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Abstract. Having expressed the ratio of the length of the Lemnis-
cate of Bernoulli to the length of its cocentred superscribing circle
as the reciprocal of the arithmetic-geometric mean of 1 and

√
2,

Gauss wrote in his diary, on May 30, 1799, that thereby “an entirely
new field of analysis” emerges. Yet, up to these days, the study of
elliptic functions (and curves) has been based on two traditional
approaches (namely, that of Jacobi and that of Weiestrass), rather
than a single unifying approach. Replacing artificial dichotomy by
a, methodologically justified, single unifying approach does not only
enable re-deriving classical results eloquently but it allows for un-
dertaking new calculations, which did seem either unfeasible or too
cumbersome to be explicitly performed. Here, we shall derive read-
ily verifiable explicit formulas for carrying out highly efficient arith-
metic on complex projective elliptic curves. We shall explicitly relate
calculating the roots of the modular equation of level p to calculat-
ing the p-torsin points on a corresponding elliptic curve, and we
shall re-bring to light Galois exceptional, never nearly surpassable
and far from fully appreciated, impact.
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projective elliptic curves. We shall explicitly relate calculating the roots of
the modular equation of level p to calculating the p-torsion points on a cor-
responding elliptic curve, and we shall re-bring to light Galois exceptional,
never nearly surpassable and far from fully appreciated, impact.

An introduction: an integral, tightly cohesive subject

of elliptic functions and elliptic curves

Given a parameter β ∈ C\ {−1, 0, 1}, we introduce the Galois essential

elliptic function, as in [1–4, 8, 9], that is a (meromorphic) function R =
Rβ = Rβ( · ) = R( · , β), possessing a (double) pole at the origin and
satisfying the differential equation

R′2 = 4R (R+ β) (R+ 1/β) . (1)

Denote the lattice of the function Rβ by Λβ , and call the parameter β the

elliptic modulus. The map

z 7→
(

1,Rβ(z),R′

β(z)
)

,

extends, with 0 7→ (0, 0, 1), to a map from the period-parallelogram C/
Λβ into the complex projective space PC2. The (extended) map induces,
onto its image Eβ , which we shall call the associated elliptic curve,1 an
isomorphism of Riemann surfaces, as well as, an isomorphism of groups.2

This map, further, enables an identification (exploiting the j-invariant) of
isomorphism classes of projective complex elliptic curves with homothety
classes of lattices L/C×, which might, in turn, be identified with the funda-
mental domain Γ\H, for the action of the modular group Γ := PSL(2,Z),
upon the upper half plane H, as is well explained in [17]. From now on,
we exploit the identification of the points on the torus C/Λβ, which might
be viewed as the domain of Rβ , with the points on the elliptic curve Eβ ,
which might be viewed as the image of the functional pair (Rβ ,R′

β). Keep-
ing in mind that the value of the function Rβ determines, up to a sign,
via equation (1), the value of its derivative R′

β , we might further identify

a pair of (not necessarily distinct) points on Eβ , sharing a first coordinate,
with their corresponding pair of points in the domain of Rβ , which image
(under Rβ) coincide with that very first coordinate.

1Without, necessarily, further specifying whether the association pertains to the
elliptic function Rβ , its lattice Λβ or the elliptic modulus β.

2The curve Eβ is, thereby, said to be a one-dimensional complex Lie group.
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Multiplication

Fix the elliptic modulus β, and express the defining equation for the
(already introduced) elliptic curve Eβ as

Eβ : y2 = 4xq(x), q(x) := x2 + 3αx+ 1, α = α(β) :=
β + 1/β

3
.

The justification for such canonical representation of elliptic curves (not
to be confused with the Weierstrass normal form) is provided in [3]. Two
distinct points (x1, y1) and (x2, y2) might be summed (on Eβ) to a point
(x3, y3), which first coordinate satisfy the addition formula

x3 =
1

4x1x2

(

x1y2 − x2y1
x1 − x2

)2

. (2)

Now, denoting by n · (x, y) the multiplication of the point (x, y) by n, and
denoting by (n · x, n · y) the n-multiple of the point (x, y) on Eβ , so that
(n ·x, n · y) = n · (x, y), the doubling formula expresses the first coordinate
2 · x of the point 2 · (x, y), as calculated in [9],

2 · x =
p2(x)

q2(x)
, p2(x) :=

(

x2 − 1

2

)2

, q2(x) := x q(x).

When n is an arbitrary integer, the multiplication by n amounts to succes-
sively multiplying by its prime factors (counted with their respective multi-
plicities), so we want to deduce a multiplication by an odd prime formula.
Assuming n to be odd (not necessarily prime!), exceeding 2, we might
(recursively) deduce such a formula, expressing the first coordinate of the
n-odd-multiple point as a degree n2 fractional transformation of the first
coordinate of the point to be multiplied, that is,

n · x =
pn(x)

qn(x)
, pn(x) := xn

2

rn

(

1

x

)2

, qn(x) := rn(x)
2,

rn(x) :=
(n− 1)2 (xqn−1(x)− pn−1(x))

n(n− 2)rn−2(x)
, r1(x) :≡ 1. (3)

An explicit formula for n · x relies on an explicit formula for (n − 1) · x
as a fractional transformation with (coprime) polynomials pn−1 and qn−1

appearing in its numerator and denominator, respectively. Since n is odd,
by assumption, the formula for (n − 1) · x might always be attained via
the doubling formula applied to

(

n−1
2

)

· x. Note that the sequence {rn : n
is odd} need not be extended to include elements rn with even indices,
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unlike pn and qn which are (successively) defined for all integer indices n
(employing the doubling formula whenever the indices are even), and that,
furthermore, if we choose the polynomials qn to be monic for all even n
then so do become all (subsequent) polynomials rn (and qn). The roots
of each rn are precisely the first coordinates of the points, aside from the
identity point, on Eβ , of order dividing n, so, in particular, the degree of
rn is (n2 − 1)/2, and if m divides n then the polynomial rm(x) divides the
polynomial rn(x).

Division

The (monic) polynomial rn, which we have introduced in the preceding
section, has its coefficients in the field F := Q(α), that is, the field of
rational functions in the transcendental (or algebraic) element α, introdu-
ced in the preceding section, over the field of rational numbers Q.3 When
n is an odd prime, as we now opt as being the default assumption, the
roots of rn are the first coordinates of the points of order n on Eβ . The
assumption which will not be lifted (throughout this article) that β2 ∈
C\ {0, 1}, or, equivalently, that α2 ∈ C\ {4/9}, guarantees that the roots
(of rn) are pairwise distinct. We shall call the polynomial rn the division

polynomial of level n, and, whenever an emphasis on its dependence upon
the elliptic modulus β is desired, we shall denote it as rn(·, β), still being at
large viewing it either as a function of two variables or as a β-parametric
polynomial function of a one variable.
The field F[γm], obtained by adjoining a root γm of rn to the base field F,
is the splitting field for the elliptic polynomial of level n

rmn(x) :=

(n−1)/2
∏

l=1

(x− l · γm) .

The polynomial rmn divides rn, and the first index (m) of rmn might be
employed to designate n + 1 pairwise coprime elliptic polynomial factors
of rn:

rn(x) =

n
∏

m=0

rmn(x).

3No further restriction is imposed upon assuming that the coefficients of polynomials
(in α) appearing in the numerator and the denominator of a rational expression, in F,
are integers.
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The group of automorphisms Aut(F[γm]/F) of each field extension F[γm]/F,
0 6 m 6 n, is cyclic of order (n − 1)/2. One might, in fact, establish the
isomorphism

Aut (F[γm]/F) ∼= Z×

n /{±1},
where the group, on the right hand side of the isomorphism, denoted by Z×

n

is the multiplicative subgroup of Zn: the (prime) field of integers modulo
n. The group Z×

n is generated by a primitive root modulo n, and the
same root, after taking the quotient by the subgroup {±1}, generates all
(n−1)/2 elements of the quotient Z×

n /{±1}, which we might identify with
the elements of Aut (F[γm]/F). The choice of a generator (of the latter
group) does not, of course, restrict our unlimited freedom of designating
any root, of a given elliptic polynomial rmn, as γm, and then expressing
all such (n− 1)/2 roots as l · γm, with 1 6 l 6 (n − 1)/2. In other words,
the field extension F[γm], while dependent upon the particular choice of
the polynomial rmn among the n+1 polynomial factors of rn, it does not
further depend upon the choice of γm as a root of rmn.
Each of the (n2−1)/2 (distinct) values l·γm : 1 6 l 6 (n−1)/2, 0 6 m 6 n,
viewed as values of Rβ , satisfy:

Rβ

(

nR−1
β (l · γm)

)

= ∞.

