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ON EXTENSIONS OF CANONICAL SYMPLECTIC

STRUCTURE FROM COADJOINT ORBIT OF COMPLEX

GENERAL LINEAR GROUP

Abstract. The problem of the extensions of the canonical Lee–
Poisson–Kirillov–Kostant symplectic structure of the coadjoint orbit
of the complex general linear group is considered. The introduced
method uses the concept of the flag coordinates and does not de-
pend on the Jordan structure of matrices forming the orbit. The
principal bundle associated with the fibration of the orbit over the
Grassmanian of flags is constructed.

§1. Introduction

1.1. Extension by D. Korotkin and M. Bertolla. A natural way to
extend the Lee–Poisson–Kirillov–Kostant (LPKK) structure in the case of
the coadjoint orbit of general position was introduced in [7]. The approach
is based on the interpretation of the coadjoint orbit as a quotient manifold
of the right-invariant section of T∗GL(N,C) with respect to the subgroup
of the left shifts that keeps this section invariant.

To present it in more detail let us consider GL(N,C) and its cotangent
bundle T∗GL(N,C) ∋ (g,B). We identify gl(N,C) and gl∗(N,C) using
Killing product

B ∈ gl(N,C)↔ B ∈ gl∗(N,C) : {A→ trAB}.

The right-invariant section that is equal to some Λ ∈ gl∗(N,C) at the unit
is ⋃

g∈GL(N,C)

(g, g−1Λ) ⊂ T∗GL(N,C).

It carries the two-form that is the restriction of the standard form ωT∗ =
tr dB ∧ dg on T∗GL(N,C).

Key words and phrases: symplectic reduction, Gauss decomposition, standard Jor-
dan form, Lie–Poisson–Kirillov–Kostant form, flag coordinates.
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The quotient manifold with respect to the subgroup of matrices that
commute with Λ can be identified with the coadjoint orbit

⋃

g∈GL(N,C)

g−1Λg ⊂ gl∗(N,C).

It can be proved that the contraction of ωT∗ on the section is well defined
on this quotient manifold and defines a symplectic structure there, see [8].

Let ∆ ⊂ gl∗(N,C) be a locus of the diagonal matrices with the dis-
tinct eigenvalues. It is N -dimentional manifold. Let M∆ be a N + N2-
dimensional submanifold of the cotangent bundle swept by the right shifts
of the elements of (e,∆) ∈ T∗

e
GL(N,C):

M∆ :=
⋃

g∈GL(N,C),Λ∈∆

(g, g−1Λ) ⊂ T∗GL(N,C).

The restriction on M∆ of the standard form ωT∗ is

ωT∗ = tr d(g−1Λ) ∧ dg.

The form is evidently closed as the contraction of the closed form. The
non-degeneration is equivalent to the absence of the non-trivial solutions
(X, Λ̇) of the equations

Λ̇ + [X,Λ] = 0, and tr Λ′X = 0 ∀Λ′ ∈ ∆,

i.e., for all Λ′ tangent to the set of values of Λ’s. The first equation is
equivalent to vanishing both Λ̇ and [X,Λ]. The vanishing of tr Λ′X set some
restrictions on the diagonal part of X only. That is why this method of the
extension of LPKK structure works in the case of the distinct eigenvalues
of Λ only. It is the case [X,Λ] = 0 is equivalent to the diagonality of X
and tr Λ′X = 0 ∀Λ′ implies X = 0, see [7].

So M∆ is a symplectic manifold that can be considered as an embedding
of the extension of the LPKK-symplectic structure of the coadjoint orbit
constructed at [7].

1.2. Flag extension. Let us introduce another representation of the
coadjoint orbit. In the works [1, 2, 3] the concept of flag coordinates was in-
troduced. A natural domain of definition of these coordinates contains the
coadjoint orbit as an open subset. The flag coordinates can be constructed
for the matrices of any Jordan structure uniformly.

The set of local isomorphisms between O and the linear symplectic
spaces was built. The elements of the set are numerated by the permuta-
tions of the roots of the minimal polynomial.
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Main objects of the present investigation are fiber bundles over the
Grassman manifold of flags. A flag in question is {F} : Fk−1 ⊂ Fk, Fk :=

ker
k∏

i=1

(A−λiI). It is defined for any ordered set of the eigenvalues λi of A.

