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Abstract. It is commonly accepted that a deviation of the Wigner

quasiprobability distribution of a quantum state from a proper sta-
tistical distribution signifies its nonclassicality. Following this ide-
ology, we introduce the global indicator QN for quantification of
“classicality-quantumness” correspondence in the form of the func-
tional on the orbit space O[PN ] of the SU(N) group adjoint ac-
tion on the state space PN of an N-dimensional quantum system.
The indicator QN is defined as a relative volume of a subspace

O[P
(+)
N

] ⊂ O[PN ], where the Wigner quasiprobability distribution

is positive. An algebraic structure of O[P
(+)
N

] is revealed and exem-
plified by a single qubit (N = 2) and single qutrit (N = 3). For the
Hilbert-Schmidt ensemble of qutrits the dependence of the global
indicator on the moduli parameter of the Wigner quasiprobability
distribution has been found.

§1. Introduction

Over the past decades, a number of witnesses and measures of nonclas-
sicality of quantum systems have been formulated (see e.g., [1–3]). Most
of them are based on the primary impossibility of a classical statistical de-
scription of quantum systems. Particularly, the non-existence of positive
definite probability distributions serves as a certain indication of nonclas-
sicality of a physical system.1

In the present note, we will focus on the problem of quantifying the
nonclassicality of quantum systems associated with a finite-dimensional
Hilbert space by studying the non-positivity of the Wigner quasiprobability
distributions (the Wigner function, or shortly WF) [6–9]. Our treatment is
based on the recent publications [10,11], where the Wigner quasiprobability

distribution W
(ν)
̺ (ΩN ) of an N -level quantum system is constructed via

Key words and phrases: Wigner function, quasiprobability distribution, state non-
classicality, quantumness indicator.

1Furthermore, the negativity of quasiprobability distributions has been shown to be
a resource for quantum computation [4, 5].
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the dual pairing,

W (ν)
̺ (ΩN ) = tr [̺∆(ΩN |ν)] , (1)

of the density matrix ̺ – an element of a quantum state space PN :

PN = {X ∈ MN (C) | X = X†, X > 0, tr (X) = 1}, (2)

and an element of dual space ∆(ΩN |ν) ∈ P∗
N – the so-called Stratonovich-

Weyl (SW) kernel. The dual space P∗
N is defined as:2

P∗
N = {X ∈ MN (C) | X = X†, tr (X) = 1, tr

(
X2
)
= N}, (3)

and SW kernel is a mapping between phase space ΩN and dual space P∗
N .

Assuming that SW kernel ∆(ΩN ) has the isotropy group H ∈ U(N) of
the form

H = U(k1)× U(k2)× U(ks+1),

we identify phase-space ΩN as a complex flag manifold,

ΩN → F
N
d1,d2,...,ds

= U(N)/H,

where (d1, d2, . . . , ds) is a sequence of positive integers with sum N , such
that k1 = d1 and ki+1 = di+1 − di with ds+1 = N.

The Wigner function defined in eqs. (1)–(3) possesses all the proper-
ties of a proper statistical distribution except for the non-negativity of the
latter. From a physical point of view, the positiveness of probability dis-
tributions is a fundamental element of the classical statistical paradigm.
Therefore, if WF attains negative values, it is undeniable that a physical
system shows some “nonclassical” behaviour. Following this observation, we
introduce the global indicator of classicality QN characterizing the degree
of closeness of a quasiprobability distribution to a proper one. Commonly
used measures of deviation from classicality are defined as functionals ei-
ther on a quantum state space (the measures based on the distance from
the base “classical state” [12–14]), or on phase space (the measures which
depend on the volume of a phase space region where WF is negative [2]).
In contrast to this approach, we follow an alternative one, the so-called
“minimal description” when characteristics of quantum systems are given
exceptionally in the terms of SU(N)-invariants. In other words, we intend
to define the global indicator QN as a functional over the unitary orbit
space O[PN ]. With this aim, let us introduce:

2The algebraic equations in (3) define a family of s-parametric SW kernels. Further
in the text, the s-dimensional moduli parameter ν = (ν1, ν2, . . . , νs), s 6 N − 2 (see
details in [11]) will be used to distinguish the corresponding Wigner distributions (1).
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Definition 1 The unitary orbit space O[PN ] is the quotient space under
the equivalence relation imposed by the adjoint SU(N) action on the state
space PN with quotient (canonical) mapping:

π : PN −→ O[PN ] = PN/SU(N); (4)

Definition 2 The subset Ω
(+)
N [̺] of phase space ΩN , where the Wigner

function of a given state ̺ is non-negative, is

Ω
(+)
N [̺] = {x ∈ ΩN |W̺(ΩN ) > 0}; (5)

Definition 3 The subspace P
(+)
N ⊂ PN is composed from states ̺ so

that

P
(+)
N = {̺ ∈ PN |Ω(+)

N [̺] = ΩN}; (6)

Definition 4 The subset O[P
(+)
N ] represents the image of P

(+)
N under the

quotient mapping (4):

O[P
(+)
N ] = π[P

(+)
N ] = {π(x) |x ∈ P

(+)
N }. (7)

Using the definitions above, we introduce the global indicator of nonclas-
sicality QN of an N-dimensional quantum system as the following ratio:

QN =
Volume of orbit subspace O[P

(+)
N ]

Volume of orbit space O[PN ]
. (8)

In order to make this definition self-consistent, we assume that:

• O[PN ], Ω
(+)
N [̺], P

(+)
N and O[P

(+)
N ] are open, connected sets

of Rn;3

• The volume of the orbit space in (8) is associated with a mea-
sure induced by the quotient mapping π from certain Riemannian
metric on PN .4

In order to perform efficient computations of QN , it is necessary to have,
instead of implicit definitions (6) and (7), a more constructive represen-

tation of the space O[P
(+)
N ]. With this aim, we remind some facts on the

stratified structure of the state space PN . First of all, note that U(N)

3In favor of this assumption, note that WF is certainly non-negative for any state
the Bloch vector of which lies inside the ball of radius r∗(N) =

√
N + 1/(N2 − 1).

4In the next section, the global indicator will be computed with respect to the metric
corresponding to the Hilbert-Schmidt distance between density matrices [15].
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automorphism of the Hilbert space of an N -level quantum system induces
the adjoint SU(N) action on the state space:

g · ̺ = g̺g†, g ∈ SU(N). (9)

The group action (9) sets an equivalence relations between elements of
PN and gives rise to SU(N) orbit classification. Formally, a subgroup
Hx ⊂ SU(N) is the isotropy group (stabilizer) of a point x ∈ PN ,

Hx = {g ∈ SU(N) | g · x = x},
and points x, y ∈ PN are said to be of the same type if their stabilizers Hx

and Hy are conjugate subgroups of SU(N) group. The orbit type of the
point x ∈ PN is given by the conjugacy class of the corresponding isotropy
group [Hx]. Up to conjugation in SU(N), the isotropy groups Hx are in
one-to-one correspondence with the Young diagrams corresponding to a
possible decomposition of N into non-negative integers. Hence, for given
N for any [Hα], α = 1, 2, . . . , P (N), one can associate the stratum P[Hα],

defined as the set of all points of PN whose stabilizer is conjugate to Hα:5

P[Hα] :=
{
x ∈ PN | Hx is conjugate to Hα

}
. (10)

The union of sets P[Hα] gives the decomposition of the state space PN

into orbit types

PN =
⋃

orbit types

P[Hα]. (11)

Having in mind the above notions and argumentation, we can formulate
the following assertion.

Proposition I Let r↓ = {r1, r2, . . . , rN} and π↑ = {πN , πN−1, . . . , π1}
be eigenvalues of a density matrix ̺ and SW kernel ∆(ΩN |ν), arranged
in decreasing and increasing orders respectively. Then,

(i) The Wigner function W̺(θ) of any state ̺ ∈ PN is bounded and
there exist θ−, θ+ ∈ ΩN such that

W̺(θ−) = inf
θ∈ΩN

W̺(θ), W̺(θ+) = sup
θ∈ΩN

W̺(θ);

(ii) If ̺1, ̺2 ∈ P[Hα], then extreme values of the corresponding Wigner
functions are related as follows:

inf
θ

W̺1(θ) = inf
θ

W̺2 (θ), sup
θ

W̺1(θ) = sup
θ

W̺2 (θ); (12)