Note that each pre-image R−1
β (l ·γm) is a two-point subset (in the domain

of Rβ). Thus, there are n2 points (including 0, being a pole of Rβ), on
the torus, C/Λβ which if multiplied by n map, under Rβ , to one and the
same point ∞, corresponding to the (additive) identity point on Eβ . To
each rmn we shall associate a line, through the origin (in C), which image
under Rβ contains (all) the values l · γm.
Generally, for an arbitrary value η ∈ C,4 there are n2 distinct values xj , 1 6

j 6 n2 for which

Rβ

(

nR−1
β (xj)

)

= η.

As before, the pre-image R−1
β (xj) is a two-point subset of the torus C/Λβ,

as long as xj is not a root of the cubic polynomial q2, that is, as long as
xj ∈ C\{0,−β,−1/β}. The value η along with the n2 values x, which we

4The subsequent assertion (concerning the number n2 of distinct values) holds for
all η ∈ C\{0,−β,−1/β}. Here, we might already point out that, for each of the three
indicated exceptions the number of distinct values is (n2 + 1)/2.
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have labelled as x1, x2, . . . , xn2 , satisfy the polynomial

fn(x, η) := n2 (pn(x)− ηqn(x)) =:

n2

∏

j=1

(x− xj) , (4)

which whenever η is fixed (along with the already fixed elliptic modulus
β) might be viewed as a polynomial in the (single) variable x over the field
Fη := F(η). We shall then write fn(x) instead of fn(x, η), and the product
on the rightmost side of (4), thereby, exhibits its n2 roots, as being the
roots of its n2 monomial factors. The task of this section is calculating
these roots for a given η.
The n2-point set {xj : 1 6 j 6 n2} might be divided into n collinear

n-point subsets, each aligned along the same direction vector, correspon-
ding to one of the n+ 1 possible lines associated, as above, to one of the
elliptic polynomials rmn. Here we must emphasize that the use of the term
collinear would not have been justified without the afore-indicated identi-
fication of the image of Rβ with its pre-image, since, strictly speaking, the
collinearity pertains to the pre-image points. Now, assuming that the n2

values {xj : 1 6 j 6 n2} have been ordered, so as to reflect a particular
alignment along n (parallel) lines, corresponding to a particular elliptic
polynomial rmn, say the first n values {xj : 1 6 j 6 n} are the values of
Rβ along the line (in its domain) determined by any pre-image point, of
the n values {xj : 1 6 j 6 n}, together with any pre-image point of the
(n − 1)/2 roots of that designated rmn, and introducing the n-th degree
(monic) coelliptic polynomial

tm(x) := nxrmn(x)
2 − 2q′2(x)r

′

mn(x)rmn(x)

+ 4q2(x)
(

r′mn(x)
2 − r′′mn(x)rmn(x)

)

,

along with the n-th degree fractional transformation

sm(x) :=
tm(x)

rmn(x)2
, (5)

one might verify that sm is an n-to-one function on the set {xj : 1 6 j 6
n2}, with the subset {xj : 1 6 j 6 n}, in particular, being mapped (under
sm) to a single value, which we might denote by sm1. Actually

n
∑

j=1

xj = sm1,
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that is, the n-value-sum (on the left hand side) coincides with the value
of the n-th degree fractional transformation (on the right hand side) at
any xj , as long as 1 6 j 6 n. In fact, such an invariance, of the function
sm, might be employed in order to further divide the values {xj : 1 6 j 6
n2} into n collinear n-point subsets, each subset sharing a single image
value (under sm), successively, further denoted by sm2, . . . , smn. Letting
m acquire all permissible values 0 6 m 6 n, we attain n + 1 distinct
divisions of the set {xj : 1 6 j 6 n2} into n collinear n-point subsets.
Let wk

m denote the elementary symmetric polynomial of degree k in the n
variables sm1, sm2, . . . , smn, that is

wk
m :=

n
∑

l=1

skml,

and put

gm(x) := xn +
n−1
∑

k=1

(−1)kwk
mx

n−k.

The coefficients wk
m of gm are, in fact, linear functions in η,5 thus (in

particular)

wk
m = wk

m(η) = wk
m(0) + β

(

wk
m(0)− wk

m

(

− 1

β

))

η. (6)

The polynomial fn might now be factored (in n + 1 distinct ways) into a
product of n n-th degree polynomials:

fn(x) =

n
∏

l=1

hml(x), hml(x) := tm(x) − smlrmn(x)
2, 0 6 m 6 n, (7)

with the values sml, 1 6 l 6 n, being, now, viewed as roots of the polyno-
mials gm (for a fixed index m).
Once a root of fn is calculated, the other n2 − 1 roots might be obtained
by adding to (and subtracting from) it the

(

n2 − 1
)

/2 roots of rn (all
treated as first coordinated of points on Eβ) via the addition formula (2).
Any pair of polynomials hml, which first indices (m) do not coincide with
each other, has a first degree monomial as its greatest common divisor.
A root of the latter monomial is, of course, a root of fn. Thus, a root is

5We point out (superfluously, perhaps) that sm(x) was regarded as a function in the
variable x, where x was taken to satisfy n · x = η. We have not (yet) viewed sm as a
function of η.
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expressible as a rational function, involving the coefficients of the afore-
indicated polynomial pair hml. Yet, we shall present another path yielding
greater conceptual insight into the algebraic structure of a root of fn.
Let H denote a set of n+ 1 polynomials of degree n:

H =

{

hm(x) =

n
∑

k=0

amn−kx
k : 0 6 m 6 n

}

, (8)

and call the matrix

A =











a00 a01 . . . a0n
a10 a11 . . . a1n
...

...
. . .

...
an0 an1 . . . ann











(9)

the matrix associated with H . Denote by Hj the n-subset H\{hj}, ob-
tained by deleting the element hj from the set H , and denote by Ajk the
submatrix formed by deleting the j+1-st raw and the k+1-st column of
the matrix A. Associate with the subset Hj the linear system

n
∑

k=1

amn−kxk = −amn, 0 6 m 6 n, m 6= j.

Cramer rule might be invoked, to evaluate the variable x1, of the latter
linear system, as a ratio of two determinants:

x1 = −∆jn−1

∆jn
, (10)

where ∆jk is the determinant of the matrix Ajk (assuming here that the
determinant ∆jn in the denominator is non vanishing). Now, having al-
ready denoted by x1 a root of fn, we might further observe that such a
root is simultaneously a root of n+1 polynomials hml, whose first indices
run over all admissible values, 0 6 m 6 n, corresponding to n+ 1 distinct
factorizations of fn.6 Since the second index (l), of each such polynomial
hml, is determined by the first (assuming the root x1 is fixed), we might
regard this set as the set H , being given in (8). A necessary and sufficient
condition for such an n + 1 set of polynomials H to be that particular
set, possessing the monomial x− x1 as its greatest common divisor, which
we shall call the pinned set associated with the root x1, is the vanishing

6That is, for each first index m, 0 6 m 6 n, a second index l, 1 6 l 6 n, for which
x1 is a root of hml, exists.
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of the determinant ∆ of its associated matrix A, given in (9), that is the
condition

∆ = 0.7

Among the (n + 1)n possible H-sets, obtained by picking a polynomial
hml from each of the n+1 factorizations of fn, given by (7), n2 H-sets do
satisfy the latter condition. Any of the n + 1 n-subsets Hj (obtained by
excluding any of the n + 1 members), of a given pinned set H , might be
associated with a linear system, as we have just described. No confusion,
due to using the same symbol x1 to denote a root of fn, as well as, a
variable, shared by n + 1 linear systems, corresponding to n + 1 distinct
n-subsets of the pinned set, emerges since all n + 1 evaluations turn out
to coincide with one and the same value for x1, being again regarded as a
root of fn.
The linear dependence of a pinned set H might be explicitly expressed as
the identity

n
∑

m=0

(−1)m∆mkhm(x) ≡ 0, (11)

which, we emphasize, is valid for each k, 0 6 k 6 n. In other words, the
space of row vectors, spanned by the set

{(−∆m0, ∆m1, . . . , −∆mn−1, ∆mn) : 0 6 m 6 n}
is one dimensional, reflecting the fact that all n + 1 vectors, of the latter
set, are collinear with the vector

u :=
(

xn1 , x
n−1
1 , . . . , x1, 1

)

.

