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A SHORT EXACT SEQUENCE

Abstract. Let R be a semi-local integral Dedekind domain and
K be its fraction field. Let µ : G → T be an R-group schemes
morphism between reductive R-group schemes, which is smooth as
a scheme morphism. Suppose that T is an R-torus. Then the map
T(R)/µ(G(R)) → T(K)/µ(G(K)) is injective and certain purity
theorem is true. These and other results are derived from an ex-
tended form of Grothendieck–Serre conjecture proven in the present
paper for rings R as above.

§1. Main results

Let R be a commutative unital ring. Recall that an R-group scheme G

is called reductive, (respectively, semi-simple or simple), if it is affine and
smooth as an R-scheme and if, moreover, for each algebraically closed field
Ω and for each ring homomorphism R → Ω the scalar extension GΩ is a
connected reductive (respectively, semi-simple or simple) algebraic group
over Ω. The class of reductive group schemes contains the class of semi-
simple group schemes which in turn contains the class of simple group
schemes. This notion of a reductive R-group scheme coincides with [4,
Exp. XIX, Definition 2.7]. This notion of a simple R-group scheme coin-
cides with the notion of a simple semi-simple R-group scheme from De-
mazure and Grothendieck [4, Exp. XIX, Definition 2.7 and Exp. XXIV,
5.3]. Here is our first main result

Theorem 1.1. Let R be a semi-local integral Dedekind domain. Let K
be the fraction field of R. Let µ : G → T be an R-group scheme mor-
phism between reductive R-group schemes, which is smooth as a scheme
morphism. Suppose T is an R-torus. Then the map T(R)/µ(G(R)) →
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T(K)/µ(G(K)) is injective and the sequence

{1} → T(R)/µ(G(R)) → T(K)/µ(G(K))
∑

rp
−−−→

⊕

p

T(K)/[T(Rp) · µ(G(K))] → {1} (1)

is exact, where p runs over all non-zero prime ideals of R and rp is the
natural map (the projection to the factor group).

Let us comment on the first assertion of the theorem. Let H be the kernel
of µ. It turns out that H is a quasi-reductive R-group scheme (see Defi-
nition 1.3). There is a sequence of group sheaves 1 → H → G → T → 1,
which is exact in the étale topology on SpecR. Theorem 1.4 yields now the
injectivity of the map T(R)/µ(G(R)) → T(K)/µ(G(K)).

Theorem 1.2. Let R be a semi-local integral Dedekind domain. Let K
be the fraction field of R. Let G1 and G2 be two semi-simple R-group
schemes. Suppose the generic fibres G1,K and G2,K are isomorphic as
algebraic K-groups. Then the R-group schemes G1 and G2 are isomorphic.

This theorem can not be directly derived from [12] and [13]. Indeed,
only geometrically connected group schemes are regarded there. However,
to prove Theorem 1.2 we need to work with the automorphism group
scheme of a semi-simple R-group scheme. The latter group scheme is not
geometrically connected in general.

We state right below a theorem, which asserts that an extended ver-
sion of Grothendieck–Serre conjecture holds for rings R as above. This
latter theorem is proved in this paper. Theorem 1.2 and the first assertion
of Theorem 1 are derived from it. To state the mentioned theorem it is
convenient to give the following.

Definition 1.3 (quasi-reductive). Assume that S is a Noetherian com-
mutative ring. An S-group scheme H is called quasi-reductive if there is
a finite étale S-group scheme C and a smooth S-group scheme morphism
λ : H → C such that its kernel is a reductive S-group scheme and λ is
surjecive locally in the étale topology on S.

Clearly, reductive S-group schemes are quasi-reductive. Quasi-reductive
S-group schemes are affine and smooth as S-schemes. There are two types
of quasi-reductive S-group schemes, which we are focusing on in the present
paper. The first one is the automorphism group scheme of a semi-simple
S-group scheme. The second one is obtained as follows: take a reductive
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S-group scheme G, an S-torus T and a smooth S-group morphism µ :
G → T. Then one can check that the kernel H of µ is quasi-reductive. It
is an extension of a finite étale S-group scheme C of multiplicative type
via a reductive S-group scheme G0.