5The strata P(Hα) are determined by this set of equations and inequalities.
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(iii) O[P
(+)
N ] can be identified as a dual cone of a subset O[PN ] ⊂

RN−1:

O[P
(+)
N ] =

{
π ∈ O[P∗

N ] | (r↓,π↑) > 0, ∀ r ∈ O[PN ]
}
, (13)

where the dual pairing ( , ) in (13) is

(r↓,π↑) = r1πN + r2πN−1 + · · ·+ rNπ1. (14)

The correctness of the above proposition stems from the following obser-
vations. At first, according to our construction, an N -level system is as-
sociated with a symplectic manifold ΩN , which is compact. Secondly, the
Wigner distributions of trace-class operators are continuous functions (cf.
discussion in [16]). Hence, in accordance to the multivariable Weierstrass
extreme value theorem, the Wigner function attains its extreme values on
ΩN . Moreover, the absolute maximum and minimum must occur at a crit-
ical point of WF in ΩN or at a boundary point of ΩN . Some technical
details of the proof of Proposition I are given in the Appendix.

The article is organized as follows. The next section is devoted to a
brief exposition of necessary facts about WF of finite-dimensional systems
mainly borrowed from our recent articles [10,11]. In Section 3. we present
a reinterpretation of the Wigner distributions as functions defined over the
space of the unistochastic matrices and describe their continuation to the
whole Birkhoff polytope. With the aid of this extension, the global extrema
of WF is derived. In Section 4., using the lower and upper bounds of WF

for the orbit subspace O[P
(+)
N ], the global Q-indicators for N = 2 (qubit)

and N = 3 are obtained. Final remarks are collected in Section 5.

§2. Basic settings

Wigner function of N-level system A density matrix ̺ and Strato-
novich–Weyl kernel ∆(ΩN |ν) obey the following decompositions into the
Lie algebra su(N) and its dual su(N)∗,

̺ =
1

N
IN +

1

N
ı su(N), (15)

∆(ΩN |ν) = 1

N
IN + κ

1

N
ı su(N)∗, (16)

where κ =
√

N(N2 − 1)/2 is a normalization constant. It is convenient to
use the orthonormal Hermitian basis λ = (λ1, λ2, . . . , λN2−1) of the su(N)
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algebra and rewrite the density matrix (15) in the Bloch form

̺ξ =
1

N

(

I +

√

N (N − 1)

2
(ξ,λ)

)

, (17)

where ξ stands for the (N2−1)-dimensional Bloch vector. Parallel to (17),
we will extensively use the Singular Value Decomposition (SVD) of SW
kernel,

∆(ΩN |ν) = 1

N
U(ΩN )



I + κ
∑

λs∈h

µs(ν)λs



U †(ΩN ), (18)

where h is the Cartan subalgebra h ∈ su(N). Under these conventions,
the algebraic equations in (3) define the following family of the Wigner
functions:

W
(ν)
ξ (θ1, θ2, . . . , θd) =

1

N

[

1 +
N2 − 1√
N + 1

(n, ξ)

]

. (19)

In (19) the Wigner function dependence on a point of phase space ΩN with
coordinates (θ1, θ2, . . . , θd)

6 is encoded in the (N2−1)-dimensional vector
n given by the linear superposition:

n = µ3(ν)n
(3) + µ8(ν)n

(8) + · · ·+ µN2−1(ν)n
(N2−1). (20)

The real coefficients µ3(ν), µ8(ν), . . . , µN2−1(ν) characterize a family of
the Wigner functions through their dependence on coordinates ν of the
moduli space, PN (ν). The moduli space PN (ν) represents a spherical poly-
hedron on a unit sphere, which is in one-to-one correspondence with an
ordering of the eigenvalues of SW kernel7

µ2
3(ν) + µ2

8(ν) + · · ·+ µ2
N2−1(ν) = 1. (21)

The orthonormal vectors n(3),n(8), . . . ,n(N2−1) in (20) are specified by
N−1 basis elements λ3, λ8, . . . , λN2−1 of the Cartan subalgebra h ⊂ su(N):

n(s2−1)
µ =

1

2
tr
(
Uλs2−1U

†λµ

)
.