We construct a fiber bundle over the manifold of these flags. The fiber
is a set of the spaces of the linear maps between CN/Fk and Fk/Fk−1. We
extend just this fiber bundle.

Let us consider the extension itself. Each point A = g−1Λg of the orbit
O is the result of the factorization. The factorization is made with respect
to the subgroup of matrices commuting with Λ:

g ≃ gΛg if gΛΛ = ΛgΛ, g−1Λg = g−1g−1
Λ ΛgΛg = A.

The representation of O as the fiberbundle over the flag Grassmanian
“remember” this factorization. There is an isomorphism between the set of
matrices over the point A and a manifold ⊗kGL(Fk/Fk−1) associated with
the flag. The cotangent bundle of this manifold is the symplectic space that
extends the orbits fibered over this flag Grassmanian.

Each orbit can be projected symplectically to this extended space as a
submanifold which added coordinates are equal to

{(id, λ1I), . . . , (id, λM I)} = const ∈ ⊗M
k=1T

∗GL(Fk/Fk−1).

§2. Stratification of gl(N,C) and Young tableaux

A diagram technique for the investigation of the set of matrices with
the complicated Jordan structure was developed in [5].

Each matrix defines the Young tableaux Y . If the set of roots of the
minimal polynomial of the matrix is ordered, the Young tableaux can be
marked by these roots that are the eigenvalues of the matrix. The marked

Young tableaux
←−
Y uniquely defines the flag F that was defined in the

previous section. The conjugated class of the matrix is defined by tableaux
the marked by the eigenvalues.

The unmarked tableaux defines the submanifold {∪O}Y in the space of
matrices. The matrices in the submanifold have the same integer-valued
functions

k → dim ker

k∏

i=1

(A− λiI)

for some orderings of the roots λi of their minimal polynomials. It can
be treated as some special factorization of the characteristic polynomial,
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where all the eigenvalues λi substituted by one formal variable, say λ̄:

M∏

k=1

(λ− λ̄)nk .

Let us fix an unmarked diagram Y . It defines the decomposition of
N on M summands nk that are the values of jumps of the dimensions
of ker

∏
k

(A − λk), the dimensions of the subspaces forming the flag. The

same numbers nk are the dimensions of the subspaces [Fk] := Fk/Fk−1 of
the factor-spaces Vk−1 = CN/Fk−1 ⊃ [Fk], for some ordering of λk’s. The
different orderings of λk imply just the reordering of the same set of nk.
The action of matrix A on the auxiliary V ≃ C

N can be contracted on the
factor-spaces Vk = V/Fk. These contractions define the sequence of the
transformations Ak, k = 1, . . . ,M . The contraction of Ak−1 ∈ End Vk−1,
on [Fk] ⊂ Vk−1 is the homothetic dilatation of [Fk] with coefficient λk.

§3. Projection of coanjoint orbit of GL(N,C) to flag

manifold. Flag coordinates.

Consider any A ∈ gl(N,C) ≃ gl∗(N,C). We treat A as a matrix of the
linear transformation A ∈ End(V ) of some auxiliary V ≃ CN in a fixed
basis.

Let us consider minimal polynomial of A and order the set of its roots
that are the eigenvalues λi of A. Let us consider flag {F}:

Fk := ker

k∏

i=1

(A− λiI), F0 := 0,

where the product is taken over such values “i” that dimFk 6= dimFk−1.
The jumps of the dimension of Fk we denote by nk, the number of the
jumps we denote by M :

dimFk − dimFk−1 =: nk,

M∑

k=1

nk = N.

The value of M is the order of the minimal polynomial.
The index k takes no more than N values excluding k = 0. The flag is

complete in the case of one-dimensional eigenspaces, it is the case when
each eigenvalue has just one Jordan box. It follows from the concept (ex-
istence) of the minimal polynomial that for some k = M 6 N the corre-
sponding subspace FM becomes the whole V .
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Let us consider a flag {V } that is complementary to this one in some
sense:

Vk := V/ ker

k∏

i=1

(A− λiI), V0 := V, VN = 0.

