I. Panin

NOTES ON A GROTHENDIECK–SERRE CONJECTURE IN MIXED CHARACTERISTIC CASE

ABSTRACT. Let R be a discrete valuation ring with an infinite residue field, X be a smooth projective curve over R. Let \mathbf{G} be a simple simply-connected group scheme over R and E be a principal \mathbf{G} -bundle over X. We prove that E is trivial locally for the Zariski topology on X providing it is trivial over the generic point of X. The main aim of the present paper is to develop a method rather than to get a very strong concrete result.

In honour of 80-th birthday of academician V.P. Platonov

§1. MAIN RESULTS

Let S be a commutative unital ring. Recall that an S-group scheme **G** is called *reductive*, if it is affine and smooth as an S-scheme and if, moreover, for each algebraically closed field Ω and for each ring homomorphism $S \rightarrow \Omega$ the scalar extension \mathbf{G}_{Ω} is a connected reductive algebraic group over Ω . This definition of a reductive *R*-group scheme coincides with [2, Exp. XIX, Definition 2.7].

Assume that U is a regular scheme, \mathbf{G} is a reductive U-group scheme. Recall that a U-scheme \mathcal{G} with an action of \mathbf{G} is called a principal \mathbf{G} -bundle over U, if \mathcal{G} is faithfully flat and quasi-compact over U and the action is simple transitive, that is, the natural morphism $\mathbf{G} \times_U \mathcal{G} \to \mathcal{G} \times_U \mathcal{G}$ is an isomorphism, see [11, Section 6]. It is well known that such a bundle is trivial locally in étale topology but in general not in Zariski topology. Grothendieck and Serre conjectured that \mathcal{G} is trivial locally in Zariski topology, if it is trivial generically.

More precisely, a well-known conjecture due to J.-P. Serre and A. Grothendieck (see [24, Remarque, p. 31], [8, Remarque 3, p. 26–27], and [14,

Key words and phrases: simple algebraic group, principal bundle, Grothendieck–Serre conjecture, mixed characteristic rings.

The author acknowledges support of the RFBR grant No. 19-01-00513.

¹³⁸

Remarque 1.11.a]) asserts that given a regular local ring S and its field of fractions L and given a reductive group scheme **G** over S, the map

$$H^1_{\text{\acute{e}t}}(S, \mathbf{G}) \to H^1_{\text{\acute{e}t}}(L, \mathbf{G}),$$

induced by the inclusion of S into L, has a trivial kernel. The conjecture is true if S contains a field (see [5] and [22]). A survey article [19] on the topic is published in proceedings of ICM-2018.

The following theorem is the main result of the present paper.

Theorem 1.1. Let R be a discrete valuation ring with an infinite residue field, \overline{X} be a smooth projective irreducible curve over R. Let \mathbf{G} be a simple simply-connected group scheme over R and E be a principal \mathbf{G} -bundle over \overline{X} , which is trivial over the generic point of \overline{X} . Then E is trivial locally for the Zariski topology on \overline{X} .

Theorem 1.2 (Geometric). Let R be a discrete valuation ring with an infinite residue field, \overline{X} be a smooth projective irreducible curve over R. Let $Z \subseteq \overline{X}$ be a closed subset of pure codimension one, which is finite over R. Then there is an affine open X^0 in X containing Z, a monic polynomial $h \in R[t]$, an étale morphism $\tau : X^0 \to \mathbb{A}^1_R$, a function $f \in R[X^0]$ such that $f = \tau^*(h)$ and the following square

$$\begin{array}{ccc} X_{\rm f}^0 & \xrightarrow{inc} & X^0 \\ & & & & \\ & & & & \\ & & & & \\ (\mathbb{A}_R^1)_h & \xrightarrow{inc} & \mathbb{A}_R^1 \end{array} \tag{1}$$

is an elementary distinguished square in the category of affine R-smooth schemes in the sense of [15, Defn.3.1.3]. Particularly, Z is the vanishing locus of the function f in X^0 .

Proposition 1.3. Let R, \bar{X} , G and E be as in Theorem 1.1. Let \bar{X}_v be the closed fibre of \bar{X} . Let η_1, \ldots, η_r be generic points of all irreducible components of \bar{X}_v . Let \mathcal{O} be the semi-local ring of points η_1, \ldots, η_r on \bar{X} . Then $E|_{Spec \ O}$ is trivial.