6The number d of independent variables θ in the Wigner function varies depending
on the dimension of the isotropy group of SW kernel, d = dimC FN

d1,d2,...,ds
.

7Detailed description of the moduli space PN (ν) is presented in [11].
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Finally, it is worth to mention that the Wigner function (19) is a normal-
ized distribution, ∫

ΩN

dΩN W̺(ΩN ) = 1, (22)

with the measure dΩN determined from the normalized Haar measure
dµSU(N) on the SU(N) group manifold:

dµSU(N) =
1

NVol(H)
dΩN × dµ(H).

Here, Vol(H) is the volume of the isotropy group of SW kernel computed
with respect to the measure dµ(H) which is induced by the corresponding
embedding of H into SU(N).

Orbit space of N-level system Similarly to (18), writing down the SVD
of a density matrix ̺ with fixed, say decreasing order of the eigenvalues
r = (r1, r2, . . . , rN ),

̺ = U






r1 · · · 0
...

. . .
...

0 · · · rN




U †, (23)

we realise the quotient mapping (4) from the state space PN to the orbit
space O[PN ] in the form of ordered (N − 1)-simplex:

CN−1 = {r ∈ R
N

∣
∣
∣
∣

N∑

i=1

ri = 1, 1 > r1 > r2 > . . .> rN−1 > rN > 0}. (24)

In the present note we mainly focus on the Wigner functions (19) of qubit
(N = 2) and qutrit (N = 3) and thus deal with a 1-simplex, a line segment,
and a 2-simplex, a triangle, correspondingly.

§3. The Wigner distribution as a function on the

Birkhoff polytope

In this section we rewrite the Wigner distribution in the form of a
function on the so-called Birkhoff polytope BN [17]. The Birkhoff polytope
BN is the polytope of the bistochastic or doubly stochastic N ×N complex
matrices obeying the following conditions:

Bij > 0,
N∑

i=1

Bij = 1,
N∑

j=1

Bij = 1.
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Precisely speaking, the Wigner function of an N -level system is defined
over the subset of bistochastic matrices called unistochastic. If the matrix
B is expressible via a unitary matrix U :

Bij =| Uij |2, ∀ i, j = 1, 2, . . .N,

then it is unistochastic. The following proposition establishes this relation.

Proposition II Let us assign to a matrix B ∈ BN the bilinear form on RN
+ :

(x,y)B = (x, By) =
∑

ij

Bijxiyj . (25)

Then the Wigner quasiprobability distribution of an N -level system can be
identified as the bilinear form (25) with matrix B from a subset UN ⊂ BN

of unistochastic matrices:8

W̺(ΩN ) =
(
r↓,π↓)

B

∣
∣
∣
∣
B=|U|2

, (26)

evaluated at ordered vectors r↓ and π↓ whose components are eigenvalues
of a density matrix ̺ and SW kernel ∆, respectively.

Based on the Proposition II, we are able to study the problem of deter-
mination of a global extrema of WF as follows. Noting that an analogous
problem for the bilinear form ( · , · )B is well studied, we define the contin-
uation of the Wigner distribution as a function W (B), whose domain of
definition is the whole Birkhoff polytope

W (B) :=
(
r↓,π↓)

B
. (27)

Applying the Birkhoff–von Neumann theorem to the function W (B), one
can determine its global maximum and minimum. Next step is to analyze
the fate of the extrema after a restriction of (27) to the subspace of unis-
tochastic matrices. The following conjecture aims to answer this question.

