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ABsTrRACT. Let R be any associative ring with 1, n > 3, and let
A, B be two-sided ideals of R. In the present paper we show that the
mixed commutator subgroup [E(n, R, A), E(n, R, B)] is generated as
a group by the elements of the two following forms: 1) z;;(ab, c)
and z;;(ba,c), 2) [tij(a),t;;(b)], where 1 < i # j < n, a € A,
b € B, ¢ € R. Moreover, for the second type of generators, it suffices
to fix one pair of indices (i,7). This result is both stronger and
more general than the previous results by Roozbeh Hazrat and the
authors. In particular, it implies that for all associative rings one has
the equality [E(n, R, A), E(n, R, B)| = [E(n, A), E(n, B)] and many
further corollaries can be derived for rings subject to commutativity
conditions.

To the remarkable St Petersburg algebraist
Alexander Generalov

§1. INTRODUCTION

In the present note we generalize and strengthen the results by Roozbeh
Hazrat and the authors [13,15,28] on generation of mutual commutator
subgroups of relative and unrelative elementary subgroups in the general
linear group. Namely, we both dramatically reduce the sets of generators
that occur therein and either seriously weaken, or completely remove com-
mutativity conditions.

Let R be an associative ring with 1, and GL(n, R) be the general linear
group of degree n > 3 over R. As usual, e denotes the identity matrix,
whereas e;; denotes a standard matrix unit. For c € Rand 1 <4 # j < n,
we denote by t;;(c) = e + ce;; the corresponding elementary transvection.

Key words and phrases: general linear groups, elementary subgroups, congruence
subgroups, standard commutator formula, unrelativised commutator formula, elemen-
tary generators.
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To an ideal A < R, we assign the elementary subgroup
E(n,A) = (tij(a), a€ A, 1 <i#j<n).

The corresponding relative elementary subgroup E(n, R, A) is defined as
the normal closure of E(n, A) in the absolute elementary subgroup E(n, R).
From the work of Michael Stein, Jacques Tits, and Leonid Vaserstein it
is classically known that as a group E(n, R, A) is generated by z;;(a,c) =
tii(c)tij(a)tji(—c), where 1 <i#j<n,a€ A, c€eR.

Further, consider the reduction homomorphism p;: GL(n,R) —
GL(n,R/I) modulo I. By definition, the principal congruence subgroup
GL(n,I) = GL(n, R, I) is the kernel of p;. In other words, GL(n, I) con-
sists of all matrices g congruent to e modulo 1.

A first version of following result was discovered (in a slightly less precise
form) by Roozbeh Hazrat and the second author, see [15], Lemma 12. In
exactly this form it is stated in our paper [13], Theorem 3A.

Theorem A. Let R be a quasi-finite ring with 1, let n > 3, and let A, B be
two-sided ideals of R. Then the mized commutator subgroup [E(n,R, A),
E(n, R, B)] is generated as a group by the elements of the form

o z;i(ab,c) and z;;(ba,c),

o [tij(a), t;i (D)),

i [tij (a)a Zij (ba C)]:
where 1 <i#j<n,a€ A, be B, ceR.

In the present paper, we prove the following result, which is both ter-
ribly much stronger, and much more general than Theorem A and which
completely solves [13], Problem 1, for the case of GL,,.

Theorem 1. Let R be any associative ring with 1, letn > 3, and let A, B
be two-sided ideals of R. Then the mized commutator subgroup [E(n, R, A),
E(n, R, B)] is generated as a group by the elements of the form

o z;i(ab,c) and z;;(ba,c),

o [tij(a),t;i(b)],
where 1 <i#j<n,a€ A, be B, ce R. Moreover, for the second type
of generators, it suffices to fix one pair of indices (i,7).

Let us briefly review the sequence of events that led us to this result. It
all started a decade ago with our joint papers with Alexei Stepanov and
Roozbeh Hazrat [14, 30, 31], which, in particular, gave three completely
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different proofs of the following birelative standard commutator formula,
under various commutativity conditions®. In turn, this formula generalised
a great number of preceding results due to Hyman Bass, Alec Mason and
Wilson Stothers, Andrei Suslin, Leonid Vaserstein, Zenon Borewicz and
the first author, and many others, see, for instance [2,3,18,19,25,27], and
a complete bibliography of early papers in [6,10,32]. Compare also [7—9,13]
for a detailed description of the recent work in the area.