The vector u is, of course, orthogonal to the row space of the matrix A,
associated with the pinned set H , whereas the vector

v := (−∆0n,∆1n, . . . ,−∆n−1n,∆nn)

is orthogonal to its column space. So, uT is an eigenvector of A, and vT is
an eigenvector of AT ; both eigenvectors correspond to eigenvalue zero.
For each polynomials hm, of a given pinned set H , each coefficient am1 of
xn−1 coincides with a value −sml, where the second index (l) is determined
by the first (m). Thus, we might write (assuming the pinned set H is
fixed) am1 = −sm, meaning that the value indicated by sm is a particular
predetermined value among the n candidate values sml, as the index l

7Admittedly, such a condition, in and of itself, would be more satisfactory for elliptic
curves over finite fields.
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runs through n (permissible) options. Once more, the notation chosen,
here, is consistent with the notation that we adopted upon introducing
the function sm, via formula (5). Having fixed x1, we merely agree to
restrict the designation of the notation sm from denoting a function to
denoting its value at x1, that is, we assign sm = sm(x1).
Two particular instances of identity (11) are

n
∑

m=0

(−1)m∆mk = 0,

n
∑

m=0

(−1)m∆mksm = 0,

the first of which reflects that the polynomials hm are monic, and means
that the coordinates of the vector v sum to zero. We conclude this section
by pointing out that a vector proportional to u might be obtained by
(successively) applying Gram-Schmidt orthogonalization to the rows of A,
with the last row replaced by the vector (0, . . . , 0, 1).8 However, for a
given pinned set, the value of a root x1 is most efficiently calculated via
employing the formula

n
∑

m=0

sm = nx1 + n2η. (12)

Explicit halving and thirding formulas

Formulas for halving points on elliptic curves were derived in [9]. Exten-
ding the notation n · x to indicate the first coordinate of a point (on Eβ)
multiplied by a number n, which we shall, temporarily, permit to acquire
integer, as well as, rational values, the halving (multivalued) formula might
be expressed as

1

2
· x = w ±

√

w2 − 1, w := x±
√

q(x).

The leftmost side might assume 4 possible (generally, pairwise distinct)
values corresponding to two branches of the square root function being
twice applied, upon calculating the values on right-hand side. The three
exceptions are, as expected, the roots of q2. Each yielding two halves.

Namely, the three pairs ±1, −β ±
√

β2 − 1, and −1/β ±
√

1/β2 − 1 are
the halves of 0, −β and −1/β, respectively, giving, in total, six distinct first

8Recall that the monomial x−x1 is the greatest common divisor of the polynomials
in the pinned set H, so that the vector (0, . . . , 0, 1) is not spanned by the row space of
A, and, if “orthogonalized” to this space, yields a vector proportional to u.
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coordinates of points of order four on Eβ . One might proceed to calculate
the coordinates of the points of order eight, as was done in [10].
We proceed to employ the results of the preceding section in order to
derive explicit thirding formulas. The points of order 3 (on Eβ) satisfy the
polynomial

r3(x) = x4 + 4αx3 + 2x2 − 1

3
=

3
∏

m=0

(x− γm) . (13)

Each of the four (distinct) values γ ∈ {γm : m = 0, 1, 2, 3}, viewed as
values of Rβ , satisfy:

Rβ

(

3R−1
β (γ)

)

= ∞.

Note that each pre-image R−1
β (γ) is a two-point subset (in the domain

of Rβ). Thus, there are 9 points (including 0, being a pole of Rβ), on
the torus, C/Λβ which if tripled map under Rβ to one and the same
point ∞. Generally, for an arbitrary value η, there are nine distinct values
x = xj , 1 6 j 6 9, satisfying

Rβ

(

3R−1
β (x)

)

= η.

As before, the pre-image R−1
β (x) is a two-point subset of the torus C/Λβ,

as long as x ∈ C\{0,−β,−1/β}. When the value η is fixed its 9 thirds

x1, x2, . . . , x9 satisfy the polynomial

f3(x) =

9
∏

j=1

(x− xj) = 9 (p3(x) − ηq3(x))

= x9 − 9ηx8 − 12(6αη+ 1)x7 − 12
(

3(4α2 + 1)η + 2α
)

x6 − 6(24αη− 5)x5

− 6(5η − 24α)x4 + 12
(

2αη + 3(4α2 + 1)
)

x3 + 12(η + 6α)x2 + 9x− η,

with coefficients in the (base) field Fη, as defined in the preceding section.
Here, we might state that the multiplication (on Eβ) by a fixed rational
non-integer number is not a single-valued function,9 thereby, in particular,
justifying the notation

1

3
· η = {xj : 1 6 j 6 9}.

9Division of points on Eβ by an integer n might, of course, be viewed as multiplication

by the rational 1/n.
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The fractional transformations, introduced in (5), are cubic when n = 3:

sm(x) =
tm(x)

(x− γm)2
, tm(x) = x3+

(

1

γ2m
− 4

)

x+2γm, 0 6 m 6 3. (14)

Picking an index value m, the nine-point set {xj : 1 6 j 6 9} might be
divided into three collinear triplets, each aligned along the same direction
vector (corresponding here, as described in the preceding section, to the
monomial x − γm), each triple sharing the same image value (under sm),
successively denoted by sm1, sm2 and sm3. Letting the index m assume 4
possible values, we attain 4 distinct divisions of the set {xj : 1 6 j 6 9}.
The coefficients of the polynomial

gm(x) = x3 − w1
mx

2 + w2
mx− w3

m,

lie in Fη[γm], and, exploiting formulas (6), are readily calculated:

w1
m = sm1 + sm2 + sm3 = 9η,

w2
m = sm1sm2 + sm2sm3 + sm3sm1 = 6cmη −

3

γ2m
,

w3
m = sm1sm2sm3 = c2mη +

2

γ3m
,

where

cm := −3 (γm + 4α) =
6γ2m − 1

γ3m
.

The discriminant wm of the polynomial gm might be regarded as a function
w in the variables γm and η: wm := w(γm, η), where

w(γ, η) = −108(9γ2 − 1)2q2(η)

γ9

= −11664
(

7γ3 + 21αγ2 +
(

15− 24α2
)

γ + 16α3 − 12α
)

q2(η).

The roots of the cubic polynomial gm might, thus, be expressed via radical
functions of its coefficients:

sml = 3η +
9η2 − 2cmη + 1/γ2m

eml
+ eml,

eml =
3

√

27η3−9cmη2+(27−6cm(α+γm)) η+1/γ3m+
√

−wm/108 ζ
l,

1 6 l 6 3,

where ζ is a primitive cube root of unity: ζ3 = 1 6= ζ. Since α2 6= 4/9,
γ2m 6=1/9 and the discriminantwm vanishes iff q2(η)=0 iff η∈{0,−β,−1/β}.
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Note that two of the three roots sml are swapped by switching from a
branch, of the square root function (applied to −wm/108) in the expres-
sion for eml, to the other, while the third root (of gm) remains unaltered.
The polynomial f3 might now be factored (in four distinct ways) into a
product of three cubic polynomials:

f3(x) =

3
∏

l=1

hml(x), hml(x) := tm(x) − sml(γm − x)2, 1 6 l 6 3.

Once a root of f is calculated the other eight roots might be obtained by
adding to (and subtracting from) it the four roots of r3 (all treated as
first coordinates of points on Eβ) via the addition formula (2). We shall
suggest four ways to calculating a root x1 of f3. Firstly, a root might be
obtained as a root of any cubic polynomial hml(x) = x3+a1x

2+a2x+a3,
and thereby expressed as an element in a radical extension of the field,
generated by its coefficients:

x1 = b− a1
3

+
a21 − 3a2

9b
,

where

b :=
3

√

√

−a/108− a31/27 + a1a2/6− a3/2,

a := a21a
2
2 + 18a1a2a3 − 4a31a3 − 4a32 − 27a23.

Secondly, a root might be obtained as root of a first degree polynomial,
namely a greatest common divisor of any pair of cubic polynomials hml,
whose first indices (m) do not match with each other, and thereby is ex-
pressible as a rational function of the coefficients of the chosen pair of cubic
polynomials. So, if a cubic polynomial pair h1 and h2 is chosen, where

hm(x) = x3 + am1x
2 + am2x+ am3, (15)

then a root x1 might be calculated as

x1 =
(a12 − a22)(a23 − a13) + a11a21(a13 + a23)− a13a

2

21 − a211a23

(a11−a21)(a23−a13)−a11a21(a12+a22)+(a12−a22)2+a12a221+a
2
11
a22

=
(

(1 + 4γ1γ2)(s1 + s2)− (γ−2
2 + 4)γ21s1 − (γ−2

1 + 4)γ22s2

+2
(

(γ1 + γ2)(s1s2(1− γ1γ2 + (γ1 − γ2)(s2 − s1)/2) + (γ−1
1 − γ−1

2 )2)

+(γ31 − γ2)s
2
1 + (γ32 − γ1)s

2
2

)

)

/
(

(γ−2
1 − γ−2

2 + 2(γ1s1 − γ2s2))
2

+(s1 − s2)
(

2(γ1 − γ2)(1− s1s2) + (γ22 − γ−2
1 + 4)s2 − (γ21 − γ−2

2 + 4)s1
)

)

,
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where the last expression is attained by recalling that am1 = −sm, am2 =
1/γ2m − 4 + 2smγm and am3 = 2γm − smγ

2
m.