Proposition III The Wigner quasiprobability distribution function defined
on a set of unistochastic matrices attains the global maximum W (+) and
global minimum W (−) at permutation matrices

Pmin =






0 · · · 1
... 1

...
1 · · · 0




 , Pmax =






1 · · · 0
... 1

...
0 · · · 1




 , (28)

8Note that for N > 3 the set of unistochastic matrices is not convex.
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with the following values:

W (−) = lim
B→Pmin

W =
(
r↑,π↓) , (29)

W (+) = lim
B→Pmax

W =
(
r↓,π↓) . (30)

For a formal discussion of this conjecture we refer to the Appendix, while
here we only give two argumentations in favor of this conjecture. The first
one is the Birkhoff–von Neumann theorem [18, p. 36] according to which
B is the convex hull of all N ×N permutation matrices. There is at least
one decomposition of B:

BN =

k∑

i

κiPi,
∑

i

κi = 1, κi > 0, (31)

with k 6 (n − 1)2 + 1 permutation matrices Pi, corresponding to the
vertices of the Birkhoff polytope. Due to this theorem, the bilinear form
( . , . )B assumes its extremum for the set of extreme points consisting of
the permutations (28) mentioned in the conjecture,

min
B

(x, y)B = (x, y)Pmin
=
∑

i

x↑
i y

↓
i , (32)

max
B

(x, y)B = (x, y)Pmax
=
∑

i

x↓
i y

↓
i . (33)

The second argumentation in favor of the conjecture is that the space
of unistochastic matrices contains all permutation matrices and Pmin and
Pmax are among them.

Therefore, for a given SW kernel with the eigenvalues π↓ = {π1, π2,
. . . , πN} and a density matrix with spectrum r↓ = {r1, r2, . . . , rN} the
knowledge of the global minimum of WF provides us information on the

subset O[P
(+)
N ] from the inequality W (−) > 0 :

O[P
(+)
N ] : {r ∈ CN−1 |

(
r↑,π↓)

> 0 }. (34)

Based on these results, in the next section we explicitly evaluate the rate
of quantumness-classicality for low-dimensional systems, such as a qubit
and a qutrit.
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§4. Global indicator of classicality of qubit and qutrit

Summarising discussions of the previous section, the Wigner function
satisfies the following inequality:

W
(−)
N 6 W (ΩN ) 6 W

(+)
N , (35)

where

W
(−)
N =

N∑

i=1

πirN−i+1, W
(+)
N =

N∑

i=1

πiri. (36)

Below considering the inequalities (35) for two low cases, N = 2 and

N = 3, we will obtain an explicit parameterization of subspaces O[P
(+)
2 ]

and O[P
(+)
3 ] of the orbit space corresponding to a positive WF of a single

qubit and single qutrit.

Positivity of the lower bound W
(−)
2 For a simplest N = 2 level system,

a single qubit, the density matrix expanded over the Pauli σ-matrices is
characterised by a 3-dimensional Bloch vector ξ = (ξ1, ξ2, ξ3):

̺ =
1

2
(I + (ξ,σ)) . (37)

According to (18), the spectrum of SW kernel for a qubit is unique, and
assuming the decreasing ordering of the eigenvalues it is

spec (∆2) =

{
1 +

√
3

2
,
1−

√
3

2

}

. (38)

Taking into account the above expressions, the lower and upper bounds
(36) for a qubit are:

W
(∓)
2 =

1

2
∓

√
3

2
|ξ|. (39)

Therefore, the Wigner function of a qubit is positive definite inside the
Bloch ball of radius r∗(2) < 1/

√
3.

Q-indicator of a single qubit Based on the above derived constraint
on a qubit states with non-negative WF, the global indicator Q of quan-
tumness can be evaluated after fixation of the measure on the orbit space
of a qubit O[P2]. The measure dµ

H−S
on P2 associated with the Hilbert-

Schmidt ensemble of qubits has a product form

dµ
H−S

= (r1 − r2)
2 dr1 ∧ dr2 × dµ SU(2)

U(1)

, (40)
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where dµ SU(2)
U(1)

is the measure on the coset SU(2)/U(1), induced from the

normalized Haar measure on SU(2) group. The factor in (40) which de-
pends on 1-simplex coordinates r1 and r2 defines the measure on the orbit
space O[P2]. Thus, computation of the indicator Q of a qubit reduces to
evaluation of the ratio of two simple integrals,

Q2 =
Vol

(

O[P
(+)
2 ]
)

Vol (O[P2])
=

1
√

3∫

0

r2dr

1∫

0

r2dr

=
1

3
√
3
= 0.19245. (41)