This is a particular case of [18, Theorem 1.2], since \mathcal{O} is a semi-local Dedekind integral domain. The Proposition has the following obvious consequence.

Corollary 1.4. Under the notation and the hypothesis of Theorem 1.1 there exists a closed subset Z of pure codimention one in \overline{X} , which is finite over R and such that the **G**-bundle $E|_{\overline{X}-Z}$ is trivial.

Theorem 1.5. Let R and G be as in Theorem 1.2. Let $h \in R[t]$ be a monic polynomial and Z(h) be the closed subset $\{h = 0\}$ in \mathbb{A}^1_R . Let \mathcal{E} be a principal G-bundle over \mathbb{P}^1_R such that its restriction to $\mathbb{P}^1_R - Z(h)$ is trivial. Then there exists a closed subscheme Y in \mathbb{A}^1_R finite and étale over Spec R such that

(i) the restriction of \mathcal{E} to $\mathbb{P}^1_R - Y$ is trivial,

(ii) $Y \cap Z(\mathbf{h}) = \emptyset$.

In particular, the principal **G**-bundle \mathcal{E} is trivial locally for the Zarisky topology.

Derivation of Theorem 1.1 from Theorems 1.2, 1.5 and Corollary 1.4. The **G**-bundle E is trivial over the generic point of \overline{X} . By Corollary 1.4 there exists a closed subset Z of pure codimention one in \overline{X} , which is finite over R and such that the **G**-bundle $E|_{\overline{X}-Z}$ is trivial. To prove the theorem it is sufficient to check that E is trivial over a Zariski neighborhood of Z.

Take an affine open X^0 in \overline{X} , an étale morphism $\tau : X^0 \to \mathbb{A}^1_R$, a monic polynomial $h \in R[t]$ and f satisfying the conclusion of Theorem 1.2. Since Z is the vanishing locus of f and $E|_{X^0-Z}$ is trivial, and the square (1) is an elementary distinguished square, there exists a principal **G**-bundle E_t over \mathbb{A}^1_R such that $\tau^*(E_t) = E|_{X^0}$ and $E_t|_{(\mathbb{A}^1_R)_h}$ is trivial.

Let $Z(\mathbf{h}) \subseteq \mathbb{A}_R^1$ be the vanishing locus of \mathbf{h} . Clearly, there is be a principal \mathbf{G} -bundle \mathcal{E} over \mathbb{P}_R^1 such that its restriction to $\mathbb{P}_R^1 - Z(\mathbf{h})$ is trivial and its restriction to \mathbb{A}_R^1 is E_t . By Theorem 1.5 there exists a closed subscheme Y in \mathbb{A}_R^1 finite and étale over SpecR such that

Y in \mathbb{A}^1_R finite and étale over Spec R such that (i) the restriction of \mathcal{E} to $\mathbb{P}^1_R - Y$ is trivial,

(ii) $Y \cap Z(\mathbf{h}) = \emptyset$.

Hence the restriction of $E_t = \mathcal{E}|_{\mathbb{A}^1_R}$ to $\mathbb{A}^1_R - Y$ is trivial and $Z(\mathbf{h})$ is in $\mathbb{A}^1_R - Y$. Let $X^{00} = \tau^{-1}(\mathbb{A}^1_R - Y)$. Since $\tau^*(E_t) = E|_{X^0}$ we conclude that $E|_{X^{00}}$ is trivial. Moreover, Z is in X^{00} . This completes the proof of the theorem. \Box

§2. Proof of Theorem 1.2

Lemma 2.1. Let R, \bar{X} be as in Theorem 1.1. Let Z be a closed subset of pure codimension one in \bar{X} , which is finite over R. Then there exists

a closed subscheme X_{∞} in \overline{X} , which is finite, étale over R and such that $X_{\infty} \cap Z = \emptyset$. Additionally, one can achieve the following property of X_{∞} : its intersection with each irreducible component of \overline{X}_v is non-empty.