Thirdly, a root might be calculated as a common root of three-polyno-
mial subset of a pinned set H . So, denoting the polynomials of this pinned
set by hm, 0 6 m 6 3, and denoting their coefficients via that same
expression (15), which we have already applied to the first pair h1 and h2,
we shall then extract the value of the root x1 as the third component of
the vector solution of the linear system





1 a11 a12
1 a21 a22
1 a31 a32









x3
x2
x1



 = −





a13
a23
a33



 .

The system might be solved either via Gauss elimination, or, explicitly, by
applying Cramer rule (10):

x1=−∆02

∆03
, ∆02=

∣

∣

∣

∣

∣

∣

1 −s1 γ1(2−s1γ1)
1 −s2 γ2(2−s2γ2)
1 −s3 γ3(2−s3γ3)

∣

∣

∣

∣

∣

∣

, ∆03=

∣

∣

∣

∣

∣

∣

1 −s1 γ1(2s1−c1)
1 −s2 γ2(2s2−c2)
1 −s3 γ3(2s3−c3)

∣

∣

∣

∣

∣

∣

.

As discussed in the preceding section, the components labeled x2 and x3
do, respectively, coincide with the square and the cube of the root x1.
Furthermore, a vector collinear with the vector (x31, x

2
1, x1, 1) might be

obtained by “orthogonalizing” the vector (0, 0, 0, 1) with respect to the
space spanned by the three-vectors set {(1, am1, am2, am3) : 1 6 m 6 3}.
Fourthly and finally, a root might be obtained as a linear function of the
four coefficients (of x2) am1 = −sm, corresponding to the four polynomials
hm, 0 6 m 6 3, of the pinned set H , using formula (12):

x1 =
1

3

3
∑

m=0

sm − 3η = η +

3
∑

m=0

9η2 − 2cmη + 1/γ2m
3em

+
em
3
,

where em is understood to match that particular value, among the three
values eml, 1 6 l 6 3, via which sm is obtained as a radical function of the
coefficients of the cubic polynomial gm.

The modular equation and a tribute to Galois

Put d(x) := x − 1/x, and d2(x) := x + 1/x − 2. Let d2 denote the
discriminant of the quadratic polynomial q(x), which coincides with the
discriminant of the cubic polynomial q2(x), so d2 = d(β)2 = d2(β2). The
homothety class of the lattice Λβ is represented by a (unique) point τ



38 S. ADLAJ

in the fundamental domain Γ\H, as we alluded to in the introduction.
The (Klein) modular invariant j, which maps the upper half plane H onto
C, is a modular form of weight zero. Its domain might be extended to
include all rational real points, as well as, the point at (complex) infinity.
All these points map (under j) to (complex) infinity. We shall emphasize
that the modular invariant j is a (holomorphic) bijection between the (or
any) extended fundamental domain and the Riemann sphere C∪∞.10 The
domain of j might be further extended to include the lower half plane via
setting j(−τ) = j(τ). The value of j at a point τ , corresponding to the
homothety class of the lattice Λβ is

j(τ) =
4
(

d2 + 1
)3

27d2
, (16)

and since the said discriminant d2 is invariant under the substitutions β 7→
−β and β 7→ 1/β, so must be j(τ). Moreover, j(τ) is invariant under the

substitutions β 7→
√

1− β2. Thus, the homothety class of the lattice Λβ

as β2 undergoes the inversions (meaning linear fractional transformations
of order 2)

S : x 7→ 1

x
, T : x 7→ 1− x, (17)

is preserved. The latter two inversions generate a (6 element) group isomor-
phic with the symmetry group S3 of a triangle. The three functional
(trigonometric) pairs

{− tan2,− cot2}, {sin2, cos2}, {csc2, sec2}
might be viewed as the three vertices, which are rotated via either the
composition S ◦ T or its inverse T ◦ S. The first vertex is invariant under
the action of S which transposes the second vertex with the third, while
the second vertex is invariant under the action of T which transposes the
third vertex with the first, and the third is invariant under the action of
the third inversion

S ◦ T ◦ S = T ◦ S ◦ T : x 7→ x

x− 1

which transposes the first vertex with the second. Generally, twelve distinct
values of β correspond to a single point τ in the fundamental domain. The
exceptions are the values, corresponding to the corners of the fundamental
domain. These are the six values β ∈ {±i,±1/

√
2,±

√
2}, corresponding

10The latter statement merely defines a modular form of weight zero.
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to τ = i :=
√
−1, and the four values β ∈ {±iζ,±iζ2}, corresponding to

τ = ζ.11 An isomorphism between elliptic curves as their elliptic modulus
β undergoes permissible transformations (generated by S and T ) might
explicitly be given as a linear map between first coordinates. Evidently,
the isomorphism corresponding to the transformation β → 1/β is given
by the identity map x 7→ x, and the isomorphism corresponding to the
transformation β → −β is given by the map x 7→ −x. The isomorphism

corresponding to the transformation β →
√

1− β2 is given by the map

x 7→ −(βx+1)/
√

1− β2. Alternatively denoting the elliptic modulus β by
sin θ,12 the latter map between first coordinates

l(x) = −x tan θ − sec θ (18)

is said to induce an isomorphism of elliptic curves, as the elliptic modulus
β undergoes the transformation sin θ → cos θ.13

Since two elliptic moduli β and 1/β correspond to a single elliptic func-
tion Rβ (and to a single elliptic curve Eβ), only six elliptic functions R
correspond to twelve values of the elliptic modulus, corresponding to a
single point τ in the fundamental domain. Only three distinct functions R
correspond to the exceptional value τ = i, and only two distinct functions
R correspond to the exceptional value τ = ζ. The term elliptic modulus,
endowed upon the parameter β, is now seen to coincide with the same term
appearing in connection with the Jacobi elliptic functions. The Jacobi el-
liptic sine function, corresponding to elliptic modulus β and denoted by
snβ = snβ(·), satisfies the differential equation

sn′2β =
(

1− sn2β
) (

1− β2sn2β
)

,

11A reformulation involving α (instead of β) would be less cumbersome, perhaps,
and so we give it here. Generally, six distinct values of α correspond to a single point
τ in the fundamental domain. The exceptions are the three values α ∈ {0,±1/

√
2},

corresponding to τ = i, and the two values α ∈ {±1/
√
3}, corresponding to τ = ζ.

12The angle θ is then called the modular angle.
13One readily verifies that the inverse of the linear map l is l−1(x) = −x cot θ−csc θ

correspond to the (reverse) transformation of the elliptic modulus cos θ → sin θ.
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and coincides, up to homothety and translation (of its argument), with a
square root of the function R (analytically continued). Explicitly,

βsnβ

(

z√
β

)2

=
1

R−β(z)
= R

(

z +
√

βz0,−β
)

, 14 z0 :=
πi

2M(β)
,

where M(x) is the arithmetic-geometric mean of 1 and x; enlightening
details about the function M are presented in [13]. As the elliptic modu-
lus β = sin θ undergoes the transformations, which we earlier discussed,
corresponding elliptic functions R(·,− sin θ), R(·, i tan θ) and R(·,− sec θ)
coincide, up to homothety, translation and multiplicative constants, with
the squares of the Jacobi elliptic functions snβ , cnβ and dnβ . Putting
κ := 2i csc(2θ), the squares of the latter two Jacobi elliptic functions might
be, explicitly, expressed as

cnβ(z)
2 = 1− κ

R (z/
√
κ, i tan θ) + i tan θ

= i cot θR
(

z + z0√
κ

, i tan θ

)

,

dnβ(z)
2 = 1 +

sin θ tan θ

R
(√

− cos θz,− sec θ
)

− sec θ

= cos θR
(√

− cos θ (z + z0) ,− sec θ
)

.15

Respectively, they satisfy the differential equations

cn′2β =
(

1− cn2β
) (

1− β2 + β2cn2β
)

, dn′2
β =

(

1− dn2β
) (

β2 − 1 + dn2β
)

,

as well as, the functional equations

sn2β + cn2β ≡ 1 ≡ β2sn2β + dn2β .

Here, one must also bear in mind a simple and basic functional equation

R(iz, β) = −R(z,−β).

14Note that the leftmost side of the equality is unaltered by switching from a branch
of the square root function, applied to β, in the expression for the argument of the
(known to be odd) function snβ , to the other.