Theorem B. Let R be a quasi-finite ring with 1, let n > 3, and let A, B be
two-sided ideals of R. Then the following birelative standard commutator
formula holds

[E(n, R, A),GL(n, R, B)] = [E(n, R, A), E(n, R, B)].

The condition in the above theorem is very general and embraces very
broad class of rings, but some commutativity condition is necessary here,
since it is known that the standard commutator formula may fail for gen-
eral associative rings even in the absolute case, see [5].

Last year the first author noticed that for commutative rings an argu-
ment from his paper with Alexei Stepanov [24] implies that the standard
commutator formula holds also in the following unrelativised form, see [28],
Theorem 1.

Theorem C. Let R be a commutative ring with 1, let n > 3, and let A, B
be two-sided ideals of R. Then the following commutator formula holds

[E(n, A),GL(n, R, B)] = [E(n, A), E(n, B)].

In particular, this immediately implies the following striking equality,
see [28], Theorem 2.

Theorem D. Let R be a commutative ring with 1, let n > 3, and let A, B
be two-sided ideals of R. Then one has

[E(n, R, A), E(n, R, B)] = [E(n, A), E(n, B)).

Thereupon, the second author immediately suggested that since every-
thing occurs inside the absolute elementary group E(n, R), one should
be able to prove Theorem D directly, by looking at the elementary gen-
erators in Theorem A and proving that the third type of generators are

IThe third of these proofs was essentially reduction to the absolute case via level
calculations, as discovered earlier by Hong You [36], of which we were not aware at the
time of writing these papers.
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redundant. Over commutative rings this was essentially accomplished in
the more general context of Chevalley groups in our joint paper [33].

Immediately thereafter we started to work on the unitary sequel [34]
and discovered that most of the requisite results, apart from the unitary
analogue of Theorem A, hold for arbitrary form rings, without any commu-
tativity conditions. This propted us to look closer inside the proofs of [13],
Theorems 3A and 3B, and the Main Lemmas of [33,34]. We discovered
that all references to Theorem B or any of its special cases can be easily
replaced by elementary calculations that hold over arbitrary associative
rings, and only depend on Steinberg relations (so that they can be carried
out already in Steinberg groups).

Finally, attempting to strengthen the birelative standard commutator
formula in the arithmetic case [29], the first author was forced to look for
a stronger version of Theorem 1, with demoted set of generators. But a
calculation that procures such a reduction was already contained in the
papers on bounded generation, see, for instance, [4,26]. A similar calcula-
tion is hidden also in the proof of the main theorem in the recent preprint
by Andrei Lavrenov and Sergei Sinchuk [17]. Observe that, as discovered
by Wilberd van der Kallen [16], and amply developed by Stepanov [21,22],
one could reduce also the number of requisite z;;(a, ¢)’s.

Since both types of generators in Theorem 1 already belong to [E(n, A),
E(n, B)], we get the following generalisation of Theorem D, for arbitrary
associative rings.

Theorem 2. Let R be any associative ring with 1, let n > 3, and let A, B
be two-sided ideals of R. Then one has

[E(n, R, A), E(n, R, B)] = |[E(n, A), E(n, B)).

In turn, together with Theorem B this last result immediately implies
the following very broad generalisation of Theorem C.

Theorem 3. Let R be a quasi-finite ring with 1, let n > 3, and let A, B
be two-sided ideals of R. Then the following commutator formula holds

[E(n, A),GL(n, R, B)] = [E(n, A), E(n, B)].

In §2 we prove Theorem 1, and thus also Theorems 2 and 3. Finally, in
§3 we establish some further corollaries and variations of these results and
make some further related observations.

In the present paper we describe part of the astounding recent progress
in the direction of unrelativisation, whose first steps were presented in
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our talk “Relativisation and unrelativisation” at the Polynomial Computer
Algebra 2019 (see http://pca-pdmi.ru/2019/program, April 19).

§2. THE PROOF OF THEOREM 1

Everywhere below the commutators are left-normed so that for two
elements x,y of a group G one has [z,y] = 2¥ -y~ = zyz~ 'y~ ! In the
sequel we repeatedly use standard commutator identities such as [zy, z] =
*ly, 2] - [z, 2] or [x,yz] = [z,y] - Y[z, 2] without any explicit reference.