Proof. Let $V = \operatorname{Spec} R$, $v \in V$ be its closed point and k(v) be the residue field of R. So, as a scheme v is $\operatorname{Spec} k(v)$. If T is an R-scheme we write T_v for the k-scheme $T \times_V v$ and call it the closed fibre of T. Particularly, X_v is the closed fibre of X.

Take an embedding of X into a projective space

$$\mathbb{P}_V^N = \operatorname{Proj}(R[x_0, \dots, x_N]).$$

Since k(v) is infinite, by a variant of Bertini's theorem (see [25, Exp. XI, Theorem 2.1]), there is a homogeneous quadratic polynomial

$$H \in k(v)[x_0,\ldots,x_N]$$

such that the subscheme T_v of \mathbb{P}_v^N given by the equation H = 0 intersects the closed fiber X_v of X transversally. Moreover, we may assume that $Z_v \cap T_v = \emptyset$, because Z_v is a finite set. Take a lift of the polynomial Hto a quadratic polynomial $\tilde{H} \in R[x_0, \ldots, x_N]$. Let $T \subseteq \mathbb{P}_V^N$ be the scheme given by $\tilde{H} = 0$. Then $X_\infty := T \cap X$ is the required subscheme. Indeed, we only need to check that X_∞ is étale over V. However, the closed fiber of X_∞ is étale by construction. Hence, it is enough to check that X_∞ is flat over V. The flatness follows immediately from [16, Theorem 23.1]. Since $Z_v \cap T_v = \emptyset$, we see that $Z \cap X_\infty = \emptyset$. Since $T_v \subset \mathbb{P}_v^N$ is a hypersurface, it intersects each irreducible component of X_v in a non-empty subset. Hence X_∞ intersects each irreducible component of X_v in a non-empty subset.

Let R, \overline{X} and Z be as in Lemma 2.1. Let X_{∞} be from the conclusion of the Lemma. Set $X = \overline{X} - X_{\infty}$. The nearest aim is to check that X and its closed fibre X_v are affine R-schemes. Let $\mathcal{L} = \mathcal{O}_{\overline{X}}(X_{\infty})$. Then there is an integer n >> 0 and a section $s \in \Gamma(\overline{X}, \mathcal{L}^{\otimes n})$ such that s has no zeros on X_{∞} and s does not vanish identically on any of irreducible component of X_v . Let $s_0 \in \Gamma(\overline{X}, \mathcal{L})$ be the canonical section: its vanishing locus is the Cartier divisor X_{∞} . Then the sections $s_0^{\otimes n}$ and s have no common zeros. Thus, they define a regular morphism of V-schemes

$$\bar{\Pi} := [s_0^{\otimes n} : s] : \bar{X} \to \mathbb{P}^1_V.$$

It is easy to check that this morphism is finite surjective. Clearly, $\overline{\Pi}^{-1}(\infty \times V) = X_{\infty}$ (set theoretically). Thus, $X = \overline{\Pi}^{-1}(\mathbb{A}_{V}^{1})$. Consider a morphism

 $\Pi := \Pi|_X : X \to \mathbb{A}^1_V$. It is finite surjective, since Π is finite surjective. Hence X is an affine R-scheme. We write R[X] for $\Gamma(X, \mathcal{O}_X)$. By the same reason X_v is an affine k(v)-scheme. We write $k(v)[X_v]$ for $\Gamma(X_v, \mathcal{O}_{X_v})$.

The following result is a simplified version of [20, Theorem 3.8]. Its proof is very closed to the proof of [20, Theorem 3.8]. However we decided to give its proof in details for convenience of the reader.

Proposition 2.2. Let R, \bar{X} and Z be as in Lemma 2.1. Let X_{∞} be as in the conclusion of that Lemma. Then there is a finite morphism $\bar{\sigma} : \bar{X} \to \mathbb{P}^{1}_{V}$ of V-schemes such that

- (i) $X_{\infty} = \bar{\sigma}^{-1}(\infty \times V)$ (an equality of closed subsets);
- (ii) $\bar{\sigma}|_Z : Z \to \mathbb{P}^1_V$ is a closed embedding;
- (iii) $\bar{\sigma}$ is étale along Z.