Assume that U is a regular scheme, H is a quasi-reductive U -group
scheme. Recall that a U -scheme H with an action of H is called a principal
H-bundle over U , if H is faithfully flat and quasi-compact over U and the
action is simple transitive, that is, the natural morphism H×U H → H×U

H is an isomorphism, see [9, Section 6]. Since H is S-smooth, such a bundle
is trivial locally in étale topology but in general not in Zariski topology.
Grothendieck and Serre conjectured that for a reductive U -group scheme
H a principal H-bundle H over U is trivial locally in Zariski topology, if
it is trivial generically. A survey paper on the topic is [15].

The conjecture is true, if Γ(U,OU ) contains a field (see [7] and [18]). It is
proved in [12] that the conjecture is true in general for discrete valuation
rings. This result is extended in [19] to the case of semi-local Dedekind
integral domains assuming that G is simple simply connected and isotropic
in a certain precise sense. In [13] results of [12] and [19] are extended
further. It is proved there that the conjecture is true in general for the
case of semi-local Dedekind integral domains. The following result is a
further extension of the main theorem of [13].

Theorem 1.4. Let R be a semi-local integral Dedekind domain. Let K be
the fraction field of R. Let H be a quasi-reductive group scheme over R.
Then the map

H1
ét
(R,H) → H1

ét
(K,H),

induced by the inclusion of R into K, has a trivial kernel. In other words,
under the above assumptions on R and G, each principal H-bundle over
R having a K-rational point is trivial.

Corollary 1.5. Under the hypothesis of Theorem 1.4, the map

H1
ét
(R,H) → H1

ét
(K,H),

induced by the inclusion of R into K, is injective. Equivalently, if H1 and
H2 are two principal H-bundles isomorphic over SpecK, then they are
isomorphic.

Proof. Let H1 and H2 be two principal H-bundles isomorphic over SpecK.
Let Iso(H1,H2) be the scheme of isomorphisms of principal H-bundles.
This scheme is a principal AutH1-bundle. By Theorem 1.4 it is trivial,
and we see that H1

∼= H2. �
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Theorems 1.4 and 1.2 are proved in Section 2. Theorem 1.1 is proved in
Section 4.

§2. Proof of Theorems 1.4 and 1.2

We begin with the following general

Lemma 2.1. Let X be a semi-local irreducible Dedekind scheme. Let π :
X ′ → X be a finite étale morphism. Let η ∈ X be the generic point of X.
Then sections of π over X are in the bijection with sections of π over η.

Proof. Clearly, Pn(X) = P
n(η). Since π is finite it is projective. Hence

X ′(X) = X ′(η). �

Corollary 2.2. Let X, η ∈ X be as in the previous lemma and E be a
finite étale group X-scheme. Then the η-points of E coincides with the
X-points of E.

Corollary 2.3. Under the hypothesis of Corollary 2.2 the kernel of the
pointed set map H1

ét
(X,E) → H1

ét
(η,E) is trivial.

Proof. Let E be a principal E-bundle over X . The standard descent argu-
ments shows that the X-scheme E is finite and étale. Thus, E(X) = E(η).
This proves the corollary. �

Proof of Theorem 1.4. Since H is quasi-reductive R-group scheme,
there is a finite étale R-group scheme C and a smooth R-group scheme
morphism λ : H → C such that its kernel G is a reductive R-group scheme
and λ is surjecive locally in the étale topology on S. The sequence of the
étale sheaves 1 → G → H → C → 1 is exact. Thus, it induces a commu-
tative diagram of pointed set maps with exact rows

C(R)
∂
//

α

��

H1
ét
(R,G) //

β

��

H1
ét
(R,H) //

γ

��

H1
ét
(R,C)

δ

��

C(K)
∂
// H1

ét
(K,G) // H1

ét
(K,H) // H1

ét
(K,C)

The map α is bijective by Corollary 2.2, the map δ has the trivial kernel by
Corollary 2.3, the map β is injective by 1.5. Now a simple diagram chase
shows that ker(γ) = ∗. This proves the theorem. �
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Remark 2.4. The statement of [1, Lemma 3.7] and its proof are non-
acurate both. The authors are forthed to assume the injectivity of the map
H1

ét
(R,G0) → H1

ét
(K,G0

R).