Positivity of the lower bound W
(−)
3 For further study introduce two

types of coordinates on the orbit space of a qutrit. The first parameteri-
zation takes into account the algebraic structure of a density matrix of a
qutrit states:

r1 =
1

3
+

1√
3
ξ3 +

1

3
ξ8, r2 =

1

3
− 1√

3
ξ3 +

1

3
ξ8, r3 =

1

3
− 2

3
ξ8. (42)

In terms of ξ3 and ξ8, the ordered 2-simplex is mapped to the domain
O[P3] defined by the following set of inequalities:

O[P3] :

{

ξ3, ξ8 ∈ R

∣
∣
∣
∣
0 6 ξ3 6

√
3

2
,

ξ3√
3
6 ξ8 6

1

2

}

. (43)

The second useful set of coordinates, (r, ϕ), on the orbit space of a qutrit
is given by the following map:

ξ3 =
√
3r sin

(ϕ

3

)

, ξ8 =
√
3r cos

(ϕ

3

)

, 0 6 ϕ 6 π. (44)

Under the transformation (44) the ordered 2-simplex of a qutrit is mapped
into the domain on the upper half-plane with coordinates x = r cosϕ, y =
r sinϕ, outlined by the trisectrix of Maclaurin (see the grey region depicted
in Fig.1):

O[P3] :

{

r > 0, ϕ ∈ [0, π]

∣
∣
∣
∣
cos
(ϕ

3

)

6
1

2
√
3r

}

. (45)

According to the analysis given in [11], the algebraic equations (3) for
the eigenvalues of SW kernel of a qutrit have one-parametric solution which
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Figure 1. The trisectrix of Maclaurin intersecting x-axis
at two points, ( 1

2
√
3
, 0) and (− 1√

3
, 0). On (x, y) plane

the equation of this curve in polar coordinates x =
r cosϕ, y = r sinϕ reads: r(ϕ, 1√

3
) = 1

2
√
3 cos(ϕ/3)

. The

orbit space of a qutrit O[P3] is given by the domain in
grey.

can be written as

π1 =
1

3
+

2√
3
µ3 +

2

3
µ8, π2 =

1

3
− 2√

3
µ3 +

2

3
µ8, π3 =

1

3
− 4

3
µ8. (46)

Here the parameters µ3 and µ8 are Cartesian coordinates of a segment of
a unit circle with the apex angle ζ:

µ3 = sin ζ, µ8 = cos ζ, 0 6 ζ 6
π

3
. (47)

It is worth to note that the apex angle ζ determines the value of a 3-rd
order polynomial SU(3)-invariant of SW kernel ∆(Ω3)|ν):

cos(3ζ) = −27

16
det (∆(Ω3|ν))−

11

16

with the moduli parameter ν:

ν =
1

3
− 4

3
cos(ζ), ζ ∈ [0, π/3]. (48)
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Having these ingredients for a density matrix (42) and SW kernel (46),
the straightforward evaluation of (36) for N = 3 gives

W
(−)
3 =

1

3
− 4r√

3
cos
(

ζ +
ϕ

3
− π

3

)

, (49)

W
(+)
3 =

1

3
+

4r√
3
cos
(

ζ − ϕ

3

)

. (50)

From the expression (49) it follows that a subspace of the orbit space

O[P
(+)
3 ] where WF is positive reads:

O[P
(+)
3 ] :

{

r > 0, ϕ ∈ [0, π]

∣
∣
∣
∣
cos
(ϕ

3
+ ζ − π

3

)

6
1

4
√
3r

}

. (51)

Comparing (51) with the qutrit orbit space (45), we conclude that O[P
(+)
3 ]

lies inside the qutrit orbit space O[P3] as it is shown in Fig. 2. Here it is

in order to make few comments on a shape of O[P
(+)
3 ]:

• For 0 6 r 6 1
4
√
3

the lower bound W
(−)
3 is positive for all ζ and ϕ;

• For 1
2
√
3
6 r 6 1√

3
the lower bound W

(−)
3 is always negative;

• For intermediate values 1
4
√
3
6 r 6

1
2
√
3

the lower bound W
(−)
3

becomes negative only for certain values of ζ and ϕ.

