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LANDAU: LANGUAGE FOR DYNAMICAL SYSTEMS

WITH AUTOMATIC DIFFERENTIATION

Abstract. Most numerical solvers used to determine free variables
of dynamical systems rely on first-order derivatives of the state of
the system w.r.t. the free variables. The number of the free vari-
ables can be fairly large. One of the approaches of obtaining those
derivatives is the integration of the derivatives simultaneously with
the dynamical equations, which is best done with the automatic dif-
ferentiation technique.
Even though there exist many automatic differentiation tools, none
have been found to be scalable and usable for practical purposes
of dynamic systems modelling. Landau is a Turing incomplete stati-
cally typed domain-specific language aimed to fill this gap. The Tur-
ing incompleteness provides the ability of sophisticated source code
analysis and, as a result, a highly optimized compiled code. Among
other things, the language syntax supports functions, compile-time
ranged for loops, if/else branching constructions, real variables and
arrays, and the ability to manually discard calculation where the
automatic derivatives values are expected to be negligibly small. In
spite of reasonable restrictions, the language is rich enough to ex-
press and differentiate any cumbersome paper-equation with prac-
tically no effort.

§1. Introduction

In dynamical system modeling, various systems from different applica-
tion domains can be represented by an autonomous system of first-order
ODEs:

~̇x(t) = f(~x(t), ~p). (1)

where ~p = {pi}
m
i=1 is a vector of m fixed parameters. One instance of

the model is based on the values of the parameters, and also the initial
conditions:

~x(t0) = ~x0 (2)

For example, in the case of an N-body dynamical system the parame-
ters are masses, and the initial conditions are positions and velocities at a
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certain moment of time. In practice, e.g. in planetary ephemerides, the pre-
cise values of the initial conditions are unknown, while some approximate
values are determined from observations.

The task is to solve the initial value problem (IVP) (1, 2) for a range of
t covering all the {ti} and to minimize the discrepancy between observed
and computed values. The IVP is most often solved numerically.

Let ~P = (x
(0)
0 , ..., x

(n)
0 , p1, ..., pm) be the full set of free variables to be

fit to observations by (as usually done with dynamical systems) nonlinear

least squares method. The first-order derivatives d~x

d~P
are required for the

method.
One way to obtain d~x

d~P
is to include it into our system of ODEs, to-

gether with ~x itself. Accordingly, the initial conditions d~x0

d~P
and the time

derivative d
dt

d~x

d~P
are needed to solve the IVP for the new system. While

the initial conditions are trivial, the time derivative must be obtained by
substituting (1):

d

dt

d~x

d~P
=

df(~x, ~p)

d~P
. (3)

Thus, in order to estimate the free variables, one needs to compute the

derivative of the ODE’s right-hand side w.r.t. ~P . There are three ways to
perform such a computation:

• Full symbolic differentiation, which requires a computer algebra
system and can be quite computationally costly.

• Numeric differentiation using the the finite difference technique,
which is prone to truncation errors.

• Automatic differentiation.

Automatic Differentiation (AD) is a technique of obtaining numerical
values of derivatives of a given R

n → R
m function (listing 1). As opposite

to the symbolic differentiation, AD not only reduces the computation time
by using memoization techniques but also provides more flexibility as it
can deal with complicated structures from programming languages, such
as conditions and loops. Because of the chain rule associativity there are
at least two ways (modes) of memoization: forward and reverse.

The forward mode of AD is based on the concept of dual numbers and on
traversing the computational graph (fig. 1) in natural forward order. Each
variable of the original program is associated with its derivative counter-
part(s), which is(are) computed along with the original variable value (see
listing 2). The computational complexity of forward mode is proportional
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to the number of independent input variables n, thus it is most effective
when n ≪ m. In our practice the number of the function output values is
far greater then the number of the input ones, therefore we used forward
accumulation.