Proof of Theorem 1.2. The R-group scheme Aut := AutR−gr−sch(G1)
is quasi-reductive by [5]. The R-scheme Iso := IsoR−gr−sch(G1,G2) is
a principal Aut-bundle. An isomorphism ϕ : G1,K → G2,K of algebraic
K-groups gives a section of Iso over K. So, IsoK is a trivial principal
AutK-bundle. Hence Iso is a trivial principal Aut-bundle by Theorem 1.4.
Thus, it has a section over R. So, there is an R-group scheme isomorphism
G1

∼= G2. �

§3. One lemma

Lemma 3.1. Let X be a regular irreducible affine scheme. Let G be a
reductive X-group scheme and T be an X-torus. Let µ : G → T be an X-
group schemes morphism, which is smooth as a scheme morphism. Then
the kernel of µ is a quasi-reductive X-group scheme.

Proof. Consider the coradical Corad(G) of G together with the canon-
ical X-group morphism α : G → Corad(G). By the universal prop-
erty of the X-group morphism α there is a unique X-group morphism
µ̄ : Corad(G) → T such that µ = µ̄ ◦ α. Since µ is surjective locally for
the étale topology, hence so is µ̄. Let ker(µ̄) be the kernel of µ̄ and let
H := α−1(ker(µ̄)) be the scheme theoretic pre-image of ker(µ̄). Clearly, H
is a closed X-subgroup scheme of G, which is the kernel of µ. We must
check that H is a quasi-reductive.

The X-group scheme ker(µ̄) is of multiplicative type. Hence there is
a finite X-group scheme M of multiplicative type and a faithfully flat
X-group scheme morphism can : ker(µ̄) → M, which has the following
property: for any finite X-group scheme M

′ of multiplicative type and an
X-group morphism ϕ : ker(µ̄) → M

′ there is a unique X-group morphism
ψ : M → M

′ with ψ ◦ can = ϕ. It is known that the kernel of can is an
X-torus. Call it T

0. Since µ is smooth, hence so is µ̄. Thus, the X-group
scheme ker(µ̄) is an X-smooth scheme. This yields that M is étale over X .

Let β = α|H : H → ker(µ̄) and let G
0 := β−1(T0) be the scheme

theoretic pre-image of T0. Clearly, G0 is a closed X-subgroup scheme of
H, which is the kernel of the morphism can ◦ β : H → M. Let γ = β|G0 :
G

0 → T
0.



A SHORT EXACT SEQUENCE 181

TheX-group scheme M is finite and étale. The morphism can is smooth.
The morphism β is smooth as a base change of the smooth morphism α.
Thus, λ := can ◦ β is smooth. It is also surjective locally in the étale
topology on X , because can and β have this property. By the construction
G

0 = ker(λ). So, to prove that H is quasi-reductive it remains to check
the reductivity of G0.

The X-group scheme G
0 is affine as a closed X-subgroup scheme of

the reductive X-group scheme G. Prove now that G
0 is smooth over X .

Indeed, the morphism γ is smooth as a base change of the smooth mor-
phism α. The X-scheme T

0 is smooth, since it is an X-torus. Thus, the
X-scheme G

0 is smooth.
Write X as SpecS for a regular integral domain S. It remains to verify

that for each algebraically closed field Ω and for each ring homomorphism
S → Ω the scalar extension G

0
Ω is a connected reductive algebraic group

over Ω. Firstly, recall that ker(α) is a semi-simple S-group scheme. It
is the S-group scheme G

ss under the notation of [5]. Clearly, ker(γ) =
ker(α). Thus, ker(γ) = G

ss is a semi-simple S-group scheme. Since the
morphism γ is smooth for each algebraically closed field Ω and for each
ring homomorphism S → Ω we have an exact sequence of smooth algebraic
groups over Ω

1 → G
ss
Ω → G

0
Ω → T

0
Ω → 1.

The groups T0
Ω, Gss

Ω are connected. Hence the group G
0
Ω is connected too.

We know already that it is affine.
Finally, check that its unipotent radical U of G0

Ω is trivial. Since there
is no non-trivial Ω-group morphisms U → T

0
Ω, we conclude that U ⊂ G

ss
Ω .