15Alternatively, using the inversion L, which appears later in this article, we have

cnβ(z)
2 = i cot θL

(

R
(
√

sin(2θ)

2i
z, i tan θ

)

, −i tan θ

)

,

dnβ(z)
2 = cos θL

(

R
(√

− cos θz,− sec θ
)

, sec θ
)

.
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An explicit fast inverse k of the modular invariant j was given in [2, 5–7]
as a composition

k := k0 ◦ k1 ◦ k2,
where

k0(x) :=
iM

(√
1− x2

)

M(x)
, k1(x) :=

√
x+ 4−√

x

2
,

k2(x) :=
3

2

(

x

k3(x)
+ k3(x)

)

− 1, k3(x) :=
3

√

√

x2 − x3 − x.16

Strictly speaking, the function M is (doubly) infinitely-valued as its calcu-
lation entails choosing one of two branches of the square root function at
infinitely many steps. Consequently, the function k is, as well, an infinitely-
valued function. However, its values, up to a sign, differ by the action of
the modular group Γ. We mean that by flipping the sign, if necessary, we
might assume that the function k never assumes values in the lower half
plane, and, furthermore, its values might be brought via the action of the
modular group Γ to a single value in the (or any) fundamental domain. In
other words, while k is not strictly a left inverse of j, it is a right inverse,
that is,

∀x ∈ C, j ◦ k(x) = x, 17

for the modular invariant j does not separate points, in its domain, as long
as they differ by the action of the modular group Γ, and no troubles arise
in extending the latter equality to the whole Riemann sphere, including
the point at (complex) infinity.
Before we move on to the modular equation, we must clarify the calculation
of the inverse function k for the two special values of j at the corners:
j(ζ) = 0 and j(i) = 1. So, we point out that the (set) values of the
composition, k1 ◦ k2 at 0 and 1, coincide with exceptional (set) values of β
at τ = ζ and τ = i, respectively. Certainly, k2 has a removable singularity

17An analogy is afforded by a branch of the logarithmic function which is (regradless
of the choice of the branch) a right (but not left) inverse of the exponential function.
While the values of the logarithm, at a given point, constitute a discrete subset of a
line, the values of the functions k and M do not. We have already indicated that the
function M is (doubly) infinitely-valued, suggesting that its values (at a given point)
constitute a discrete subset of C (not contained in any one-dimensinal subset over R),
and so is the function k.



42 S. ADLAJ

at zero and must be evaluated to −1 there, whereas k2(1) = 1/2. Thus,
ζ ∈ k(0) = k0 ◦ k1(−1), and i ∈ k(1) = k0 ◦ k1(1/2).18
Recalling our default assumption that n is an odd prime, the functional
pair (j(τ), j(nτ)) is known to be algebraically dependent (over Q), and is
said to satisfy the modular polynomial of level n, that is

Φn(j(τ), j(nτ)) ≡ 0,

where the modular polynomial Φn possesses integer (rational) coefficients.
Moreover, as explained in [18], Φn is symmetric in its two variables, that
is Φn(x, z) = Φn(z, x). When τ is fixed, and so is j(τ), the polynomial
Φn(j(τ), x) might be viewed as a polynomial in a single variable x over the
(base) field Q(j(τ)),19 and we shall call its roots, the roots of the modular

equation of level n. Now, let the value of j(τ) be given by equation (16)
then the values

jm :=
4
(

d2m + 1
)3

27d2m
, d2m := d2(β2

m),

β2
m :=

sm(−β)− sm(0)

sm(−1/β)− sm(0)
, 0 6 m 6 n,

(19)

where sm(·) is the fractional transformation given by equation (5), are the
roots of the modular equation of level n. Evidently, each such root jm is
invariant as β2

m is subjected to the action of the triangle group S3, which
is generated by the two inversions S and T given in (17). This action
on β2

m corresponds to the action of S3 as the permutation group of the
three symbols {0, β, 1/β}, appearing on the right hand side of the defining
expression for β2

m. One might be satisfied to verify that a value of one of
the roots jm would coincide with j(nτ). The elliptic curves Eβ and Eβm

are said to be related by cyclic isogeny of degree n.
The projective special linear group Gn := PSL(2,Zn), where Zn is the
(prime) field of integers modulo n (which we had earlier introduced), is
the Galois group of the modular equation of level n. Not merely a Galois
group in the conventional sense, but is the Galois group in a most spec-
tacular sense. Galois, who was apparently the discoverer of finite fields,
indicated, in his last letter [14],20 sufficient and necessary condition for

18Implying, unsurprisingly, that the values 0 and 1 are fixed by the (identity) func-

tion j ◦ k.
19In fact, it might be viewed as a polynomial over the ring Z[j(τ)].
20This letter, addressed to Chevalier, on the eve of Galois’ (so-called) duel (which,

perhaps, simpler and more accurately described by Alfred, who did not let anyone
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depressing21 the degree of the modular equation of prime level. For this
very purpose he did introduce the, being discussed, projective special lin-
ear groups over prime fields Gn, and observed that they were simple for all
primes strictly exceeding the prime 3.22 For primes n > 5, he pointed out
the three exceptions for which the groups Gn possessed subgroups of in-
dices coinciding with the cardinality of the field n. These were the primes 5,
7 and 11. For any prime n strictly exceeding 11, proper subgroups of index
n+1, and no lower (as we were also told by Galois), are guaranteed to exist
in Gn. Equivalently said,23 a modular equation, of prime level n > 5, is
depressible, from degree n+1 to degree n (and no lower), iff n ∈ {5, 7, 11}.
Via explicitly constructing a permutation representation for the three ex-
ceptional groups, embedding them, respectively, in the three alternating
groups A5, A7 and A11,

24 Galois must, in particular, be solely credited
for solving the general quintic via exhibiting it as a modular equation of
level 5. While Galois’ contribution for formulating sufficient and necessary
criterion for solubility of an algebraic equation via radicals was brought to
light by Liouville, his decisive contribution to actually solving the quintic
(before Hermite and Klein did) is, surprisingly, too poorly recognized (if
not at all unrecognized)!25 Betti, in 1851 [11], futily asked Liouville not
to deprive the public any longer of Galois’ (unpublished) results, and, in

disturb the final moments with his older brother Г%�variste, as murder) May 30, 1832,
was eloquently described by Hermann Weyl as “the most substantial piece of writing in
the whole literature of mankind”.

21This well-established term means lowering. Its conception is a simple (yet inge-
nious) idea with which Galois alone must be fully credited, and, as we shall soon see, is
the single most crucial (yet rarely brought to awareness) step towards actually solving
the quintic.

22The very concept of simplicity, being again introduced by Galois, provides the
basic principle in classifying (finite) groups. We note here that the projective special
linear group is simple for all finite, not necessarily prime, fields except the fields Z2 and
Z3.

23The equivalence, of statement that follows to the few statements preceding it, was
established by Galois.

24For n = 5, 7, 11, the subgroup of index n in Gn turns out to be isomorphic to A4,
S4 and A5, respectively. These are precisely the symmetry groups of the platonic solids.
The tetrahedron, being self-dual, has A4 as its symmetry group. S4 is the symmetry
group for the hexahedron and the octahedron, whereas A5 is the symmetry group for
the dodecahedron and the icosahedron.

25Galois’ brother Alfred and schoolmate Auguste Chevalier managed to involve Li-
ouville (who was 135 weeks elder to Galois) in disentangling the manuscripts, which
they faithfully copied and forwarded to several mathematicians (including Gauss and



44 S. ADLAJ

1854 [12], went on to show that Galois’ construction yields a solution to
the quintic via elliptic functions.26 One might associate with each quin-
tic, given in Bring-Jerrard form, a corresponding value for the (Jacobi)
elliptic modulus β, as Hermite did, in 1858 [15], implementing this very
Galois’ construction, which time has come to clarify. The group G5 acts
(naturally) on the projective line PZ5, which six elements we shall, fol-
lowing Galois, label as 0, 1, 2, 3, 4 and ∞. Then collecting them in a
triple-pair {(0,∞), (1, 4), (2, 3)}, the group G5 is seen to generate four
more triple-pairs {(1,∞), (2, 0), (3, 4)}, {(2,∞), (3, 1), (4, 0)}, {(3,∞),
(4, 2), (0, 1)}, {(4,∞), (0, 3), (1, 2)}. Together, the five triple-pairs consti-
tute the five-element set upon which G5 acts.27 Galois did not (in his last
letter) write down the four triple-pairs, which we did write after the first,
and we now, guided by his conciseness and brevity, confine ourselves to
writing down only the first pair-set that he presented for each of the two
remaining cases, where n=7 and n=11, respectively: {(0,∞), (1, 3), (2, 6),
(4, 5)} and {(0,∞), (1, 2), (3, 6), (4, 8), (5, 10), (9, 7)}. Unlike the case
n = 5, an alternative might be presented for n = 7, which is {(0,∞), (1, 5),
(2, 3), (4, 6)}, and for n = 11, which is {(0,∞), (1, 6), (3, 7), (4, 2), (5, 8),

Jacobi). Liouville acknowledged in September 1843 that he “recognized the entire cor-
rectness of the method”, which was, subsequently (in 1846), published in the Journal de
Mathématiques Pures et Appliquées XI, giving birth to Galois theory. Liouville declared
an intention to proceed with publishing the rest of Galois’ papers. Yet, most unfortu-
nately, subsequent publication never ensued, and neither Gauss nor Jacobi has ever
fulfilled Galois modest request to merely announce the significance (tacitly alleviating
the burden of judging the correctness) of his (not necessarily published) contributions.
In 1847, Liouville published (instead) his own paper “Leçons sur les fonctions double-
ment périodiques”.