Q-indicator of a single qutrit The global indicator of classicality of a
qutrit is given by the ratio of volumes

Q3 =
Vol

(

O[P
(+)
3 ]
)

Vol (O[P3])
. (52)

To evaluate these volume integrals, we need to specify a measure on the
orbit space O[P3]. Similarly to a qubit case, we assume that a qutrit state
space P3 is endowed with the Hilbert-Schmidt metric:

g = 4 tr (d̺⊗ d̺) . (53)

In terms of the Bloch coordinates ξ = (ξ1, ξ2, . . . , ξ8) of a qutrit,

̺ =
1

3

(

I+
√
3 (λ, ξ)

)

, (54)

the metric (53) gives the standard Euclidean volume form on P3:

ω =

(
8

3

)4

dξ1 ∧ dξ2 ∧ · · · ∧ dξ8. (55)
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(a) ζ = 0 (b) ζ =
π
6

(c) ζ =
π
3

Figure 2. The state space of a qutrit divided into bands.
The Wigner function is always positive (necessarily has
some negative values) inside (outside) the region enclosed
by the dashed inner (outer) semicircle regardless of the
choice of the kernel. Inside the region enclosed by the
kernel-dependent inner solid curve the Wigner function
is always positive for the specific choice of the kernel.

Now in order to compute the corresponding induced form on the orbit
space O[P3], we rewrite (55) in terms of the SVD of the density matrix

̺ = UDU †. (56)

Since the measure of a singular and degenerate matrices is zero, we consider
a generic spectrum D = diag||r1, r2, r3|| with descending order of the
eigenvalues 1 > r1 > r2 > r3 > 0. This means that the arbitrariness of U
is given by the torus T of SU(3) and an adaptive SVD coordinates,

ω = (r1 − r2)
2(r1 − r3)

2(r2 − r3)
2 dr1 ∧ dr2 ∧ dr3 ∧ ω

SU(3)/T
. (57)
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For illustrative reasons it is convenient to pass from 2-simplex Catrtesian
coordinates r1, r2, r3 to the polar variables r and ϕ, introduced in (44). As
a result, the volume form (57) on the orbits space O[P3] reduces to the
following expression:

ωO[P3] = r7 sin2 ϕdr ∧ dϕ. (58)

Computing the volume integrals in (52) with respect to the measure (58)
over the orbit space of a qutrit (45) and its subspace were WF is positive,
we find an explicit dependence of the global indicator of classicality on the
SW kernel moduli parameter ζ :

Q3(ζ)=

π∫

0

dϕ

1

4
√

3 cos (ϕ
3

+ζ−π
3 )∫

0

r7 sin2(ϕ)dr

π∫

0

dϕ

1
2
√

3 cos
ϕ
3∫

0

r7 sin2(ϕ)dr

=
1

128

1+20 cos2 (ζ−π/6)

(−1+4 cos2 (ζ−π/6))
5 . (59)

Figure 3. Q-indicator as a function of SW kernel moduli
parameter ζ for the Hilbert–Schmidt ensemble of qutrits.

The straightforward calculations show that the indicator Q3(ζ) attains
the absolute minimum at a qutrit modili parameter ζ = π/6,

min
ζ∈[0,π3 ]

Q3(ζ) = Q3

(π

6

)

=
7

27 34
≈ 0.000675,
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corresponding to SW kernel with the spectrum:

spec (∆3) =

∥
∥
∥
∥

1 + 2
√
3

3
,
1

3
,
1− 2

√
3

3

∥
∥
∥
∥
. (60)

In Fig. 3 the dependence of Q3 on the moduli parameter ζ is shown.

§5. Summary

In the present article we introduce the global indicator of classicality
of a quantum N -dimensional system. This indicator directly measures the
portion of its unitary orbit space which is associated to states admitting
conventional statistical interpretation in terms of true probability distri-
butions. During the study an interesting relation between the properties
of the Wigner quasiprobability distributions and structure of the Birkhoff
polytopes has been found out. It seems that this relation deserves atten-
tion, and in our future publication we will come back to the problem of a
classical-quantum correspondence from this point of view.

Appendix

In this Appendix we discuss the global extrema problem of a function
over the unitary orbits of a Hermitian matrix.