The following lemma is a classical result due to Stein, Tits and Vaser-
stein, see [27].

Lemma 1. Let R be an associative ring with 1, n > 3, and let A be a two-
sided ideal of R. Then as a subgroup E(n, R, A) is generated by z;;(a,c),
forall1<i#j<n,a€ A, c€R.

Since E(n, R, A) is normal in F(n, R) by the very definition, in particu-
lar this lemma implies that every elementary conjugate of z;;(a, ¢) is again
a product of generators of the same type.

The following result is [15], Lemma 12, a detailed proof is also repro-
duced in [13], Lemma 2A.

Lemma 2. Let R be an associative ring with 1, let n > 3, and let A, B be
two-sided ideals of R. Then the mized commutator subgroup [E(n, R, A),
E(n, R, B)] is generated as a group by the elements of the form

o “z;i(ab,c) and *z;;(ba,c),
o “[tij(a),t:()],
hd x[tij(a)azij(bac)])
where l<i#j<n,a€A, b€ B, ceR, and x € E(n, R).

Both types of generators in the first item belong to E(n, R, AB + BA)
and Lemma 1 implies that for them z can be removed, without affecting the
subgroup they generate. The first type of generators listed in Theorem 1
still generate the same group E(n, R, AB + BA).

An obvious level calculation (see, for instance, [30], Lemma 3 or [13],
Lemma 1A) shows the other two types of generators listed in Theorem A
still belong to the congruence subgroup GL(n, R, AB + BA). Now, in the
conditions of Theorem B, an elementary conjugate of these generators is
again the same generator, modulo the subgroup F(n, R, AB + BA).

However, it is very easy to get rid of any reference to Theorem B here.
Let us start with the second type of generators z = [t;;(a), ¢, (b)].
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Lemma 3. Let R be an associative ring with 1, n > 3, and let A, B be
two-sided ideals of R. Then for any 1 < i1 # j <n,a € A, b€ B, and
any x € E(n, R) the conjugate “[t;;(a),t;;(b)] is congruent to [ti;(a),t;:(b)]
modulo E(n, R, AB + BA).

Proof. Clearly, z = [t;j(a), t;;(b)] resides in the image of the fundamental
embedding of F(2, R) into E(n, R) in the i-th and j-th rows and columus,
where one has

(1 a 1 0\|_ [(l1+ab+abab —aba
=Moo 1)\ 1) 7 bab 1—ba
-1 |10 1 a\| _ (1—ab aba
=070\ 1)0\0 1) T\ —bab 14 ba+baba)”

Consider the elementary conjugate *z. We argue by induction on the
length of z € F(n,R) in elementary generators. Let © = ytj(c), where
y € E(n, R) is shorter than z, whereas 1 <k #1< n, c € R.

e If k1 #1,j, then ti(c) commutes with z and can be discarded.

e On the other hand, for any h # i, j the above formulas for z and z~!
immediately imply that

[tin(c), 2] =tin(—abc—ababc)tn(—babe), [tin(c), z] =tin(abac)t;n(bac),

[thi(c), z] =thi(cab)tnj(—caba), [tn;(c), 2] =thilcbab)t,;(—cba—cbaba).
All factors on the right hand side belong already to E(n, AB + BA) This
means that

2 =Yz (mod E(n,R, AB + BA)).

e Finally, for (k,1) = (4,7),(j,4) we can take an h # i,j and rewrite
tri(c) as a commutator t;;(c) = [tin(c), th;(1)] or tji(c) = [tn(c), trhi(1)] and
apply the previous item to get the same congruence modulo E(n, R, AB +
BA).

By induction we get that *z = z (mod E(n, R, AB + BA)). O

Thus, to prove the first claim of Theorem 1 it only remains to establish
the following lemma. For commutative rings it is essentially the simplest
special case of the Main Lemma of [33]. However, there it is expressed in
the language of root elements. Even though commutativity is not used in
the proof in any material way, it is formally assumed. For completeness,
we reproduce the proof of a somewhat stronger fact, in matrix notation.
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Lemma 4. Let R be an associative ring with 1, n > 3, and let A, B be
two-sided ideals of R. Then for any 1 < i # j < n,a € A, b € B,
c € R and any x € E(n, R) the conjugate *[t;;(a), z; (b, c)] of a generator
of the third type is congruent to an elementary conjugate of some generator
[tri(a), ti(V)], 1< k#1<n,d € A,V € B, of the second type, modulo
E(n,R,AB + BA).