Linear spaces Vk of the flag {V } can be embedded into V , where Fi lives,
as fiberations of V by the linear submanifolds parallel to Fk. The linear
structure is defined by the projection on any transversal subspace of the
complementary dimension.

It is evident, that A induces some linear transformation on each of the
spaces Fk and Vk. It is AFk

:= A|Fk
∈ End(Fk), and Ak ∈ End(Vk) that

can be defined on representatives. The image of any point of a fiber is
contained in the same fiber because AFk ⊂ Fk. The factorization gives
one point of Vk.

We can see that all the objects, namely linear transformation Ak ∈

End Vk, the flag ker
s∏

i=k+1

(Ak − λiI), and the complementary flag of the

quotients with respect to these subspaces are correctly defined. So we can
consider the sequence of the nested flags and transformations Ak ∈ Vk

defined on them.
Let us denote a Grassman manifold of all flags at V with the set {nk}

M
k=1

of the jumps of the dimensions by GrΦ{nk} ∋ {F}.

We define a map from the coadjoint orbit of Λ ∈ gl(N,C) to the flag

manifold GrΦ{nk}
∋ {F}: O(Λ)→ {F}.

Let us consider a level of value of this map. We “forget” the positions of
imagesAk−1(v), v ∈ Vk on the fibers w ∈ Vk during each factorization. The
result of this “forgetting” is Ak ∈ End Vk. We see that we are forgetting
the positions of dim Vk points on the fibers on each step. Each fiber is
isomorphic to Fk/Fk−1. It can be proved that the image is algebraically
open subset in the fiber, see [3].

Finally, we see that the level-set of the map O(Λ)→ {F} is isomorphic
to the open subset of the manifold of the linear maps

V/Fk → [Fk],

where [Fk] := ker(Ak−1 − λkI) = Fk/Fk−1 ⊂ Vk−1 is dimFk − dimFk−1 =:
nk-dimensional subspace of Vk−1. It is just Fk considered as the subspace
of Vk−1.

To define coordinates on the open subsets of these manifolds let us
consider the fixed from the very begining basis {e} in V ≃ CN and
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introduce models of the quotient-spaces Vk as the coordinate subspaces
Ek := L (eN , eN−1, eN−2, . . . ) of the corresponding dimension. The coor-
dinate subspaces that complete Ek to Ek−1 we denote by Lk:

Ek−1 = Ek ⊕ Lk, Lk ≃ [Fk].

Here ei ∈ {e} are vectors of the basis.
The position of flag {F} is uniquely determined by the projection of

the fixed flag made from the coordinate subspaces, to {F} parallel to the
spaces of the correspodning models Ek of Vk’s. It gives a map Q : A→ Q,
where

Q =:
⊕

k

Hom([Fk], Vk).

Here the components Qk(A) ∈ Hom([Fk], Vk) of Q are the projections of
the points of [Fk] to Lk parallel to Ek:

Qk(x) + x ∈ Lk, x ∈ [Fk], Qk(x) ∈ Ek.

The matrix-elements of these maps in basis {e} form the affine coordinates

on the (open subset of the) flag manifold GrΦ{nk}.
Consider linear spaces

Pk = Hom(Vk, [Fk])

of the linear maps in the opposite direction. We combine them to one linear
space P:

P =:
⊕

k

Pk.

We get components Pk(A) in the following way. We contract Ak−1 on Vk

and set Pk as a projection of this contraction to [Fk] := ker(Ak−1 − λkI)
parallel to Ek.

A linear space P⊕Q has natural symplectic structure because it is a di-
rect sum of two mutually conjugated linear spaces. Any bases in the corre-
sponding spaces [Fk], Ek give the matrix representations and the canonical
form of the symplectic form on the orbit ωO = tr dPk ∧ dQk, see [3].