1 func M (E, e):

2 w1 = E

3 w2 = e

4 w3 = sin(w1)

5 w4 = w3 ∗ w2

6 w5 = w1 − w4

7 M = w5

8 return(M )

Listing 1. A func-
tion with n = 2,
m = 1: the Kepler
equation M = E −
e sin(E)

Ew1 ew2

sinw3

∗w4

−w5

M

Figure 1. Compu-
tational graph of
function from list-
ing 1.

In the case of reverse mode values of the derivatives are accumulated
from the root(s) of the computational graph, each assignation is augmented
with m accumulations (see listing 3). Hence, the computation complexity
of reverse mode is proportional to the number of the function outputs
m; thus, it is most effective when n ≫ m, which is often the case in
computation of gradients of many-to-one function so widely used in the
neural networks.

§2. Related work and motivation

There exist a large number of forward-mode AD software tools for differ-
entiating functions that are written in general-purpose programming lan-
guages, like Fortran (ADIFOR) [3], C (ADIC) [4] or C++ (ADOL-C) [8].
Rich features of the “host” languages, like arrays, loops, conditions, and re-
cursion, often make it difficult to implement a practically usable AD system
without imposing limitations on the language and/or extra technical work
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1 func dM (E, e):

2
∂w1

∂E
= 1

3
∂w1

∂e
= 0

4 w1 = E

5

6
∂w2

∂E
= 0

7
∂w2

∂e
= 1

8 w2 = e

9

10
∂w3

∂E
= cos(w1) * ∂w1

∂E

11
∂w3

∂e
= cos(w1) * ∂w1

∂e

12 w3 = sin(w1)

13

14
∂w4

∂E
= ∂w3

∂E
* w2 + w3 * ∂w2

∂E

15
∂w4

∂e
= ∂w3

∂e
* w2 + w3 * ∂w2

∂e

16 w4 = w3 * w2

17

18
∂w5

∂E
= ∂w1

∂E
- ∂w4

∂E

19
∂w5

∂e
= ∂w1

∂e
- ∂w4

∂e

20 w5 = w1 - w4

21

22
∂f1
∂E

= ∂w5

∂E

23
∂f2
∂E

= ∂w5

∂e

24 M = w5

25 return(M , ∂M
∂E

, ∂M
∂e

)

Listing 2. Taking
the derivatives
∂M
∂E

and ∂M
∂e

, us-
ing the forward
AD mode

1 func dM (E, e):

2 w1 = E

3 w2 = e

4 w3 = sin(w1)

5 w4 = w3 ∗ w2

6 w5 = w1 − w4

7 M = w5

8

9
∂M
∂w

5

=1

10
∂M
∂w

4

= ∂M
∂w

5

* (-1)

11
∂M
∂w

3

= ∂M
∂w

4

* w2

12
∂M
∂w

2

= ∂M
∂w

4

* w3

13
∂M
∂w

1

= ∂M
∂w

5

*1+ ∂f

∂w
3

*cos(w1)

14
∂M
∂e

= ∂M
∂w

2

* 1

15
∂M
∂E

= ∂M
∂w

1

* 1

16 return(M , ∂M
∂E

, ∂f

∂e
)

Listing 3. Taking
the derivatives
∂M
∂E

and ∂M
∂e

,
using the reverse
AD mode

when specifying the function, especially in presence of multi-dimensional
functions with many independent variables.

On the other hand, there exist a number of languages developed spe-
cially for AD tasks, like Taylor [9] and VLAD [10,11]. Taylor syntax, while
very simple and natural, is very limited (no conditionals, loops, arrays,
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or subprocedures). VLAD, a functional Scheme-like language, has condi-
tionals, loops, recursion, and subprocedures, but does not have arrays or
mutability.

Finally, there are tools for differentiating functions specified as math-
ematical expressions in mathematical computing systems, like MATLAB
(ADMAT) [6] or Mathematica (TIDES) [1, 2]. Such tools often require
a bigger effort (as compared to a general-purpose languages) to input a
practical dynamical system of large dimension with a lot of free variables.