Proof. Indeed, let z = [t;;(a), 2i;(b, ¢)]. Take any h # 4, j. Then
2 = [tij(a), zij (b, )] = tij(a)-#7"ty5(=a) = ti5(a)-* O tin (1), th; (—a)].
Thus,
2= tig(a) - [t (1), Oty (~a)
=t;i(a) - [tin(1 — be)tjn(—cbe), thi(—acbe)ty; (—a(l — cb))]
= tij(a) - [tin()u, tn;(—a)v],
where
u = tjp(—cbe)tin(—bc) € E(n,B), v = tpi(—acbe)ty;(ach) € E(n, AB).
Thus,
z =ti;(a) - [tin(1)u, thj(—a)] (mod E(n, R, AB + BA)).
On the other hand,
tij(a) - [tin(Du, thi(=a)] = tij(a) - Dlu, tnj(—a)] - tij(—a),
whereas
[, g (—a)] = Mt bea) - [t (—cbe), ths(—a)] =
[tjn(—cbc), thj(—a)] (mod E(n, R, AB + BA)).
Summarising the above, we see that
¢y = ottt (—cbe), thi(—a)] (mod E(n, R, AB + BA)),
where [t;,(—cbc), trj(—a)] is the second type generator, as claimed. O

At this point we have already established the first claim of Theorem 1
— and thus also Theorems 2 and 3. The rest is a bonus, that we need for
more sophisticated applications. The proof of the final claim of Theorem 1
is in fact a refinement of the proof of [29], Theorem 3. Again, formally
commutativity was assumed there, but can be easily circumvented.
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Lemma 5. Let R be an associative ring with 1, n > 3, and let A, B be
two-sided ideals of R. Then for any 1 < i # j<n,anyl <k #1<n,
and a € A, b € B, the elementary commutator [t;;(a),t;;(b)] is congruent
to [tri(a), ti(b)] modulo E(n, R, AB + BA).

Proof. Take any h # i,j and rewrite the elementary commutator z =
[tij(a), tji(b)] as

z=tij(a) - 1 Oty;(=a) = tiz(a) - 1O [tin (@), thy (—1)]-
Expanding the conjugation by t;;(b), we see that
2= tij(a)- [ Otin(a), " Oty (=1)] = ti(a) - [tjn (ba)tin (@), thi (= 1)tni (b))
Now, the first factor ;5 (ba) of the first argument in this last commutator

already belongs to the group E(n, BA) which is contained in E(n, R, AB+
BA). Thus, as above,

z =tij(a) - [tin(a), th;(—1)tr:(b)] (mod E(n, R, AB + BA)).

Using multiplicativity of the commutator w.r.t. the second argument, can-
celling the first two factors of the resulting expression, and then applying
Lemma 3 we see that

2=t (a), thi ()] = [tin(a), tri (D)] (mod E(n, R, AB + BA)).
Similarly, rewriting the commutator z differently, as
2= [tij(a), 5 (B)] = "9 55 (b) - £50(=b) = "5 [t (b), tna(1)] - ts(=D),
we get the congruence
z = [tnj(a),tjn(b)] (mod E(n, R, AB + BA)).

Obviously, for n > 3 we can pass from any position (i,j), i # j, to
any other such position (k,1), k # [, by a sequence of at most three such
elementary moves. O

This finishes the proof of Theorem 1.

§3. FURTHER VARIATIONS AND FINAL REMARKS

The following result is a generalisation of the unrelative normality the-
orem by Bogdan Nica, see [20], Theorem 2, which pertained to the com-
mutative case. It is an immediate corollary of our Theorem 3.

Theorem 4. Let R be a quasi-finite ring with 1, let n > 3, and let A be a
two sided ideal of R. Then E(n, A) is normal in GL(n, R, A).
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Let us mention another amazing corollary of Theorem 1, in the style
of stability results without stability conditions by Tony Bak, see [1]. With
this end, observe that Lemma 3 implies that the quotient

[E(n, A), E(n, B)|/E(n, R, AB + BA)

is central in E(n,R)/E(n,R,AB + BA). In other words, the following
holds.