Since G
ss
Ω is semi-simple one has U = {1}. This completes the proof of

the reductivity of the R-group scheme G
0. Thus, the R-group scheme H

is quasi-reductive. This proves the lemma. �

§4. Proof of Theorem 1.1

Proof of the first assertion of Theorem 1.1. Let H be the kernel of µ.
Since µ is smooth, the group scheme sequence

1 → H → G → T → 1

gives rise to an short exact sequence of group sheaves in the étale topology.
In turn that sequence of sheaves induces a long exact sequence of pointed
sets. So, the boundary map ∂ : T(R) → H1

ét(R,H) fits in a commutative
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diagram

T(R)/µ(G(R)) −−−−→ H1
ét
(R,H)





y





y

T(K)/µ(G(K)) −−−−→ H1
ét
(K,H).

Clearly, the horizontal arrows have trivial kernels. The right vertical arrow
has trivial kernel by Lemma 3.1 and Theorem 1.4. Thus the left verti-
cal arrow has trivial kernel too. Since it is a group homomorphism, it is
injective. �

To prove that the sequence (1) is exact in its middle term we need
some preparations. Firstly, consider a covariant functor F on the cate-
gory of commutative R-algebras, which takes an R-algebra S to F(S) :=
T(S)/µ(G(S)). There is the following result. Its proof repeats literally the
proof of [14, Lemma 4.0.9].

Lemma 4.1. Under the notation and the hypothesis of Theorem 1.1 put
H = ker(µ). Then the boundary map ∂ : T(K)/µ(G(K)) → H1

ét
(K,HK)

is injective.

Consider the following group and the following pointed set

Fnr,R(K) =
⋂

p

Im[F(Rp) → F(K)],

H1
ét(K,HK)nr,R =

⋂

p

Im[H1
ét(Rp,H) → H1

ét(K,HK)],

where p runs over all non-zero prime ideals of R. Clearly, one has the fol-
lowing inclusion ∂K(Fnr,R(K)) ⊆ H1

ét(K,HK)nr,R. Consider now a com-
mutative diagram of the form

ã �

// ξ̃ � // ζ̃

1 // F(R)
∂

//

ǫ

��

H1
ét(R,H) //

ρ

��

H1
ét(R,G)

η

��

1 // F(K)
∂K

// H1
ét(K,HK) // H1

ét(K,GK)

a
�

// ξ
�

// ∗



A SHORT EXACT SEQUENCE 183

in which all the maps are canonical, the horizontal lines are exact sequences
of pointed sets. The map η has a trivial kernel by the main result of [13],
since G is reductive. The map ∂K is injective by Lemma 4.1. Using Zariski
patching on Spec(R) of principal bundles, we conclude that the image of
ρ coincides with H1

ét(K,HK)nr,R.

Proof of the exactness of the sequence (1) in its middle term.

We must prove the following equality: Im[F(R) → F(K)] = Fnr,R(K).
Obviously, Im[F(R) → F(K)] ⊆ Fnr,R(K). It remains to check the opposite
inclusion. Take an element a ∈ Fnr,R(K) and set ξ = ∂K(a). As mentioned

above ξ is in H1
ét
(K,HK)nr,R. We already know that ξ can be lifted to an

element ξ̃ in H1
ét(R,H). Let ζ̃ be the image of ξ̃ in H1

ét(R,G). Note that

η(ζ̃) = ∗. Since the kernel of η is trivial we see that ζ̃ = ∗. Hence there is

an element ã in F(R) such that ∂(ã) = ξ̃. The injectivity of ∂K yields an
equality ǫ(ã) = a. The exactness of the sequence (1) in its middle term is
proved. �

In the rest of the proof we establish the surjectivity of the map
∑

rp.
Clearly, it is sufficient to prove the surjectivity of the map

T(K)

∑
r′
p

−−−→
⊕

p

T(K)/T(Rp),

where p runs over all non-zero prime ideal of R and r′p is the factorisation
map. The rest of the proof will be given in scheme theoretic notation.
Namely, put X = SpecR, O = Γ(X,OX). Thus, O = R. For each closed
point x in X write Ox for OX,x (the local ring of the point x on the scheme
X).