The matrix elements (Pk)ij , (Qk)ji are called flag coordinates on the
orbit. To construct an atlas of these coordinate maps we consider all per-
mutations of the basic vectors ei.
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§4. Fibration of orbit over Grassmanian of flags

Let us fix the ordering of λk’s once and forever and consider a structure
of the fiber bundle on the orbit:

O → GrΦ{nk},

where GrΦ{nk}
∋ {F} is a corresponding Grassmanian of the flags.

Our aim is the construction of the principal bundle associated with O →
GrΦ{nk}

. The charts of the atlas of this fiber bundle can be parameterized
by the elements of the symmetric group ΣN ∋ α that permutes the basic
vectors. Different permutations form different models of Vk.

Let us consider two different maps α, β ∈ ΣN . The corresponding com-
ponents of the coordinates on the fiber over some {F} we denote by Pα

k

and P β
k . They differ by the directions of the projections of the correctly

defined values of (Ak − λkI)|Vk
(v) on the correctly defined subspace [F].

Let the directions of the projections be the directions of the coordinate

subspaces Eα
k and Eβ

k .

The differences P β
k (A)−Pα

k (A) have the same values for all A with the
same projection Ak ∈ End Vk due to Thales theorem. Let us denote

Φαβ
k (Ak) := P β

k (A)− Pα
k (A) ∈ Hom(Vk, [Fk]).

We treat this transformation as a transition function. It transforms the
fiber that is P =:

⊕
k Hom (Vk, [Fk]) in the following way: P β

k (A) =

Pα
k (A) + Φαβ

k (Ak), i.e. each component Pk is shifted on the vector de-
pending on the projection of A ∈ End V to End Vk. The image of this
projection of A is denoted by Ak.

There is a unique eigenvector of Ak−1 corresponding λk that connects

the points of the coordinate subspaces Eβ
k and Eα

k over the point Ak(v) ∈
Vk ∋ v. The value of the shift is this eigenvector of Ak−1. It is the point
of Vk−1 where Ak−1 acts.

The fiber of the principal bundle over Grassmanian GrΦ{nk} is the affine
group. The transition functions are the shifts on vectors with the compo-

nents Φαβ
k ∈ Hom (Vk, [Fk]):

{v → f}
Φαβ

k−→ {v → f +Φαβ
k (Ak(v))},

We need the values λk to restore A itself. To add these values to the
model we consider the homothetic dilatation of [Fk] with the coefficient of
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the dilatation λk. We associate the dilatations with the point (id, Iλk) ∈
T∗GL([Fk]) of the cotangent bundle T∗GL([Fk]).

Let us add a direct summand T∗GL([Fk]) to the fiber Hom(V/Fk, [Fk])
of the associated bundle. Group GL([Fk]) acts on the linear space [Fk] =
Fk−1/Fk by the changes of basis. The transition functions change basis
on [Fk] that implies the adjoint action on the matrices that represent the
points of GL([Fk]) in different charts α and β.

Consider the fiber

T∗GL([Fk])⊕Hom(V/Fk, [Fk])

itself. Any coordinate map {e}α induces its own coordinates on [Fk]. The
coordinates are defined by projection of the basis from the coordinate sub-
space Lα

k to [Fk] parallel to Eα
k . Different charts induce different coordinates

on [Fk]. The transition function φαβ
GL ∈ GL([Fk]) is defined as a linear trans-

formation of the basis constructed using Eα
k , L

α
k to the basis constructed

by Eβ
k , L

β
k on [Fk]. The bases are the projections of the bases from Lα and

from Lβ parallel to Eα
k and to Eβ

k correspondingly. It is evident that such

transformations define a cocycle: φαβ
GLφ

βγ
GLφ

γα
GL = id ∈ T∗GL([Fk]).

These mappings φαβ
GL act on the points of the fiber GL([Fk]) by the

similarity transformations. If eα → eαgα and eβ → eβgβ is the same point

of GL([Fk]) in different charts α and β: eβ = eαφαβ
GL, then

gα = φαβ
GLg

βφβα
GL.