Lemma 6. Let R be an associative ring with 1, n > 3, and let A, B be
two-sided ideals of R. Then

[[E(n, A), E(n, B)], E(n, R)] = E(n, R, AB + BA).

But now Theorem 1 implies surjective stability of such quotients, which
is a generalisation of the first half of [13], Lemma 15, to arbitrary associa-
tive rings, without any stability conditions, or commutativity conditions.
Indeed, in view of Theorem 1 and Lemma 6 as a normal subgroup of
E(n, R) the group [E(n, A), E(n, B)] is generated by [E(3,A), E(3, B)].
This can be restated as follows.

Theorem 5. Let R be any associative ring with 1, and let A and B be
two sided ideals of R. Then for all n > 3 the stability map

[E(n, A), E(n, B))/E(n, R, AB + BA)
- [E(Tl+ 1,A),E(Tl+ ]_,B)]/E(Tl+ ]-aRaAB + BA)
1S surjective.

This quotient occurs surprisingly often in seemingly unrelated prob-
lems, and is so interesting in itself, that we are now hatching the idea
to definitively comprehend its structure. Lemmas 3 and 5 assert that
some elementary commutators and their conjugates are congruent mod-
ulo E(n, R, AB + BA). We have several further results in the same spirit.
For instance, one has

o [tij(ac),t;i(b)] = [tij(a),tji(cb)] (mod E(n, R, AB + BA)),
o [tij(a1 + az2), t;i(b)] = [tij(a1),t5:(b)] - [tij(az), t;:(D)]
(mod E(n,R,AB + BA)),

[ ( )7tJ’L(b1 ][ ( ) 11(62)]
mo E(n R,AB + BA)),

(mod
ij(=a), 45 ()] = [tij(a), ti(=D)]
(mod (n,R AB + BA)),

o [tij(a), t;i(br + ba2)]

S

o [tij(a),t;:(b)] " =
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o [tij(a1),t5i(b)] = [tij(az),t;i(b)] (mod E(n, R, AB + BA)),
if a; = as (mod AB + BA + A?)
o [tij(a), tji(b1)] = [tij(a),;i(b1)] (mod E(n, R, AB + BA)),
if by = by (mod AB + BA + B?)
etc. We have not made any attempt to systematically collect all such con-
gruences in the present article, since they are not directly needed to prove
Theorem 1. But they may turn out very useful to control the quotient
[E(n,A), E(n,B)]/E(n, R, AB+ BA). Observe that by Lemma 6 this quo-
tient is central in E(n, R)/E(n, R, AB+ BA), and thus, in particular, it is
itself abelian. We intend to list all such properties in a subsequent paper,
where we propose to assail the following tantalising problem.

Problem 1. Give a presentation of
[E(n,A), E(n,B)]/EE(n,R,AB + BA)
by generators and relations.
Let us mention yet another corollary of Theorem 1. Let U(n, R) and
U~ (n, R) be the groups of upper unitriangular and lower unitriangular

matrices, respectively. These are unipotent radicals of the standard Borel
subgroup, and its opposite Borel subgroup. Further, set

U(n,I)=U(n,R)NGL(n,R,I), U (n,I)=U"(n,R)NGL(n,R,I).
In [28] we considered another birelative group
EE(TL, A, B) = <U(Tl, A)a U~ (Tl, B)>a

and established that for commutative rings this group contains [E(n, A),
E(n, B)], see [28], Theorem 3. Since in the case EE(n, A, B) contains
E(n, R, AB) by [29], Lemma 8, this theorem immediately follows from our
Theorem 1. It is natural to expect that an analogue of this result holds
over arbitrary associative rings.

Problem 2. Let R be any associative ring with 1, let n > 3, and let A, B
be two-sided ideals of R. Prove that

[E(n,A), E(n,B)] < EE(n, A, B).
The difficulty now is exactly to prove that
E(n,R,AB + BA) < EE(n, A, B).

In the non-commutative case the argument used in the proof of [29],
Lemma 8, only works in the following form.
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If i, j # n, there exists an h > ¢, j so that one can express t;;(ab) as
tij(ab) = [tin(a), tn;(b)] € [U(n, A), U™ (n, B)],

and conclude that z;;(ab,c) € EE(n, A, B).

