ψ), and u = (y, ψ).

It is very easy to see that the last construction inherits all properties of
Φ-functional. Thus we can in the same way introduce quasi-scalar product
and orthonormal system. Also we need to note that the left hand side of
the formula (26) contains a little more information, because we have the
basis and the scalar product. Actually, it does not matter because any two
infinite-dimensional separable Hilbert spaces are isomorphic to each other.

3.2. Loop space. Let us introduce more concrete β from B, a basis,
and a scalar product, which are useful in theoretical physics. The first
one is given by the formula β = {π2k2}∞k=1. The second one we define as

ψk(s) =
√
2 sin(πks) for all k ∈ N, where s ∈ [0, 1]. The scalar product is a

real and given by the integral over the interval [0, 1]. One can verify that
∫ 1

0 dsψi(s)ψj(s) = δij .

Indeed, the spectrum β and the basis ψ correspond to the solution of
the Sturm–Liouville problem with the equation −u′′ = λu and the homo-
genious boundary conditions u(0) = u(1) = 0. Taking into account the
definition of the quadratic form S we have

H = H1
0 (0, 1) = {u ∈ L2(0, 1) :

∫ 1

0

ds u̇2(s) <∞, u(0) = u(1) = 0}. (27)

It is very well known that any function from H is the continuous one.
Due to the boundary conditions we deal with loops. So in this particular
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case the path integral is called the loop integral and plays a crucial role in
physics. For example, at studying of the heat kernel expansions (see [13]).

3.3. Functional derivative. Under the conditions stated in the previous
section let u(s), where s ∈ [0, 1], be some function from the set V . Then a
functional derivative is based on the equality

δu(t)

δu(s)
= δ(t− s), (28)

where t ∈ [0, 1]. It is a very important object which allows us to work with
Feynman diagram technique through the path integral. To connect the last
formula with the definitions described above we need an extra lemma.

Lemma 8. Let x = {xk}∞k=1 ∈ V, ψ = {ψk}∞k=1 is the basis from the

Section 3.2, and u = (ψ, x) ∈ V. Then we have the equality

δ

δu(t)
= (ψ(t), ∂x), t ∈ [0, 1]. (29)

The statement follows from the completness of the basis functions
(ψ(t), ψ(s)) = δ(t − s). Using the last Lemma it is easy to obtain some
new properties of the integral. For example, due to the equality

∫

H+iu

Dv δ

δv(t)
e−S[v]F(v) = 0, ∀t ∈ [0, 1], (30)

we can use an integration by parts in the case of the functional integration,
or, due to the equality

∫

H

Dv e−S[v]F(v) = F [− δ

δu
] exp

(

1

2
(uβ̃ , u)

)∣

∣

∣

∣

u=0

, (31)

we have the ability to use the standard theory of perturbative expansion.

§4. Conclusion

The main purpose of this work was to define the “integral” construction
and to give as many examples and physical applications as possible. We
also focused on the possible ways of development as well as the problems
that arose. Let us mention some of them.

1) At the beginning of the Section 2 we pointed out the set B elements of
which play the role of the spectrum. The transition to a finite-dimensional
or positive continuous one is quite easy, but adding a negative or zero
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spectrum brings difficulties associated with divergences.

2) In the Section 2.4 we considered the orthonormal system. It is clear
that we have the completness on the polynomial classes. It is very interes-
ting to find a class of functionals on which completeness is performed. It is
also not completely clear whether it is necessary to supplement the basis
with generalized functionals Hρ, where #ρ = ∞.

3) In the Section 2.6 we have outlined an analogy of functional sets
with the classical theory of generalized functions. At the same time new
problems, related to functional continuity or to the convergence of the
functional sequence, appear.

4) Also in the Section 2.6 we proposed definitions for δ-functional. In
the same way it is possible to introduce a δ-sequence Dβ

τ (y, x), which is a
set according to the formula

D
β
τ (y,Xn) =

n
∏

k=1

1√
2τ
e

1

2
βkx

2

ke−
βk
4τ

(yk−xk)
2

, ∀n > 0, τ > 0. (32)

In fact the last one is a heat kernel for infinite-dimensional initial value
problem, because it satisfies the equation

(

∂τ − (∂yβ , ∂y)
)

D
β
τ (y, x) = 0 (33)

and the initial condition D
β
0 (y, x) = Dβ(y, x). Using the transition to the

loop case from the Section 3, we can rewrite the last problem in the fol-
lowing form

(

∂τ −
1

∫

0

1
∫

0

dsdt g(s, t)
δ

δu(s)

δ

δu(t)

)

D
β
τ (u, v) = 0,

D
β
0 (u, v) = D

β(u, v), (34)

where g(s, t) = (ψβ̃(s), ψ(t)). It is possible to develop the theory of the
Laplace operator with functional derivative (class of potentials, spectral
theory, a decomposition into a direct integral). Earlier attempts were made
in [6, 14, 15].
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