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NOTES ON A GROTHENDIECK-SERRE CONJECTURE
IN MIXED CHARACTERISTIC CASE

ABsTrRACT. Let R be a discrete valuation ring with an infinite
residue field, X be a smooth projective curve over R. Let G be
a simple simply-connected group scheme over R and E be a prin-
cipal G-bundle over X. We prove that E is trivial locally for the
Zariski topology on X providing it is trivial over the generic point
of X. The main aim of the present paper is to develop a method
rather than to get a very strong concrete result.

In honour of 80-th birthday
of academician V.P. Platonov

§1. MAIN RESULTS

Let S be a commutative unital ring. Recall that an S-group scheme G is
called reductive, if it is affine and smooth as an S-scheme and if, moreover,
for each algebraically closed field €2 and for each ring homomorphism S —
 the scalar extension Gg is a connected reductive algebraic group over 2.
This definition of a reductive R-group scheme coincides with [2, Exp. XIX,
Definition 2.7].

Assume that U is a regular scheme, G is a reductive U-group scheme.
Recall that a U-scheme G with an action of G is called a principal G-bundle
over U, if G is faithfully flat and quasi-compact over U and the action is
simple transitive, that is, the natural morphism G Xy G — G Xy G is
an isomorphism, see [11, Section 6]. It is well known that such a bundle
is trivial locally in étale topology but in general not in Zariski topology.
Grothendieck and Serre conjectured that G is trivial locally in Zariski
topology, if it is trivial generically.

More precisely, a well-known conjecture due to J.-P. Serre and A. Gro-
thendieck (see [24, Remarque, p. 31], [8, Remarque 3, p. 26-27], and [14,
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Remarque 1.11.a]) asserts that given a regular local ring S and its field of
fractions L and given a reductive group scheme G over S, the map

Hélt(S7 G) — Hélt(La G)a

induced by the inclusion of S into L, has a trivial kernel. The conjecture
is true if S contains a field (see [5] and [22]). A survey article [19] on the
topic is published in proceedings of ICM-2018.

The following theorem is the main result of the present paper.

Theorem 1.1. Let R be a discrete valuation ring with an infinite residue
field, X be a smooth projective irreducible curve over R. Let G be a simple
simply-connected group scheme over R and E be a principal G-bundle over

X, which is trivial over the generic point of X. Then E is trivial locally
for the Zariski topology on X.

Theorem 1.2 (Geometric). Let R be a discrete valuation ring with an
infinite residue field, X be a smooth projective irreducible curve over R. Let
Z C X be a closed subset of pure codimension one, which is finite over R.
Then there is an affine open X° in X containing Z, a monic polynomial
h € R[t], an étale morphism 7 : X° — AL, a function f € R[X°] such that
f=7*(h) and the following square

mc
X0 e L X0

iﬂxg | Tl (1)

(AR ———=Aj

is an elementary distinguished square in the category of affine R-smooth
schemes in the sense of [15, Defn.3.1.3|. Particularly, Z is the vanishing
locus of the function f in X°.

Proposition 1.3. Let R, X, G and E be as in Theorem 1.1. Let X,
be the closed fibre of X. Let 0y, ..., n, be generic points of all irreducible
components of X,. Let O be the semi-local ring of points 11, ...,n, on X.
Then E|spec o is trivial.

This is a particular case of [18, Theorem 1.2], since O is a semi-local
Dedekind integral domain. The Proposition has the following obvious con-
sequence.
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Corollary 1.4. Under the notation and the hypothesis of Theorem 1.1
there exists a closed subset Z of pure codimention one in X, which is
finite over R and such that the G-bundle E|g_, is trivial.

Theorem 1.5. Let R and G be as in Theorem 1.2. Let h € R[t] be a
monic polynomial and Z(h) be the closed subset {h = 0} in AL. Let £
be a principal G-bundle over P}, such that its restriction to Py, — Z(h) is
trivial. Then there exists a closed subscheme Y in AL, finite and étale over
Spec R such that

(i) the restriction of £ to PL —Y is trivial,

(i) YNZh)=2.
In particular, the principal G-bundle & is trivial locally for the Zarisky
topology.