Let us combine the mappings φαβ
GL and Φαβ to one object, namely the

set of the transition functions marked by the couples α, β ∈ ΣN :

φαβ = (φαβ
GL,Φ

αβ) ∋ ⊗N
k=1GL([Fk])×Hom(V/Fk, [Fk]),

[Fk] := Fk/Fk−1.
(1)

It is our goal, namely it is a set of the transition functions of the bundle
over the Grassmanian GrΦ{nk}. A fiber of the bundle is ⊗N

k=1T
∗GL([Fk])×

Hom(V/Fk, [Fk]).
This manifold has evident symplectic structure. The symplectic forms

living on each map coincide on the overlappings because the canonical form
on the manifold GL([Fk]) does not depend on the coordinates, particularly
on the coordinates induced on GL([Fk]) by the bases eα or eβ .

The orbit O itself is embedded into this fiberbundle as the submanifold
with the fixed coordinates (id, Iλk) ∈ T∗GL([Fk]). These coordinates are
the same in all maps.
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§5. Extension of LPKK-structure on manifold over all

GL(N,C)

The model of the orbit that equipped with the LPKK structure was
constructed as the quotion with respect to the subgroup of the commuting
with Λ matrices of the right-invariant section (g, g−1Λ). We will extend
the form on the fibers and construct the form over all GL(N,C).

Let us fix Young tableaux and consider the submanifold {∪O}Y in the
space of matrices. Let Young tableaux is standard-marked (see [5]) in a
same way.

The special version of the normal Jordan form of A ∈ {∪O}Y corre-
sponds to the standard marking, see [4]. Its geometrical meaning is follow-
ing.

Consider a basis of the cyclic vectors of A and collect the vectors to
sets. Each set consists of generalized eigenvectors of the same order cor-
responding to some eigenvalue. The sets are ordered in ascending fashion
of the orders. The first sets correspond to the not generalized but just the
eigenvectors.

Let Λ be the matrix of A in such basis. It means that the columns of
matrix g−1 form corresponding Jordan basis for matrix A = g−1Λg.

Consider the flag coordinates [3, 5] corresponding this (standard) mark-
ing of the diagram. It gives the representation A = QρpQ

−1, where Q is
block-uni-lower-triangular matrix. Its columns are the projectors of the
sets of the basic vectors of the standard Jordan basis {e} on the sub-
spaces of the flag {F} generated by A. The projections are parallel to the
coordinate subspaces Ek.

The k’s set of the columns of g−1 completes the subspace Fk to subspace
Fk+1. Let us project it on the coordinate subspace Vk where Ak acts.

The projection of the vectors forming the k+1-st set of columns of g−1

on Vk parallel to Fk gives some basis of the eigenspace of Ak corresponding
to λk+1. Let us denote this basis by gk Another basis of the same subspace
forms the k + 1-st set of columns of Q. We denote this basis by qk.

We have constructed two bases of one eigenspace of Ak ∈ End Vk. This
subspace can be identified with [Fk+1] = Fk+1/Fk, and the construction
defines an element of GL([Fk+1]) that transforms basis qk to gk.

Basis qk is the same for all g’s that differ on the left factor commuting
with Λ. So we have defined local projections uα

k of the right-invariant
section ∪g(g, g

−1Λ) to the ⊗kGL([Fk]).
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Each point (g, g−1Λ) correctly defines some basis gk on each Fk+1/Fk.
The coordinate charts α ∈ ΣN define the corresponding bases qα

k and
transformations uα

k ∈ GL([Fk]) that transform qα
k to gk.

Let us consider GL([Fk]) as a base of the cotangent bundle T∗GL([Fk]).
We constructed the following objects

• fiber-bundle (g, g−1Λ)→ ⊕k[Fk] with transition functions φαβ
GL,

• the section of the frame bundle g → {gk}
M
k=1 ⊂ ⊕k[Fk],

• the local sections g → {qα
k}

M
k=1 ⊂ ⊕k[Fk].

It gives the desired local sections uα
k of ⊗kGL([Fk]) defined as transfor-

mations {qα
k}

M
k=1 to {gk}

M
k=1.