Similarly, 4, j # 1, there exists an h < i, j so that one can express t;; (ba)

as
tij(ba) = [tin(b), tnj(a)] € [U™ (n, B),U(n, A)],
and conclude that z;;(ba,c) € EE(n, A, B).

In the case of commutative rings (or, more generally, when AB = BA)
this implies that F(n, R, AB + BA) € EE(n, 4, B), see [16,21,22]. But in
the general case this would require some additional reasoning.

Let us mention an even more challenging related question. Namely, let
P be a proper standard parabolic subgroup of GL(n, R). We can define
the corresponding subgroup of EE(n, A, B) as follows:

EEP(”; Aa B) = <UP(A)a UI; (B)>a

where Up(A) and Uy (B) are the intersections of U(n, A) and U~ (n, B)
with the unipotent radicals Up and U, of P and its opposite standard par-
abolic P~ respectively. In the definition of EE(n, A, B) itself P = B(n, R)
is the standard Borel subgroup. However, in many cases it is technically
much more expedient to work with the maximal standard parabolics in-
stead, see, for instance, the works by Alexei Stepanov [21,22].

Problem 3. Let R be any associative ring with 1, let n > 3, and let A, B
be two-sided ideals of R. Prove that

[E(n,A),E(n,B)] < EEp(n, A, B).

The next problem proposes to generalise [9], Theorem 8A, and [13],
Theorem 5A, from quasi-finite rings, to arbitrary associative rings. In other
words, to prove that any multiple commutator of relative or unrelative
elementary subgroups is equal to some double such commutator, see [9,12,
13,15,23]

Here Ao B = AB + BA stands for the symmetrised product of two
sided ideals A and B. In general, the symmetrised product is not associa-
tive. Thus, when writing something like A o B o C', we have to specify the
order in which products are formed. for notation pertaining to multiple
commutators.

Let G be a group and Hy,...,H,, < G be its subgroups. There are
many ways to form a higher commutator of these groups, depending on
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where we put the brackets. Thus, for three subgroups F, H, K < G one can
form two triple commutators [[F, H]|, K] and [F, [H, K]]. Usually, we write
[H1, Ha, ..., Hy,) for the left-normed commutator, defined inductively by

[Hla" 'aHmflaHm] = [[Hh" '7Hm71];Hm]~

To stress that here we consider any commutator of these subgroups, with
an arbitrary placement of brackets, we write [H1, Ho, ..., H,,]. Thus, for
instance, [F, H, K] refers to any of the two arrangements above.

Actually, a specific arrangment of brackets usually does not play major
role in our results — apart from one important attribute. Namely, what
will matter a lot is the position of the outermost pairs of inner brack-
ets. Namely, every higher commutator subgroup [Hi, Ha,. .., H,,] can be
uniquely written as

IIH17H25 .. aHm]] = [[[H17 .. '7Hh]]a [[Hh+17 .. -7Hm]]]7

forsome h = 1,...,m—1. This h will be called the cut point of our multiple
commutator.

Problem 4. Let R be any associative rTing with 1, let n > 3, and let
A; < R, i =1,...,m, be two-sided ideals of R. Consider an arbitrary
arrangment of brackets [...] with the cut point h. Then one has

[E(n, L), E(n,I2),...,E(n,I,)] = [E(n,Lio...0l), E(n,Ip410...00)],

where the bracketing of symmetrised products on the right hand side coin-
cides with the bracketing of the commutators on the left hand side.

Observe that Theorem A and its analogues were used by Alexei Stepanov
in his remarkable results on bounded width of commutators with respect
to elementary generators, see [23], and our survey [8]. Now, it would be
natural to refer in these results to our new reduced set of generators from
Theorem 1.

Analogues of our Theorems 1 and 2 hold for Bak’s unitary groups over
arbitrary form rings. In particular, this generalises [12], Theorem 9 and
[13], Theorem 3B. Also, it solves [13], Problem 1 for the unitary case. These
results are now incorporated in our unitary paper [34]. A full analogue
of Theorem 1 for Chevalley groups is much more difficult even in the
commutative case, and will be published in [35].

The authors thank Roozbeh Hazrat and Alexei Stepanov for ongoing
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