Derivation of Theorem 1.1 from Theorems 1.2, 1.5 and Corolla-
ry 1.4. The G-bundle E is trivial over the generic point of X. By Corol-
lary 1.4 there exists a closed subset Z of pure codimention one in X,
which is finite over R and such that the G-bundle E|g_, is trivial. To
prove the theorem it is sufficient to check that E is trivial over a Zariski
neighborhood of Z.

Take an affine open X in X, an étale morphism 7 : X% — AL, a monic
polynomial h € RJ[t] and f satisfying the conclusion of Theorem 1.2. Since
Z is the vanishing locus of f and E|xo_z is trivial, and the square (1) is
an elementary distinguished square, there exists a principal G-bundle E;
over Al such that 7*(E;) = E|xo and Eif(az), is trivial.

Let Z(h) C AL be the vanishing locus of h. Clearly, there is be a princi-
pal G-bundle € over P}, such that its restriction to P}, — Z(h) is trivial and
its restriction to A}, is E;. By Theorem 1.5 there exists a closed subscheme
Y in A}, finite and étale over SpecR such that

(i) the restriction of £ to PL — Y is trivial,

(i) YN Z(h) = @.

Hence the restriction of Ey = £[41 to AL — Y is trivial and Z(h) is in
AL —Y. Let X% =771(AL —Y). Since 7*(E};) = E|xo we conclude that
E|xo0 is trivial. Moreover, Z is in X%, This completes the proof of the
theorem. O

§2. PROOF OF THEOREM 1.2

Lemma 2.1. Let R, X be as in Theorem 1.1. Let Z be a closed subset
of pure codimention one in X, which is finite over R. Then there exists
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a closed subscheme Xo in X, which is finite, étale over R and such that
XooNZ = . Additionally, one can achieve the following property of Xoo:
its intersection with each irreducible component of X, is non-empty.

Proof. Let V = SpecR, v € V be its closed point and k(v) be the residue
field of R. So, as a scheme v is Spec k(v). If T' is an R-scheme we write T},
for the k-scheme T Xy v and call it the closed fibre of T'. Particularly, X,
is the closed fibre of X.

Take an embedding of X into a projective space

PY = Proj(R|[xo, ..., zN]).

Since k(v) is infinite, by a variant of Bertini’s theorem (see [25, Exp. XI,
Theorem 2.1]), there is a homogeneous quadratic polynomial

H € k(v)[zo,...,xN]

such that the subscheme T, of P) given by the equation H = 0 intersects
the closed fiber X, of X transversally. Moreover, we may assume that
Z,NT, = &, because Z, is a finite set. Take a lift of the polynomial H
to a quadratic polynomial H € R[zo,...,zN]. Let T C PY be the scheme
given by H = 0. Then Xo := TN X is the required subscheme. Indeed, we
only need to check that X, is étale over V. However, the closed fiber of
X is étale by construction. Hence, it is enough to check that X, is flat
over V. The flatness follows immediately from [16, Theorem 23.1]. Since
Z,NT, =@, we see that Z N X, = @. Since T, C PV is a hypersurface,
it intersects each irreducible component of X, in a non-empty subset.
Hence X, intersects each irreducible component of X, in a non-empty
subset. O

Let R, X and Z be as in Lemma 2.1. Let X, be from the conclusion
of the Lemma. Set X = X — X.. The nearest aim is to check that X and
its closed fibre X, are affine R-schemes. Let £ = O% (X ). Then there is
an integer n >> 0 and a section s € I'(X, £L®") such that s has no zeros
on X, and s does not vanish identically on any of irreducible component
of X,. Let sg € T'(X, £) be the canonical section: its vanishing locus is the
Cartier divisor Xo.. Then the sections s?" and s have no common zeros.
Thus, they define a regular morphism of V-schemes

l:[::[sgm:s]:)?%[?’%/.