In this work, a new language, Landau, is proposed, designed specially for
dynamical systems. Other examples of such design are TIDES and Taylor.
However, TIDES and Taylor obtain high-precision solutions using Taylor
method and high-order derivatives, while Landau provides only first-order
derivatives and is supposed to be used with numerical integrators that
obtain an acceptable approximate solution (like Runge-Kutta or Adams
methods), with better performance than high-precision methods.

Like VLAD, Landau is a domain-specific language designed with au-
tomatic differentiation in mind. Like TIDES and Taylor, Landau offers C
code generation. Like general-purpose languages, Landau has common con-
trol flow constructs, arrays, and mutability; but unlike general-purpose lan-
guages, Landau embraces Turing incompleteness to perform static source
analysis (see section 4) and generate efficient code.

Landau also has the ability to not only derive derivative dependencies
from source (e.g. if x = y + z, then ∂x

∂y
= 1 + ∂z

∂y
), but also to fix values

of derivatives to other variables belonging to the dynamical system (e.g.
∂y
∂a

= var).

§3. Syntax

The language syntax offers functions, mutable real and integer variables,
mutable real arrays, constants, if/else statements and for loops. Special
type parameter is used to express Jacobian denominator variables which
are not used in expressions (the right-hand sides of the assignments) itself.
In case of dynamical equations differentiation such parameters could ex-
press initial conditions vectors. Special derivative operator ’ is used to an-
notate or assign the value of the derivative. Even with branching construc-
tions (if/else statements) the function is guaranteed to be continuously
differentiable thanks to the prohibition of the real arguments inside the
condition body. Moreover, it is allowed to manually omit negligibly small
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derivatives using the discard keyword (e.g. if x(a) = y(a) + z(a) + t(a)
and command discard y ’ a is typed, then ∂x

∂a
= ∂x

∂a
+ ∂t

∂a
).

Listing 4 demonstrates a Landau program for a dynamical system de-
scribing the motion of a spacecraft. The state of the system, i.e. the 3-
dimensional position and velocity of the spacecraft, obeys Newtonian laws.
The derivatives of the state w.r.t. 6 initial conditions (position and veloc-
ity) and one parameter (the gravitational parameter of the central body)
are calculated using AD.

1 #lang landau

2

3 #Annotated parameters. Function does not have them directly

4 #as arguments, but has derivatives w.r.t. them in the state vector.

5 parameter [6] initial

6

7 real [6 + 36 + 6] x_dot (

8 real [6+36+6] x, # state+derivatives w.r.t. initial and GM

9 real GM)

10 {

11 real [36] state_derivatives_initial=x[6 : 6+36]

12 real [6] state_derivatives_gm = x[6 + 36 : ]

13 real [6] state = x[ : 6]

14

15 # Set the state vector’s Jacobian values.

16 state[ : ]’initial [ : ]= state_derivatives_initial[ : ]

17 state[ : ] ’ GM = state_derivatives_gm

18

19 real [6] state_dot

20 #Transfer the time derivatives from x to their xdot counterparts,

21 # because ẋ = vx.

22 state_dot [ : 3] = state[3 : ]

23

24 # Write the state_dot part to the function output.

25 x_dot[ : 3] = state_dot [ : 3]

26

27 # Apply Newtonian laws.

28 real dist2=sqr(state [0])+ sqr(state [1])+ sqr(state [2])

29 real dist3inv = 1 / (dist2 * sqrt (dist2))

30
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31 state_dot [3 : ] = GM * (-state[ : 3]) * dist3inv

32

33 # Write the state_dot part to the function output.

34 x_dot[3 : ] = state_dot [3 : ]

35

36 # Write the state_dot derivatives to the function output.