26In 1830, Galois competed with Abel and Jacobi for the grand prize of the French
Academy of Sciences. Abel (posthumously) and Jacobi were awarded (jointly) the prize,
whereas all references to Galois’ work (along with the work itself!) have (mysteriously)
disappeared. The very fact that Galois’ lost works contained contributions to Abelian
integrals is either unknown (to many) or deemed (by some) no longer relevant to our
contemporary knowledge. For the sake of being fair to a few exceptional mathematicians,
we must cite (without translating to English) Grothendick (as a representative), who
(in his autobiographical book Récoltes et Semailles) graciously admits that “Je suis
persuadé d’ailleurs qu’un Galois serait allé bien plus loin encore que je n’ai été. D’une
part à cause de ses dons tout à fait exceptionnels (que je n’ai pas reçus en partage,
quant à moi).”

27Indeed, it is the five-element set (not merely a five-element set) which Hermite
had no choice but to employ. Galois’ construction for each of the two remaining cases,
where n = 7 or n = 11, allows an alternative, as will, next, be exhibited.
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(9, 10)}. The absolute invariant for the action of the subgroup Γ2, of the
modular group Γ, consisting of linear fractional transformations congruent
to the identity modulo 2, is β2. A fundamental domain Γ2\H for the action
of Γ2, might be obtained by subjecting a fundamental domain Γ\H (of Γ)
to the action of the quotient group Γ/Γ2

∼= S3.
28 In particular, β2 viewed

as function on H, is periodic, with period 2. The definition of the mod-
ular equation, initially introduced for the invariant j, might be extended
to other invariants such as β2 or β1/4. Sohnke, in a remarkable work [19],
had determined the modular equations for β1/4, for all odd primes up to,
and including, the prime 19. That work, along with Betti’s work, inspired
Hermite to (successfully) relate a (general) quintic, in Bring-Jerrard form,
to a modular equation of level 5, yet he had little choice but to admit the
importance of a sole Galois idea (in depressing the degree of the modular
equation).29 The modular polynomial for β1/4, of level 5, is

φ5(x, y) := x6 − y6 + 5x2y2(x2 − y2) + 4xy(1− x4y4), (20)

and the period of β1/4 (as an analytically continued function) is 16. Deno-
ting the roots of φ5(x, y = β1/4(τ)), for a fixed τ ∈ H, by

y5 = β1/4(5τ), ym = −β1/4

(

τ + 16m

5

)

, 0 6 m 6 4,

one calculates the minimal polynomial for x1 := (y5−y0)(y4−y1)(y3−y2)y.
It turns out to be

x5 − 2000β2(1− β2)2x+ 1600
√
5β2(1− β2)2(1 + β2).

28The latter quotient group coincides with G2 which is isomorphic with S3.
29Hermite had apparently adopted Cauchy’s catholic and monarchist ideology, much

in contrast to Galois’ passionate rejection of social prejudice. In 1849, Hermite submitted

a memoir to the French Academy of Sciences on doubly periodic functions, crediting
Cauchy, but a priority dispute with Liouville prevented its publication. Hermite was then
elected to the French Academy of Sciences on July 14, 1856, and (likely) acquainted,
by Cauchy, with ideas stemming from (but not attributed to) Galois “lost” papers. T.
Rothman made a pitiful attempt in “Genius and Biographers: The Fictionalization of
Evariste Galois”, which appeared in the American Mathematical Monthly, vol. 89, 1982,
pp. 84-106 (and, sorrowly, received the Lester R. Ford Writing Award in 1983) to salvage
Cauchy’s reputation (unknowingly) suggesting further evidence of Cauchy’s cowardice,
and surprising us, along the way, with many (unusual but ill substantiated and biased)
judgements telling us much about T. Rothman himself, but hardly anything trustworthy
about anyone else!



46 S. ADLAJ

Thereby, a root of the quintic

x5 − x+ c, c :=
2, (1 + β2)

55/4
√

β(1− β2)
=

2(1 + y8)

55/4y2
√

1− y8
, 30

is
√
5cx1

4(1 + β2)
=

x1

2
√

5
√
5β(1 − β2)

=
(y5 − y0)(y4 − y1)(y3 − y2)

2y
√

5
√
5(1− y8)

,

and so is expressible via the coefficients λm and µm of the elliptic polyno-
mials rm5(x) =: x2 − λmx + µm, 0 6 m 6 5. In fact, the polynomials rm5

might be so ordered so that, for each m, the value β2
m coincides with y8m.

The (general) expression for y8m = β2
m, as given in (19), might be rewritten

for the special case n = 5 as

y8m =
s(λm, µm, β)

β4s(λm, µm, 1/β)
,

where

s(λ, µ, x)=

(

1+λx

µ
+x2

)(

4λ+

(

2λ2

µ
+4+5µ

)

x+λ

(

2

µ
+3

)

x2+x3
)

,

and the coefficients λm = γm + (2 · γm) and µm = γm(2 · γm) satisfy

5
∏

m=0

(

x2 − λmx+ µm

)

= x12 +
62x10

5
− 21x8 − 60x6 − 25x4 − 10x2 +

1

5

+ 12αx3
(

x8 + 4x6 − 18x4 − 92x2

5
− 7

)

+ 144α2x4
(

x6

5
− 3x2 − 2

)

− 1728α3x5

5
= r5(x).

The roots γm and 2 ·γm, 0 6 m 6 5, of the division polynomial r5 might be
highly efficiently calculated via the algorithm provided in [9]. Calculating
a pair, say γ0 and γ5, suffices, of course, for calculating all twelve roots via
applying the addition formula (2), along with the doubling formula.

30One must note that the constant coefficient c is invariant under the inversions
β 7→ −1/β and β 7→ (1− β)/(1 + β). Here, the composition of the latter two inversions
is another inversion. The corresponding four-point orbit in a fundamental domain Γ2\H
is generated via the mapping τ 7→ 2/(2 − τ).
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Nowadays, oblivion has entirely replaced marvelling at Galois key step,
towards solving the quintic, in depressing the degree of the modular equa-
tion, of level 5, from 6 to 5,31 and Galois is merely mentioned, along with
Abel, for determining that the quintic is not solvable via radicals. With this
paper, we hope that this (crippled) view of Galois (deeply constructive)
theory would finally come to an end.

Let, for example, τ = 2i, α = 2, β =
(√

2− 1
)2

. The corresponding quintic
is

x5 − x+
3
√

2
√
2

5
√√

5
.

The corresponding division polynomial r5(x) factors over Q[
√
5] into three

quartic polynomial-factors:

r5(x)=
(

x4+4
(

3+
√
5
)

x3+ 6
(

5+2
√
5
)

x2−4
(

29+13
√
5
)

x+9+4
√
5
)

×
(

x4 +
18x2

5
+

8x

5
+

1

5

)

×
(

x4 + 4
(

3−
√
5
)

x3 + 6
(

5− 2
√
5
)

x2 − 4
(

29− 13
√
5
)

x+ 9− 4
√
5
)

.

Each (quartic) factor is an elliptic polynomial pair product. They are (with
their argument omitted) r55r50, r54r51 and r53r52, respectively. The (corre-

sponding) modular polynomial φ5

(

x, y = β1/4 =
√√

2− 1
)

factors, over

Q[y], into a quadratic and a quartic polynomial-factor:

φ5 (x, y) =
(

x2 + y−2
) (

x4 + 4y3
(

1− y2x2
)

x− 2y4x2 − y8
)

,

and the six roots (of the modular polynomial) might be accordingly ex-
pressed and ordered:

y0=−

√√
2
(

2+
√
5
)

−χ(−1)

χ(1)
, y1=−i

√√
2+1, y2=

√√
2
(

2−
√
5
)

−χ(i)
χ(−i) .

y3=

√√
2
(

2−
√
5
)

−χ(−i)
χ(i)

, y4= i

√√
2+1, y5=

√√
2
(

2+
√
5
)

−χ(1)
χ(−1)

, 32

31For example, S. Vlăduţ (wrongfully) attributes, in his book “Kronecker’s Jugend-
traum and Modular Functions” (published by Gordon and Breach in 1991), to Hermite
showing the equivalence of the general quintic to the modular equation of level 5.

32The image of the square root is assumed, here (but not necessarily earlier!), to
be unambigiously taken in the right half-plane, including the boundary of the upper

quadrant but excluding it for the lower quadrant.
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where

χ(ǫ) := 3 + 2

√√
5ǫ.

Exploiting the identities

β =
(√

2− 1
)2

=
(√

10− 3
)(√

5− 2
)(

3
√
2 +

√
5− 2

)

,

χ(1)χ(−1) =
(√

5− 2
)2

=
(

3
√
2 +

√
5 + 2

)(

3
√
2−

√
5− 2

)

.