The different bases {qα
k }

M
k=1 have the same values for all points of the

fiber (g, g−1Λ) → O because they are correctly defined on the orbit. On
the other hand the different g induce different projections gk because they
are collected from the columns of matrix g−1. The dimension of the fiber
(g, g−1Λ)→ O is the dimension of the subgroup of the matrices commut-
ing with Λ, consequently the dimension of the fiber and the dimension
of ⊗kGL([Fk]) coincide. We have the injective map between the manifolds
of the same dimensions, consequently it is a local isomorphism. This iso-
morphism induce an isomorphism between the tangent spaces to the fiber
g → g−1Λg and T⊗k GL([Fk]).

Consider the linear spaces [Fk]. They equiped with the sets of bases qα
k

that can be considered as the representatives of the points of the quotient
space Fk/Fk−1.

Consider the cotangent bundle of GL([Fk]). The points of its fibers
gl∗([Fk]) can be identified with the elements of the gl([Fk]) using the product
trAB, where A and B are the matrix realizations of elements of gl([Fk]) in
some basis.

Each orbit with the ordered eigenvalues λk defines the set Ak of the
transformations of Vk, k = 1, . . . ,M . The contraction of Ak on [Fk+1] is a
homothetic dilatation with the coefficient λk+1. We identify these trans-
formations with the points of gl∗([Fk]).

We have constructed the embedding of the manifold of all right-invariant
sections g → (g, g−1Λ) with the same Young tableaux Y (Λ) to the sym-
plectic space ⊗kT

∗GL([Fk])×O.
The contraction of the symplectic form ω := ωO +ω⊗GL on the embed-

ded orbit is equal to ωO because the p-coordinate of the summand ω⊗GL

is equal to constant (λ1I, . . . , λM I). So we constructed an extension of the
LPKK form on the orbit.
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The form is evidently symplectic as a direct sum of the symplectic
spaces. The form is an extension of the form from the quotient of GL(N)
with respect to the commuting with Λ matrices to all GL(N) because we
constructed the isomorphism between the fibers.

§6. Case of general position

Let us consider our construction in the case of general position that
is the case of N different eigenvalues λk. All the spaces [Fk] are one-
dimensional and we need to calculate the proportionality factor between
the projections of the columns of g−1 on the coordinate subspaces Ek and
vectors-columns of the lower-triangular Q.

It is evident that the coefficients that are the elements of one-dimensi-
onal GL([Fk]) just the diagonal entries of the factorisation of g−1 on the
lower-triangular and upper-uni-triangular factors. These values are equal
to the ratios of the principal minors ∆k(g

−1) of the neighbor sizes:

u1 = (g−1)11, u2 = ∆2(g
−1)/(g−1)11, . . . , uN = det g−1/∆n−1(g

−1).

These coefficients are the coordinates in the chart indexed by the nu-
meration of the basic vectors. We consider such chart that all principal
minors are not vanish.

Let us consider the cotangent spaces at the corresponding points. Let
ξk are the coordinates on these spaces in the bases duk.

The constructed two-form is

ω := ωO +
N∑

k=1

dξk ∧ d
∆k(g

−1)

∆k−1(g−1)
, ∆0(g

−1) := 1.

It is the symplectic form. In this simplest case it can be verified directly.
It is smooth because such permutation of the basic vectors that the

matrix of not-degenerated transformation has all not-vanishing principal
minors always exists. It is closed because ωO is closed and either ξk or
∆k(g

−1)
∆k−1(g−1) are correctly defined functions at the chart.

Form ωO does not depend on the multiplication of g on the diagonal fac-
tor, consequently we can represent g = gdiag(u)gO(P,Q) where diagonal
gdiag and gO depend on different variables and gO has constant principal

minors. If form ω is identical zero for some Ṗ, Q̇, ξ̇, u̇ and any P′,Q′, ξ′,u′

then both summands, ωO and the sum over k, are equal to zero sepa-
rately, because the expression must be zero either for P′ = 0 = Q′ or for
ξ′k = 0 = u′

k∀k. Form ωO is not degenerated, consequently Ṗ = 0 = Q̇.
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Vanishing the sum over k implies vanishing ξ̇ and u̇, because all ξk and
uk are the independent variables. We see that ω is not degenerated. It
completes the verification.
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