Consider a finite étale Galois morphism π : X̃ → X such that the torus
T splits over X̃ and X̃ is irreducible. Put Õ = Γ(X̃,OX̃) and let K̃ be the

fraction field of the ring Õ. For each closed point x ∈ X consider a ring
Õx, which is the semi-local ring OX̃,x̃ of the finite closed set x̃ = π−1(x)

in X̃ . Let Gal := Aut(X̃/X) be the Galois group of X̃/X .

Since the torus T splits over X̃ we have a short exact sequence of Gal-
modules

{1} → T(Õ) → T(K̃) → ⊕xT(K̃)/T(Õx) → {1},
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where x runs over the set of all closed points of the scheme X . This short
exact sequence of Gal-modules gives rise to a long exact sequence of Gal-
cohomology groups of the form

{1} → T(O)
in
−→ T(K) → ⊕x[T(K̃)/T(Õx)]

Gal

→ H1(Gal,T(Õ))
H1(in)
−−−−→ H1(Gal,T(K̃)).

We claim that the map H1(in) is a monomorphism. Indeed, the group

H1(Gal,T(Õ)) is a subgroup of the group H1
et(X,T) and the group

H1(Gal,T(K̃)) is a subgroup of the group H1
et(SpecK,TK). By Theo-

rem 1.4 the group map H1
et(X,T) → H1

et(SpecK,TK) is injective. Thus,
H1(in) is injective also. So, we have a short exact sequence of the form

{1} → T(O)
in
−→ T(K) → ⊕x[T(K̃)/T(Õx)]

Gal → {1}.

There is also the complex {1} → T(O)
in
−→ T(K) → ⊕xT(K)/T(Ox).

Set α = idT(O), β = idT(K) and let γ = ⊕xγx, where γx : T(K)/T(Ox) →

[T(K̃)/T(Õx)]
Gal is induced by the inclusion K ⊂ K̃. The maps α, β

and γ form a morphism between this complex and the above short exact
sequence. We claim that this morphism is an isomorphism. This claim
completes the proof of the theorem.

To prove this claim it is sufficient to prove that γ is an isomophism.
Since the map T(K) → ⊕x[T(K̃)/T(Õx)]

Gal is an epimorphism, hence
so is the map γ. It remains to prove that γ is a monomorphism. To do
this it is sufficient to check that for any closed point x ∈ X the map
T(K)/T(Ox) → T(K̃)/T(Õx) is a monomorphism. We will write ǫx for
the latter map. We prove below that ker(ǫx) is a torsion group and the
group T(K)/T(Ox) has no torsion. These two claims show that the map
ǫx is injective indeed.

To prove that ker(ǫx) is a torsion group recall that there are norm

maps N
Õx/Ox

: T(Õx) → T(Ox) and NK̃/K : T(K̃) → T(K) (see [14,

Section 2]). Those maps induce a homomorphism

Nx : T(K̃)/T(Õx) → T(K)/T(Ox)

such that Nx ◦ ǫx = the multiplication by d, where d is the degree of K̃
over K. Thus, ker(ǫx) is killed by the integer d.

Show now that the group T(K)/T(Ox) has no torsion. Take an element
aK ∈ T(K) and suppose that its class in T(K)/T(Ox) is a torsion ele-

ment. Let ãK be the image of aK in T(K̃). Since T splits over K̃ we see
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that T(K̃)/T(Õx) is torsion free. Thus, the class of ãK in T(K̃)/T(Õx)

vanishes. So, there is a unique element ã in T(Õx) whose image in T(K̃)

is ãK . Moreover, ã is a Gal-invariant element in T(Õx), because ãK comes

from T(K). Since T(Õx)
Gal = T(Ox), there is a unique element a ∈ T(Ox)

whose image in T(Õx) is ã. Clearly, the image of a into T(K) is the ele-
ment aK . Thus, the class of aK in T(K)/T(Ox) vanishes. So, the group
T(K)/T(Ox) is torsion free.

The injectivity of ǫx is proved. This completes the proof of Theorem 1.1.
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Seconde partie. — Publ. Math. IHÉS 24 (1965), 5–231.
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20. J.-P. Serre, Espaces fibrés algébriques, in Anneaux de Chow et applications,
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