χ(i)χ(−i) =
(√

5 + 2
)2

=
(

3
√
2 +

√
5− 2

)(

3
√
2−

√
5 + 2

)

,

along with the alternative expressions

y0=−
√

−(i+1)χ(i)+
√

(i−1)χ(−i)
√

2χ(1)
, y5=

√

(i−1)χ(i)+
√

−(i+1)χ(−i)
√

2χ(−1)
,

y2=

√

2χ(−i)
√

(1+i)χ(1)−
√

(1−i)χ(−1)
, y3=

√

2χ(i)
√

(1−i)χ(1)−
√

(1+i)χ(−1)
,

one finds out that

x1 = −8
√
5β,

and, so, a root of our quintic is

−8
√
5β

2
√

5
√
5β(1 − β2)

=
−2
√√

10
.

Along the way, we might calculate the (five) discriminants

d2(β2) = d2(β2
1) = d2(β2

4) = 32, d2(β2
0) =

32χ(−1)

χ(1)5
,

d2(β2
2) =

32χ(i)

χ(−i)5 , d2(β2
3) =

32χ(−i)
χ(i)5

, d2(β2
5) =

32χ(1)

χ(−1)5
,

observing that they are sixth powers of the respective values

25/6,

√
5− 1

21/6χ(1)
,

√
5 + 1

21/6χ(−i) ,
√
5 + 1

21/6χ(i)
,

√
5− 1

21/6χ(−1)
,
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and, so using equation (16), we might calculate five special values of the
modular invariant:

j

(

5i

2

)

= j0 =
(√

5 + 2
)20

χ(−1)6
(

238
√
5− 60

√√
5− 861

2

)3

,

j(2i) = j1 = j4 =

(

11

2

)3

,

j

(

5i− 1

4

)

= j2 = −
(√

5− 2
)20

χ(i)6
(

238
√
5− 60

√√
5 i+

861

2

)3

,

j

(

5i+ 1

4

)

= j3 = −
(√

5− 2
)20

χ(−i)6
(

238
√
5 + 60

√√
5 i+

861

2

)3

,

j (10i) = j5 =
(√

5 + 2
)20

χ(1)6
(

238
√
5 + 60

√√
5− 861

2

)3

.33

We might now let τ = i, β =
√
2, and observe that the modular polyno-

mial φ5

(

x, y = β1/4 =

√

√√
2

)

factors, over Q[y], into a quadratic and

a quartic polynomial-factor:

φ5

(

x, y=

√

√√
2

)

=
(

x2 − y5x+ y2
) (

x4 − 3y5x3 − 2y2x2 + y7x− y4
)

,

before confirming that the roots of the latter quartic polynomial-factor

ǫ2
√
5 + 1

y3
(

ǫ
√√

5− 1
) , ǫ = {1, −i, i, −1},

are, respectively, obtainable as fourth roots of the values
√
2
(

ǫ2
√
5 + 2

)

χ(−ǫ) ,

which, in turn, are (as they ought to be) the images of the four afore-

calculated values β0, β2, β3 and β5 (where β was 3− 2
√
2) if subjected to

the (fourth order) linear fractional transformation

1 + βm
1− βm

, m ∈ {0, 2, 3, 5}.

33These special values might be expressed as cubes if one notes that
√
5 ± 2 =

(√
5± 1

)

3

/8.



50 S. ADLAJ

The four corresponding values of the discriminants are

d2

(

2
(

ǫ2
√
5 + 2

)2

χ(−ǫ)2

)

=
χ(ǫ)5

2χ(−ǫ) = 32

(

χ(ǫ)√
5− ǫ2

)6

.

Two more special values of the modular invariant are calculated by (reap-
plying) formula (16) to a discriminant from, firstly, the complex-conjugate
(ǫ = ±i) pair, and, secondly, the real-valued (ǫ = ±1) pair:

j

(

5i+ 1

2

)

=

(

2927− 1323
√
5

2

)3

, j (5i) =

(

2927 + 1323
√
5

2

)3

.

One might infer, from equation (19), that the modular polynomial, of level
2, Φ2(x, z) vanishes at

(x, zl) =
4

27

(

(

d2 + 1
)3

d2
,

(

d2l + 1
)3

d2l

)

, l ∈ {0, 1, 2},

where
(

d20, d
2
1, d

2
2

)

= 16

(

1

d2
, − d

β3
, β3d

)

, d = d(β) = β − 1

β
.

For x ∈ {j0, j2, j3, j5} we have already calculated the (two) corresponding
values z0. Concluding this section, we calculate the corresponding values
z1 and z2, so put

ψ(δ, ǫ) :=

√

5 + 1

8χ(ǫ)6

(

57272 − 34011δ
√

2 + 4
(

101− 5463δ
√

2
)

ǫ
2
√

5

−18
(

800 + 111δ
√

2 + 4
(

100 + 27δ
√

2
)

ǫ
2
√

5
)

ǫ

√

√

5

)

=

(

ǫ2
√

5 + 1
)37

239

(

1190448488 − 858585699δ
√

2 + 540309076ǫ2
√

5− 374537880δǫ2
√

10− ǫ

√

√

5

(693172512 − 595746414δ
√

2 + 407357424ǫ2
√

5− 240819696δǫ2
√

10)
)

=
1

8

(

129569705555681708 + 57945333889427292ǫ2
√

5− ǫ

√

√

5

(86648484409011792 + 38750380257176208ǫ2
√

5)− 9δ
√

2
(

10179957492752331

+4552615392370507ǫ2
√

5−ǫ

√

√

5(6807747878350206+3044517405934206ǫ2
√

5)
)

)

,

and observe that

z1(jm) =
4

27

(

28/3d(βm)2/3

β2
m

− βm
24/3d(βm)1/3

)3

= ψ(−1, ǫ)3,
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z2(jm) =
4

27

(

28/3β2
md(βm)2/3 +

1

24/3βmd(βm)1/3

)3

= ψ(1, ǫ)3,

where ǫ ∈ {1, −i, i, −1} correspond, respectively, to m ∈ {0, 2, 3, 5}, as
before, and verify that

j

(

5i

4

)

= z1(j0), j

(

20i+ 5

17

)

= z1(j2), j

(

20i− 5

17

)

= z1(j3),

j (20i) = z1(j5), j

(

5i+ 2

4

)

= z2(j0), j

(

20i+ 4

13

)

= z2(j2),

j

(

20i− 4

13

)

= z2(j3), j

(

10i+ 1

2

)

= z2(j5).

Instead of a conclusion: few motivating calculations

towards many more

Given a parameter γ ∈ C \ {±1} and a variable x introduce an inver-
sion L as

L(x, γ) :=
γx− 1

x− γ
.

By calling L an inversion, we tacitly assume the parameter γ being fixed.
The inversion L(·, γ) swaps the point 1 with −1, whereas the dual inversion

L(x, ·) fixes, for a fixed argument x ∈ C, the points −1 and 1. The inversion
L ought to be viewed as a conformal bijection, from the Riemann sphere
C ∪∞ onto itself, which coincides with its own inverse, that is,

∀x ∈ C ∪∞, L(L(x, γ), γ) = x. (21)

The inversion L satisfy two properties we’ll call skew commutativity and
skew associativity,34 meaning that, ∀x ∈ C∪∞, the two respective identi-
ties

L(x, γ) = −L(γ, x), L (L(x, γ), δ) = L(−x, L(γ, δ)),
hold. Together, these two properties are equivalent to another property-
pair

L(x, γ) = −L(−x,−γ), L (L(x, γ), δ) = −L(L(γ, δ),−x).

34The non-associative division algebra of octonions O, sometimes referred to as Cay-
ley algebra, inevitably springs to mind. The terms “skew commutative” and “skew as-
sociative” are rarely used nowadays, upon describing the octonions O, often replaced,
respectively, by the terms “anti-commutative” and “anti-associative”. The latter term is
even more frequently replaced by “alternative”.
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Identity (21) might, in fact, be regarded as the (special) case of skew
associativity, corresponding to δ = γ. Observing that L(1/γ, γ) = 0 and
L(0, γ) = 1/γ, the cases δ = 1/γ and δ = 0 might be emphasized as the
identities

L

(

L(x, γ),
1

γ

)

=
1

x
,

1

L (x, γ)
= L

(

1

x
, γ

)

= L

(

x,
1

γ

)

.

The Klein four-group, which fixes the differential equation (1) as described
in [3], is generated by any two of its three non-trivial elements, which are

x 7→ 1

x
, x 7→ L(x,−δ), δ ∈

{

β,
1

β

}

. (22)

These three inversions are permuted if conjugated by the map l, given in
(18). Explicitly,

l

(

1

l(x, δ)
,
√

1− δ2
)

= L

(

x,−1

δ

)

.

l
(

L
(

l(x, δ),−
√

1− δ2
)

,
√

1− δ2
)

= L(x,−δ).

l

(

L

(

l(x, δ),− 1√
1− δ2

)

,
√

1− δ2
)

=
1

x
.