It is easy to check that this morphism is finite surjective. Clearly, I~ (co x
V) = Xo (set theoretically). Thus, X = II7!(A},). Consider a morphism
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I:=1lx: X — A}, It is finite surjective, since II is finite surjective.
Hence X is an affine R-scheme. We write R[X] for I'(X, Ox). By the same
reason X, is an affine k(v)-scheme. We write k(v)[X,] for I'(X,, Ox, ).

The following result is a simplified version of [20, Theorem 3.8]. Its proof
is very closed to the proof of [20, Theorem 3.8]. However we decided to
give its proof in details for convenience of the reader.

Proposition 2.2. Let R, X and Z be as in Lemma 2.1. Let Xo. be as in
the conclusion of that Lemma. Then there is a finite morphism & : X — P
of V-schemes such that

(i) Xoo = 1(0co x V) (an equality of closed subsets);

(ii) 7|z : Z — P, is a closed embedding;

(iii) & is étale along Z.

Proof of Proposition 2.2. Step (i). For the closed point v € V' and any
point z € Z, there is a closed embedding z(?) — Al where 2 .=
Spec k(v)[X,]/m2 for the maximal ideal m, C k(v)[X,] of the point z
regarded as a point of X,. This holds, since the k(v)-scheme X, is equi-
dimensional of dimension one, affine and k(v)-smooth.

Step (ii). There is a closed embedding i, : [],c,, 23 < Al of the
k(v)-schemes. To see this apply Step (i) and use that the field k(v) is
infinite.

Step (iii). Introduce some notation. For these consider the closed sub-
scheme X, as a Cartier divisor on X. Let £ := Og(X) be the corre-
sponding invertible sheaf and let so € T'(X, L) be its section vanishing
exactly on X,,. One has a Cartesian square of V-schemes

Joo
Xoo,v > Xoo

l | l (2)

X, —212 - X,
which shows that the closed embedding in, : X, — X, is a Cartier
divisor on X,,. Set £, = j*(£) and sq,, = solx, € ['(Xy, Ly)-

Step (iv). Since Z and X, are finite over V, there is a closed reduced
subscheme W C X, of dimension zero such that WN X, =@ =WnZ
and W has exactly one point on each irreducible component of the closed
fibre X,. Let 5o : Ox., — L|x., be a trivialization of £|x_ . Let t be
the coordinate function on Al and i, be the closed embedding from the
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Step (ii). Let J C Ox be a sheaf of Ox ideals such that

Ox/JZ OXoo X OW X H k:(v)[XU]/mg
2€Z,

Claim. There exists an integer n > 0 and a section s; € H(X, £L#") such
that

simod J ® LO" = (s,0,i%(t) - sp) € T(X,LE" @ (O /J)).

Prove the Claim. For the coherent sheaf .J on X there is an integer n(.J) > 0
such that for any integer n > n(J) one has H*(X,J ® £%") = 0. Thus
the map H°(X,L%") = HY(X,L%" ® Og) — HY(X,L%" @ (Ox,,)) is
surjective. This proves the Claim.

Step (v). Set s1,, = si|x,. Then s1, € I'(X,, L5™) has no zeros on
Xoo,» and hence the morphism

Oy = [s&v D S1,0) X, — IP’}j

is well-defined. We claim that it is finite surjective. To see this take an

irreducible component Y of X, and recall that @ # Y N X =Y N X 0.

The morphism [sf} , : s1,] takes ¥ N X, to the point [0 : 1] € P, and

takes points of W NY to the point [1: 0] € P,. Thus [s§,, : s1,0] is finite

and surjective. Conclude now the step (v) with an observation:

(*) there is an equality 67J|HZGZ7J 2 =iy [[Leg 22« Al c P!, where

i, 18 from the step (ii); in particular, 7, is étale at every point z € Z,,.
Step (vi). Let s; € H?(X, £L®") be as in the Claim. Then the morphism

=[50 :s51]: X = Py,

is finite surjective. As we already know the morphism [sg ,, : 51.,] X, —» P}
is finite. Thus the morphism [sf : s1] is quasi-finite over a neighborhood
of PL. Since V is local, hence any Zariski neighborhood of P} coincides
with P}.. Since the morphism [s : s1] is projective, hence it is finite and
surjective.