Proof of Proposition 2.2. Step (i). For the closed point $v \in V$ and any point $z \in Z_v$ there is a closed embedding $z^{(2)} \hookrightarrow \mathbb{A}_v^1$, where $z^{(2)} := Spec \ k(v)[X_v]/\mathfrak{m}_z^2$ for the maximal ideal $\mathfrak{m}_z \subset k(v)[X_v]$ of the point z regarded as a point of X_v . This holds, since the k(v)-scheme X_v is equidimensional of dimension one, affine and k(v)-smooth.

Step (ii). There is a closed embedding $i_v : \coprod_{z \in Z_v} z^{(2)} \hookrightarrow \mathbb{A}_v^1$ of the k(v)-schemes. To see this apply Step (i) and use that the field k(v) is infinite.

Step (iii). Introduce some notation. For these consider the closed subscheme X_{∞} as a Cartier divisor on \bar{X} . Let $\mathcal{L} := \mathcal{O}_{\bar{X}}(X_{\infty})$ be the corresponding invertible sheaf and let $s_0 \in \Gamma(\bar{X}, \mathcal{L})$ be its section vanishing exactly on X_{∞} . One has a Cartesian square of V-schemes

$$\begin{array}{cccc} X_{\infty,v} & & \stackrel{j_{\infty}}{\longrightarrow} & X_{\infty} \\ & & & & \downarrow_{in} \\ & & & & \downarrow_{in} \\ & & & \bar{X}_v & & \stackrel{j}{\longrightarrow} & \bar{X}, \end{array}$$

$$(2)$$

which shows that the closed embedding $in_v : X_{\infty,v} \hookrightarrow \bar{X}_v$ is a Cartier divisor on \bar{X}_v . Set $\mathcal{L}_{\mathbf{u}} = j^*(\mathcal{L})$ and $s_{0,v} = s_0|_{\bar{X}_v} \in \Gamma(\bar{X}_v, \mathcal{L}_v)$. Step (iv). Since Z and X_∞ are finite over V, there is a closed reduced

Step (iv). Since Z and X_{∞} are finite over V, there is a closed reduced subscheme $W \subset \overline{X}_v$ of dimension zero such that $W \cap X_{\infty} = \emptyset = W \cap Z$ and W has exactly one point on each irreducible component of the closed fibre \overline{X}_v . Let $s_{\infty} : \mathcal{O}_{X_{\infty}} \to \mathcal{L}|_{X_{\infty}}$ be a trivialization of $\mathcal{L}|_{X_{\infty}}$. Let t be the coordinate function on \mathbb{A}^1_v and i_v be the closed embedding from the Step (ii). Let $J \subset \mathcal{O}_{\bar{X}}$ be a sheaf of $\mathcal{O}_{\bar{X}}$ ideals such that

$$\mathcal{O}_{\bar{X}}/J = \mathcal{O}_{X_{\infty}} \times \mathcal{O}_{W} \times \prod_{z \in Z_{v}} k(v)[X_{v}]/\mathfrak{m}_{z}^{2}$$

Claim. There exists an integer $n \ge 0$ and a section $s_1 \in H^0(\bar{X}, \mathcal{L}^{\otimes n})$ such that

$$s_1 \mod J \otimes \mathcal{L}^{\otimes n} = (s_\infty^n, 0, i_v^*(t) \cdot s_0^n) \in \Gamma(\bar{X}, \mathcal{L}^{\otimes n} \otimes (\mathcal{O}_{\bar{X}}/J)).$$

Prove the Claim. For the coherent sheaf J on \bar{X} there is an integer $n(J) \ge 0$ such that for any integer $n \ge n(J)$ one has $H^1(\bar{X}, J \otimes \mathcal{L}^{\otimes n}) = 0$. Thus the map $H^0(\bar{X}, \mathcal{L}^{\otimes n}) = H^0(\bar{X}, \mathcal{L}^{\otimes n} \otimes \mathcal{O}_{\bar{X}}) \to H^0(\bar{X}, \mathcal{L}^{\otimes n} \otimes (\mathcal{O}_{\bar{X}/J}))$ is surjective. This proves the Claim.