Put

Ln (x, δ) := x
∏

γ: rn(γ, δ)=0

L(x, γ)2,

and observe that the multiplication by an odd integer n of a first coordinate
x of a point on Eβ , given by (3), must commute with the three inversions
given by (22), that is,

n · x = Ln (x, δ) = 1/Ln

(

1

x
, δ

)

= L (Ln (L(x,−δ), δ) ,−δ) , δ ∈
{

β,
1

β

}

,

and we must also have

Ln (x, δ) = −Ln (−x,−δ) = l
(

Ln

(

l(x, δ),
√

1− δ2
)

,
√

1− δ2
)

= l

(

Ln

(

l(x, δ),
1√

1− δ2

)

,
√

1− δ2
)

.
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The latter formula merely reflects the fact that multiplication is respected
by isomorphisms (of elliptic curves), thereby obviating the second and the
third equality along with the first.35

Calculating directly the sum
n
∑

m=0

sm(x)=n(n+ 1)x− 2q′2(x)r
′

n(x)rn(x)−4q2(x)
(

r′n(x)
2−r′′n(x)rn(x)

)

rn(x)2
,

and applying the multiplication (by an odd prime n) formula to the last
summand in formula (12), we might deduce the functional equation

n2xn
2

rn

(

1

x

)2

=n2xrn(x)
2−2q′2(x)r

′

n(x)rn(x)+4q2(x)
(

r′n(x)
2−r′′n(x)rn(x)

)

,

from which we, in turn, deduce the following system of equations

n2γn
2

rn

(

1

γ

)2

= 4q2(γ)r
′

n(γ)
2,

as γ runs through the roots of rn.
We shall refrain from delving into explicit calculations of (all) the coeffi-
cients wk

m, 1 6 k 6 n, yet we carry a calculation for the (last) coefficient
wn

m, thereby demonstrating that such calculations might be worthwhile to
pursue in the near future. The coefficient wn

m might be expressed as

wn
m(η) = c2mn (η − ηmn) , (23)

and calculating it, being a linear function of η, amounts to calculating the
two constants cmn and ηmn. These are

cmn = n

(n−1)/2
∏

l=1

sm(l ·γ), ηmn=−sm(0)

n2

(n−1)/2
∏

l=1

(

sm

(

1

l · γ

)

/sm (l · γ)
)2

, 36

where γ is a (fixed) root of rn/rmn, that is,

rn(γ) = 0 6= rmn(γ).

And, as γ runs through n(n− 1)/2 permissible values, while restricted to
satisfy the latter condition, both constants cmn and ηmn remain unaltered.

35One might opt a more technical route of deducing the latter formula, aided with
the formulas for conjugating the inversion L with the linear map l, given above.

36For a less cumbersome notation, we have avoided using two indices for (either) the
function sm (or tm), leaving its dependence upon n being tacitly assumed. Once the
right hand side of each equality is calculated, the double indices endow the dependence,
of the two values cmn and ηmn, with explicity.
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So, as we already know, both coefficients are elements of the field F[γm],
where γm is a root of rmn.37 Alternative expressions are

c2mn = β (wn
m(0)− wn

m(−1/β)) ,
1

ηmn
= β

(

wn
m(−1/β)

wn
m(0)

− 1

)

.

Denote the roots of the coelliptic polynomial tm by ξk, 1 6 k 6 n, and
pick an index j so that 0 6 j 6 n and j 6= m. One then finds that, for any
given root γ of rjn, the equality38

ξn
2

k

(

rn

(

1

ξk

)

/rn(ξk)

)2

=−rjn(0)2ntm(0)

(n−1)/2
∏

l=1

(

tm

(

1

l · γ

)

/tm(l · γ)
)2

merely reflects two (out of many) distinct ways of calculating one and the
same the value ηmn = n · ξk. In other words, as k runs through n values on
the left-hand side of the equality, whereas γ runs through (n− 1)/2 values
for each of the n possibles values for j, all n(n + 1)/2 permissible values
(jointly obtained on both sides) turn out to coincide with one and the same.
The latter identity supplies an example of identities, while conceptually
simple, quite cumbersome to verify, even when aided with an up-to-date
symbolic computation software, implemented on contemporary machines.
Perhaps, one ought to start with verifying the case, where n = 3, that is
the case

ξ9k

(

r3

(

1

ξk

)

/r3(ξk)

)2

= −2γm

(

γ3tm

(

1

γ

)

/tm(γ)

)2

, (24)

37The coefficients cmn and ηmn are, in fact, elements of the (smaller) field which
(merely) contains the coefficients of rmn.

38Here, as was the case with the deduced functional equation for the division polyno-
mial rn and the system of equations that followed it, the primality of n is not necessary
but its oddness is (as we have not even bothered with defining division polynomials
with even indices). My immediate family, that is my wife, son and daughter must be
credited for prompting this footnote. Most of the pertinent calculations were carried
out by my wife Anja, and must be brought to light in another article.
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where r3 and tm are given in (13) and (14), respectively.39 The three values
on the left-hand side, as k acquires the values 1, 2, 3, and the three values
on the right-hand side, as γ runs through the three other than γm roots of
r3, coincide with the value

ηm3 = − 2γ3m
(6γ2m − 1)2

=
2
(

16α(13−48α2)−4(7+528α2)γm+48α(1−96α2)γ2m−(13+1152α2)γ3m
)

(1− 96α2)2
.

Four distinct invariants ηm3, 0 6 m 6 3, correspond to each α 6= ±2/3.
With γ being a root of rjn, j 6= m, as before, we might also derive the
identities

nrjn(0)
nrmn(0)

(n−1)/2
∏

l=1

(

rmn

(

1

l · γ

)

/rmn(l · γ)
)2

= (−1)(n−1)/2,

n
∏

k=1

rn(ξk) = 2n−1

(n−1)/2
∏

l=1

q2(l · γm)r′n(l · γm)2sm(l · γ)n.

The left-hand side of the latter equality is recognized as the resultant of
the polynomials tm and rn. Rewriting it for the case, where n = 3, yields

39The latter (simplest) equality was subjected to several numerical verifications by
Mikhail Malykh (FNM MSU, Moscow, Russia), who subsequently applied Sage and
Maple standard simplification procedures to the difference (of the right and the left
hand side) with negative result (that is, the difference was not recognized by the ma-

chine as being zero)! After presenting the equality on April 16, 2014 at the 7th In-
ternational Polynomial Computer Algebra Conference in St. Petersburg, Russia, Sergei
Meshveliani (PSI RAS, Pereslavl–Zalessky, Russia) suggested explicit procedures, based
on Gröbner basis techniques, in order to yield the desired simplification, which he out-
lined on May 21, 2014 at the 17th Workshop on Computer Algebra in Dubna, Rus-
sia [16]. Later, in private correspondence, Helmut Ruhland presented a straightforward
(no machine requiring) constructive proof, which I (with his permission) presented on
the joint MSU-CCRAS Computer Algebra Seminar on September 24, 2014 [5]. The
presentation, containing his proof, was titled “Torsion points on elliptic curves and
modular polynomial symmetries” and is freely accessible via the world wide web at
http://www.ccas.ru/sabramov/seminar/doku.php.
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an expression for the resultant as a cube

3
∏

k=1

r3(ξk) = (4q2(γm)sm(γ))3 = 64
(

− 28/27 + 7α2/3− 12α4

+ α
(

4/3− 27α2
)

γm +
(

20/3− 31α2
)

γ2m − 8α3γ3m
)

.

We conclude by remarking that cmn = 0 iff ηmn = ∞. In this case wn
m is

constant (no longer dependent upon η), and the polynomial tm(x) divides
the polynomial rn(x). But tm would possess a common root with rn iff it
possess a (precisely one) common root with each factor rjn, 0 6 j 6 n,
j 6= m.40 The expression for the coefficient wn

m, given in (23), would then
have to be replaced by

wn
m(η) = wn

m(0) = sm(0)

(n−1)/2
∏

l=1

sm

(

1

l · γ

)2

,

(n−1)/2
∏

l=1

tm (l · γ) = 0,

where γ is (again) a root of rn/rmn. The latter condition must be satisfied
by any such root, so (in other words) it is the condition of vanishing of
the resultant of the polynomials tm and rjn for each j 6= m, 0 6 j 6 n.
For n = 3, the three conditions t0(γj) = 0, j ∈ {1, 2, 3}, are equivalent to
the (single) condition that γ20 = 1/6.41 The coefficients w2

0 and w3
0 , then,

acquire the (independent of η) constant values −3/γ20 = −18 and 2/γ30 ,
respectively.
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14. É. Galois, Lettre de Galois Г M. Auguste Chevalier. — Journal de Mathématiques
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