By the step (vi) the resulting morphism ¢ : X — Pi, is a V-scheme
morphism, finite and surjective. The property (x) from step (v) shows
that the morphism

Oy

|1y oot [T 22 Al Pl

2€Zy 2€EZ,
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is a closed embedding and &, : X, — Al is étale at every point z € Z,. It
is checked above that &, is finite and surjective.

We are ready now to complete the proof of the Proposition. Obviously,
7 1(0o x V) = Xo (set theoretically). This proves the assertion (i) of the
proposition and shows an equality X = ¢~ !(A{,).

Prove now the assertion (iii) of the proposition. To do this consider a
morphism ¢ := &|x : X — Al. It is finite surjective, since o is finite
surjective. Since the schemes X and A}, are regular irreducible and the
morphism ¢ is finite surjective, the morphism o is flat by a theorem of
Grothendieck [4, Theorem 18.17]. So, to check that o is étale at a closed
point z € Z it suffices to check that the morphism o, : X,, — Al is étale
at the point z. The latter does hold by the step (v). Whence o is étale at
all the closed points of Z. The scheme Z is semi-local. Thus, o is étale in
a neighborhood of Z. This proves the assertion (iii) of the proposition.

Prove finally the assertion (ii) of the proposition. By the step (v) for
each point z € Z,, the k(v)-algebra homomorphism o7 : k(v)[t] = k(v)[X,]
is étale at the maximal ideal m, of the k(v)-algebra k(v)[X,] and the

composite map k(v)[t] == k(v)[X,] — k(v)[X,]/m. is an epimorphism.
Thus, for any integer r > 0 the k(v)-algebra homomorphism k(v)[t] —
k(v)[X,]/m} is an epimorphism. The local ring Oy, . of the scheme Z, at
the point z is of the form k(v)[X,]/m? for an integer s. Thus, the k(v)-

algebra homomorphism k(v)[t] =% k(v)[X,] = Oz, . is surjective. By the
step (v) the morphism ,|j .., = is the closed embedding i, from the

step (ii). This yields the surjectiuvity of the k(v)-algebra homomorphism
k)] = [[0z..= =T(2y, 02,). (3)

z/v
The R-module I'(Z,Oyz) is finite. Thus, the k(v)-module I'(Z,,0z,) is
finite. Now the surjectivity of the k(v)-algebra homomorphism (3) and
the Nakayama lemma show that the R-algebra homomorphism R[t] —
I'(Z,0z) is surjective. Thus, o|z : Z — A}, is a closed embedding. The
proposition is proved. Il

Proof of Theorem 1.2. Let X, be the closed subscheme in X as in the
conclusion of Lemma 2.1. Set X = X — X, and note that X = 5~ 1(A}).
Set 0 = &|x : X — Al,. Then o is a finite surjective V-scheme morphism,
because & is finite and surjective. The following hold by Proposition 2.2
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(a) 0|z : Z — AL is a closed embedding;
(b) o is étale along Z.
Properties (a) and (b) yield a scheme theoretic equality

o No(Z)=2Z1Z.

Thus, there is an affine open subset X° C X containing Z such that

(i) 7= 0|x0 : X° — AL is étale;

(ii") Z is in X° and 7|z : Z — A}, is a closed embedding;

(i) 1 (1(2)) = Z:
By items (ii') and (iii') there is a monic polynomial h € RJ[t] such that
7(Z) is a closed subscheme in Aj, defined by the principal ideal (h). Put
f=7%(h) € R[X"]. Then the closed subscheme Z in X° is defined by the
principal ideal (f). We constructed the affine open X in X containing Z,
the monic polynomial h € R[t], the étale morphism 7 : X° — Al the
function f € R[X?] such that the square (1) is an elementary distinguished
square in the category of affine R-smooth schemes in the sense of [15,
Defn.3.1.3]. O

§3. PROOF OF THEOREM 1.5

Proof of Theorem 1.5. Let V = Spec R, v € V be its closed point and
k(v) be the residue field of R. So, as a scheme v is Speck(v). If T is an
R-scheme we write T, for the k-scheme T xy, v and call it the closed fibre
of T.