Problem Let A be a positive definite Hermitian matrix and B be a Her-
mitian matrix. Consider the adjoint unitary orbits, OB = gBg† , with
g ∈ SU(N). Find the global extrema of the function

Φ(g) = tr(AgBg†). (61)

To find the extrema of (61), one can apply a standard method of calculus
used for a problem of determination critical points of functions. To be
accurate, consider matrices A and B whose spectrum is of the following
form:

µ↓(A) = {µ1(A)

k1(A)
︷ ︸︸ ︷

(1, . . . , 1); µ2(A)

k2(A)
︷ ︸︸ ︷

(1, . . . , 1); . . . ; µs(A)

ks(A)
︷ ︸︸ ︷

(1, . . . , 1)}, (62)

µ↓(B) = {µ1(B)

k1(B)
︷ ︸︸ ︷

(1, . . . , 1); µ2(B)

k2(B)
︷ ︸︸ ︷

(1, . . . , 1); . . . ; µs(B)

ks(B)
︷ ︸︸ ︷

(1, . . . , 1)}. (63)

The elements of spectra of both matrices are arranged in the decreasing
order:

µ1(A) > µ2(A) > · · · > µs(A) and µ1(B) > µ2(B) > · · · > µs(B). (64)
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The degrees of degeneracy (k(A), k(B)) of matrices A and B are con-

strained by the relations,
s∑

i=1

ki(A) = rA and
s∑

i=1

ki(B) = rB. The SVD

decompositions for matrices

A = V DAV
†, B = WDBW

† (65)

are not unique and a family of unitary matrices V and W in (65) can be
built as follows. Let us denote by V ↓ the unitary matrix constructed of the
right eigenvectors of the matrix A, disposed in the correspondence with
the decreasing order of its eigenvalues. Then the most general family of
unitary matrices diagonalizing A reads:

V = V ↓






V1 · · · 0
...

. . .
...

0 · · · Vs




P, (66)

where V1, . . . , Vs are arbitrary unitary matrices of order k1, . . . , ks respec-
tively and P is the transposition matrix

P = ‖ei1 , ei2 , . . . , eiN ‖,
with N -dimensional vectors ej having everywhere zeros except 1 in the
j-place. The right multiplication, AP , transposes the columns j → ij ,
j = 1, . . . , N. Below the same construction for the unitary matrix W will
be used as well.

Straightforward computations show that the necessary condition of ex-
trema for Φ(g) can be written as

dΦ(g) = tr ([OB , A]wg) = 0, (67)

where

wg = dgg† =
ı

2

N2−1∑

a,i=1

(wg)
a
i λadϑ

i (68)

is the Maurer-Cartan 1-form on SU(N) group. The equation (67) tells us
that extrema of Φ(g) are realized for all points of the orbits OB = gcBg†c ,
commuting with A:9

[A,OB ] = 0. (69)

9The condition (67) represents a system of linear homogeneous equations (wg)ai xa=
0 with unknown xa and apart from the trivial solution, xa = 0, can have other
solutions corresponding to singular points occuring at det ||(wg)ai || = 0. Recalling

that det ‖wg‖ =
√

det ‖g
U(N)

‖, and the explicit expression for the Haar measure
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This equation has a solution gc = VW † with the unitary matrices V and
W diagonalizing A and B respectively. According to (66), the matrices V
and W constitute a family of diagonalising unitary matrices. One can see
that a set of corresponding critical points g = gc of Φ(g) is discrete. As a
result of (66), for given spec(A) and spec(B) the extrema are determined
by permutations P :

Φ(g)
∣
∣
∣
g=gc

= tr(DADB) = tr
(
µ↓(A)PTµ↓(B)P

)
.

Among these exrtema, the minimum and maximum are identified using the
well-known result of majorisation of two vectors x, y ∈ RN (cf. [18, p. 49]):

〈x↓, y↑〉 6 〈x, y〉 6 〈x↓, y↓〉. (70)

Hence, finally, global extrema of Φ(g) read:

min
g∈gc

Φ(g) = tr
(
µ↓(A)µ↑(B)

)
, (71)

max
g∈gc

Φ(g) = tr
(
µ↓(A)µ↓(B)

)
. (72)
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