37 x_dot[6 : 6 + 36] = state_dot [ : ] ’ initial[ : ]

38 x_dot[6 + 36 : 6 + 36 + 6] = state_dot [ : ] ’ GM

39 }

Listing 4. Landau program for modeling spacecraft move-
ment around a planet. Spacecraft’s initial position and ve-
locity, as well as the gravitational parameter of the planet,
are supposed to be determined by nonlinear least-squares
method

§4. Implementation

Automatic differentiation can be implemented in one of two ways: the
operator overloading and the source code transformation. The first ap-
proach is based on describing the dual number data structure and over-
loading arithmetic operators and functions to operate on them. The second
one involves analysis of function source and generation of the differentia-
tion code. It was found [12] that the latter approach generally produces
more efficient derivative code. Landau is written in Racket [7] and it uses
source code transformation approach to produce Racket or ANSI C differ-
entiation code.

Let lvalue be the variable in the left-hand side of assignation and
rvalues be the variables in the right side. The differentiation is performed
in the following way: each real lvalue is associated with an array carry-
ing derivatives’ values. The right part of the assignment is differentiated
symbolically1, the result is carried in the accumulator array.

Each real variable assignation in a forward scheme is augmented with
n assignations to the derivatives’ accumulators, but in practice there is no
need to compute and store all of them because some derivatives’ values

1Even though the reverse mode is truly preferable if n > m, which is the case in term
level assignment, because there is only one output in each assignation (e.g. m = 1), the
computation overhead is negligibly small in case of small expressions.
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are never used afterwards. That means that the computed Jacobians are
often sparse.

To illustrate the sparsity problem and keep things simple let us consider
an artificial migration problem over N areas with a simplified diffusion
model of migration:

dpi
dt

=

N
∑

j=0
j 6=i

mijpj , i ∈ [0, N),

pj(t0) = p
(0)
j , j ∈ [0, N)

where the initial condition vector p
(0) = {pj}

(0) is supposed to be deter-

mined from observational data. Say that there are k regions with l = N
k

strongly interconnected areas whose population at an arbitrary moment of
time depends from the initial conditions of other areas within that region.
Following the logic from the introduction, we need to find the solution
derivatives with respect to the initial conditions. The Landau program for
solving that problem is presented in listing 5.

1 #lang landau

2 const int N = 1000

3 const int k = 10

4 const int l = N / k

5 const int L2 = l * l

6 parameter [N] p0

7

8 real [N + L2 * k] f

9 (real [N * N] m,

10 real [N] p,

11 real [N * N] derivatives_p0 ) {

12

13 p[ : ] ’ p0[ : ] = derivatives_p0 [ : ]

14

15 real [N] p_dot

16 for i = [0 : N]

17 for j = [0 : N]

18 if (i != j) {

19 p_dot[i] += m[N * i + j] * p[j]

20 }
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21

22 f[0 : N] = p_dot[ : ]

23

24 for i = [0 : k]

25 f[N + L2 * i : N + L2 * i + L2] =

26 p_dot[l * i : l * i + l] ’ p0[l * i : l * i + l]

27 }

Listing 5. Example Landau program demonstrating the
sparsity. One-to-many migration in k = 10 regions over
the N = 1000 areas.

The fact that the population depends on the initial conditions only
within the region makes the Jacobian dp

dp
0

sparse:





























J0,0 · · · J0,99
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. . .
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J99,0 · · · J99,99
. . .

J900,900 · · · J900,999

0
...

. . .
...

J999,900 · · · J999,999





























. (4)

In the following simple example the sparsity pattern is presented with
square blocks on the main diagonal but it could be randomly sparse in
general. Accumulating the p’s derivatives in a straightforward manner will

require one to compute and store N2 values while only N2

k
are needed.

There are at least two approaches to deal with sparsity. The first ap-
proach is to generate the code where each useful2 Jacobian matrix element
is stored in a separate variable. That involves unrolling loops to the assig-
nation sequences and, as a result, facing the performance penalty due to
the CPU cache misses. Another approach is to store useful Jacobian values
in arrays and preserve the ability to use loops for traversing. The sparsity
is handled by packing useful Jacobian elements to smaller arrays and gen-
erating mappings from the packed derivative indexes to the original ones
and inverse mappings, which map the original indexes to the packed ones.