Particularly, one has the simple algebraic k(v)-group G, = G xy v and
the principal G,-bundle &,, where G and £ are as in Theorem 1.5. The
restriction of &, to P — Z(h), is trivial. We begin with the following

Claim 1. If the k(v)-simple group G, is anisotropic, then the principal
G-bundle £ is trivial itself.

To prove this Claim recall that &, is trivial over P! by [6, Corolla-
ry 3.10(a)]. Since the restriction of £ to P{, — Z(h) is trivial, the G-bundle
£ is trivial itself by [26, Teopema 1]. This proves the Claim 1.

Claim 2. If the k(v)-simple group G, is isotropic, then there exists a
closed subscheme Y in A}, finite and étale over V such that

(i) the Y-group scheme Gy := G x Y contains a parabolic Y-subgroup
scheme;

(ii) the closed fibre Y, of Y contains a k(v)-rational point;

(iii) YN Z(h) = @.

Repeat literally the proof of [5, Proposition 4.1] in order to find a closed
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subscheme Y in A{, finite and étale over V satisfying the conditions (i)
and (ii). To achieve the third condition just apply an appropriate affine
shift. These prove the Claim 2.

Claim 3. Suppose the k(v)-simple group G, is isotropic. Then for each
closed subscheme Y in A{, finite and étale over V subjecting to conditions
(i) to (iii) the restriction of £ to P}, — Y is trivial.

To prove this Claim recall the following result which is not stated in [5]
as a separate

Lemma 3.1. Suppose the k(v)-simple group G, is isotropic and Y C A},
is a closed subscheme finite and étale over V' subjecting to conditions (i)
to (iii). Then Eylpi_y, is trivial.

Proof of Lemma 3.1. The G,-bundle &, is trivial over P — Z(h),.
Thus, by [6, Corollary 3.10(a)] it is trivial locally for Zariski topology on
PL. Using again |6, Corollary 3.10(a)] and the equality Pic(P} —Y,) =0,
we see that &, is trivial over P} — Y. O

With Lemma 3.1 in hand the proof of the Claim 3 is literally the same
as those of [5, Theorem 3|. Very briefly, we modify the G-bundle £ along
the closed subscheme Y to get a new G-bundle £™°¢ over P},. The latter
G-bundle has two properties:
(i) its restriction to P}, — Y coincides with the restriction of € to P{, — Y
(ii) its restriction to P! is a trivial G,-bundle.
By [26, Theorem 1| and the property (ii) there is a principal G-bundle
&o over V such that £™°% and pr*(&p) are isomorphic as the principal G-
bundle over Pi,. Here pr : P}, — V is the projection. The restriction of
&m0 and & to oo X V are isomorphic as the principal G-bundles due to
the property (i). The restriction of £ to co x V' is trivial, because co x
V C P{, — Z(h) and the restriction of £ to P}, — Z(h) is trivial. Thus the
restriction of £M°? to oo x V is trivial. Hence so is the restriction of pr* (&)
to oo x V. Thus, & is trivial over V. This yields the triviality of pr*(&)
and £m°? over P},. By the property (i) the restriction of £ to P}, — Y is a
trivial G-bundle. These prove the Claim 3.

Claims 1, 2 and 3 complete the proof of Theorem 1.5. 0

Remark 3.2. Note for the reader that the desired G-bundle £™°? is the
G-bundle of the form GI(£’,¢ o a) as in [5, Section 5.8, Claim|, where
& = Elpr_y. Point out that Lemma 3.1 is used to get an analog of [5,
Lemma 5.21] in our setting.
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Theorem [26, Theorem 1] replaces in our setting a reference to [23,
Proposition 9.6] in the proof of [5, Proposition 5.1]. We are not able refer
to [23, Proposition 9.6], since we work in the mixed characteristic case.
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