Step (v). Set $s_{1,v} = s_1|_{\bar{X}_v}$. Then $s_{1,v} \in \Gamma(\bar{X}_v, \mathcal{L}_v^{\otimes n})$ has no zeros on $X_{\infty,v}$ and hence the morphism

$$\bar{\sigma}_v := [s_{0,v}^n : s_{1,v}] : \bar{X}_v \to \mathbb{P}_v^1$$

is well-defined. We claim that it is finite surjective. To see this take an irreducible component Y of \bar{X}_v and recall that $\emptyset \neq Y \cap X_\infty = Y \cap X_{\infty,v}$. The morphism $[s_{0,v}^n: s_{1,v}]$ takes $Y \cap X_{\infty,v}$ to the point $[0:1] \in \mathbb{P}_v^1$ and takes points of $W \cap Y$ to the point $[1:0] \in \mathbb{P}_v^1$. Thus $[s_{0,v}^n: s_{1,v}]$ is finite and surjective. Conclude now the step (v) with an observation:

(*) there is an equality $\bar{\sigma}_v|_{\prod_{z \in Z_v} z^{(2)}} = i_v : \prod_{z \in Z_v} z^{(2)} \hookrightarrow \mathbb{A}_v^1 \subset \mathbb{P}_v^1$, where i_v is from the step (ii); in particular, $\bar{\sigma}_v$ is étale at every point $z \in Z_v$.

Step (vi). Let $s_1 \in H^0(\bar{X}, \mathcal{L}^{\otimes n})$ be as in the Claim. Then the morphism

$$\bar{\sigma} := [s_0^n : s_1] : \bar{X} \to \mathbb{P}^1_V$$

is finite surjective. As we already know the morphism $[s_{0,v}^n:s_{1,v}]: \bar{X}_v \to \mathbb{P}_v^1$ is finite. Thus the morphism $[s_0^n:s_1]$ is quasi-finite over a neighborhood of \mathbb{P}_v^1 . Since V is local, hence any Zariski neighborhood of \mathbb{P}_v^1 coincides with \mathbb{P}_V^1 . Since the morphism $[s_0^n:s_1]$ is projective, hence it is finite and surjective.

By the step (vi) the resulting morphism $\bar{\sigma} : \bar{X} \to \mathbb{P}^1_V$ is a V-scheme morphism, finite and surjective. The property (*) from step (v) shows that the morphism

$$\bar{\sigma}_v \big|_{\underset{z \in Z_v}{\amalg} z^{(2)}} : \coprod_{z \in Z_v} z^{(2)} \hookrightarrow \mathbb{A}^1_v \subset \mathbb{P}^1_v$$

is a closed embedding and $\bar{\sigma}_v : X_v \to \mathbb{A}_v^1$ is étale at every point $z \in Z_v$. It is checked above that $\bar{\sigma}_v$ is finite and surjective.

We are ready now to complete the proof of the Proposition. Obviously, $\bar{\sigma}^{-1}(\infty \times V) = X_{\infty}$ (set theoretically). This proves the assertion (i) of the proposition and shows an equality $X = \bar{\sigma}^{-1}(\mathbb{A}^1_V)$.

Prove now the assertion (iii) of the proposition. To do this consider a morphism $\sigma := \bar{\sigma}|_X : X \to \mathbb{A}^1_V$. It is finite surjective, since $\bar{\sigma}$ is finite surjective. Since the schemes X and \mathbb{A}^1_V are regular irreducible and the morphism σ is finite surjective, the morphism σ is flat by a theorem of Grothendieck [4, Theorem 18.17]. So, to check that σ is étale at a closed point $z \in Z$ it suffices to check that the morphism $\sigma_v : X_v \to \mathbf{A}^1_v$ is étale at the point z. The latter does hold by the step (v). Whence σ is étale at all the closed points of Z. The scheme Z is semi-local. Thus, σ is étale in a neighborhood of Z. This proves the assertion (iii) of the proposition.