2We are not using term nonzero here, because it can happen that the useful Jacobian
matrix element is equal to zero.
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The listing 6 demonstrates the differentiation of the loops from the lines
16–20 of the listing 5.

The compilation is performed in two stages. During the first stage the
information about dependencies, used variables and derivatives is gathered
for each variable or array cell. The Turing incompleteness guarantees that
all loops and conditions can be unrolled and computed at compile time,
thus the initial Landau function can be transformed to a list of actions
(listing 7): derivative annotation, variable assignation and storage of the
derivative in the output value. The list is then traversed to gather the de-
pendency graph of the derivatives, which is used in the second compilation
stage to generate mappings, inverse mappings and differentiation code.

1 for i in [0 : N ]:

2 for j in [0 : N ]:

3 if i 6= j:

4 for k in mappings p_dot, p0(i):

5 dp_dot_dp0 [k] = dp_dot_dp0 [k]

6 + m[N * i + j] * dp_dp0[inv_mapping p, p0(j, k)]

7 p_dot[i] = p_dot[i] + m[N * i + j] * p[j]

Listing 6. Pseudocode of the loops (lines 16–20 of the list-
ing 5) differentiation

1 need -this -derivative p_dot [999] ’ p0 [999]

2 need -this -derivative p_dot [999] ’ p0 [998]

3 need -this -derivative p_dot [999] ’ p0 [997]

4 need -this -derivative ...

5 ...

6 p_dot [999] depends -from {p_dot[999] , p[998]}

7 p_dot [999] depends -from {p_dot[999] , p[997]}

8 p_dot [999] depends -from {p_dot[999] , p[996]}

9 ... depends -from ...

10 ...

11 have -this -derivative p[0] ’ p0 [2]

12 have -this -derivative p[0] ’ p0 [1]

13 have -this -derivative p[0] ’ p0 [0]

Listing 7. Reversed actions list generated from the listing 5
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Let H be the length of parameter vector and hx be the number of
derivatives (e.g. Jacobian row’s elements) needed for the x variable. When
hx ≪ H , most Jacobian values are not used and thus should not be com-
puted. Using the mappings technique described above we store only hx

derivative values and use mappings l → k and inverse mappings k → l,
where l ∈ [0, hx), k ∈ [0, H) to set and get derivative values. Mappings can
be easily implemented as arrays with length hx by storing the original in-
dexes of the parameter vector. But it is challenging to implement effective
inverse mappings, because storing them in array directly will result to the
Θ(Hmax) memory consumption, where Hmax is the maximum used param-
eter vector index. For example, even if one needs to compute derivative
with respect to the last parameter index, the resulting mapping is array
of size 1, but inverse mapping’s length is H .

More sophisticated way to implement inverse mappings is to use mini-
mal perfect hash functions (MPHF). A perfect hash function maps a static
set of h keys into a set of g integer numbers without collisions, where g ≥ h.
If g = h, the function is called minimal. Various asymptotically effective
algorithms for generating such functions exist [5], but it is not clear if the
constant factors are small enough to make the generation of many MPHFs
during the single compilation practically effective. In the current version of
Landau the inverse mappings are implemented as integer arrays and thus
are not quite memory-efficient.

§5. Conclusion

A new language called Landau has been invented to fill the niche of
a domain-specific language designed for practically usable forward-mode
AD for estimating the values of free parameters of a complex dynamical
system.

A compiler that translates Landau code into either Racket or high-
performance C code, has been implemented, making the overall procedure
of estimating free variables fast and fluent.

Further work is required for more effective implementation of the in-
verse mappings. Such an implementation clearly should be possible thanks
to Turing-incompleteness of Landau code that allows for complete static
analysis.
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