Prove finally the assertion (ii) of the proposition. By the step (v) for each point $z \in Z_v$ the k(v)-algebra homomorphism $\sigma_v^* : k(v)[t] \to k(v)[X_v]$ is étale at the maximal ideal \mathfrak{m}_z of the k(v)-algebra $k(v)[X_v]$ and the composite map $k(v)[t] \xrightarrow{\sigma_v^*} k(v)[X_v] \to k(v)[X_v]/\mathfrak{m}_z$ is an epimorphism. Thus, for any integer r > 0 the k(v)-algebra homomorphism $k(v)[t] \to$ $k(v)[X_v]/\mathfrak{m}_z^r$ is an epimorphism. The local ring $\mathcal{O}_{Z_v,z}$ of the scheme Z_v at the point z is of the form $k(v)[X_v]/\mathfrak{m}_z^s$ for an integer s. Thus, the k(v)algebra homomorphism $k(v)[t] \xrightarrow{\sigma_v^*} k(v)[X_v] \to \mathcal{O}_{Z_v,z}$ is surjective. By the step (v) the morphism $\sigma_v|_{\coprod_{z\in Z'_v} z^{(2)}}$ is the closed embedding i_v from the step (ii). This yields the surjectivity of the k(v)-algebra homomorphism

$$k(v)[t] \to \prod_{z/v} \mathcal{O}_{Z_v,z} = \Gamma(Z_v, \mathcal{O}_{Z_v}).$$
(3)

The *R*-module $\Gamma(Z, \mathcal{O}_Z)$ is finite. Thus, the k(v)-module $\Gamma(Z_v, \mathcal{O}_{Z_v})$ is finite. Now the surjectivity of the k(v)-algebra homomorphism (3) and the Nakayama lemma show that the *R*-algebra homomorphism $R[t] \rightarrow \Gamma(Z, \mathcal{O}_Z)$ is surjective. Thus, $\sigma|_Z : Z \rightarrow \mathbb{A}^1_V$ is a closed embedding. The proposition is proved. \Box

Proof of Theorem 1.2. Let X_{∞} be the closed subscheme in \bar{X} as in the conclusion of Lemma 2.1. Set $X = \bar{X} - X_{\infty}$ and note that $X = \bar{\sigma}^{-1}(\mathbb{A}_V^1)$. Set $\sigma = \bar{\sigma}|_X : X \to \mathbb{A}_V^1$. Then σ is a finite surjective V-scheme morphism, because $\bar{\sigma}$ is finite and surjective. The following hold by Proposition 2.2

(a) $\sigma|_Z : Z \to \mathbb{A}^1_R$ is a closed embedding;

(b) σ is étale along Z.

Properties (a) and (b) yield a scheme theoretic equality

$$\sigma^{-1}(\sigma(Z)) = Z \sqcup Z'.$$

Thus, there is an affine open subset $X^0 \subseteq X$ containing Z such that

(i') $\tau := \sigma|_{X^0} : X^0 \to \mathbb{A}^1_R$ is étale;

(ii') Z is in X^0 and $\tau|_Z : Z \to \mathbb{A}^1_V$ is a closed embedding; (iii') $\tau^{-1}(\tau(Z)) = Z$;

By items (ii') and (iii') there is a monic polynomial $h \in R[t]$ such that $\tau(Z)$ is a closed subscheme in \mathbb{A}_V^1 defined by the principal ideal (h). Put $f = \tau^*(h) \in R[X^0]$. Then the closed subscheme Z in X^0 is defined by the principal ideal (f). We constructed the affine open X^0 in X containing Z, the monic polynomial $h \in R[t]$, the étale morphism $\tau : X^0 \to \mathbb{A}_V^1$, the function $f \in R[X^0]$ such that the square (1) is an elementary distinguished square in the category of affine R-smooth schemes in the sense of [15, Defn.3.1.3].

§3. Proof of Theorem 1.5

Proof of Theorem 1.5. Let $V = \operatorname{Spec} R$, $v \in V$ be its closed point and k(v) be the residue field of R. So, as a scheme v is $\operatorname{Spec} k(v)$. If T is an R-scheme we write T_v for the k-scheme $T \times_V v$ and call it the closed fibre of T.

Particularly, one has the simple algebraic k(v)-group $\mathbf{G}_v = \mathbf{G} \times_V v$ and the principal \mathbf{G}_v -bundle \mathcal{E}_v , where \mathbf{G} and \mathcal{E} are as in Theorem 1.5. The restriction of \mathcal{E}_v to $\mathbb{P}^1_v - Z(\mathbf{h})_v$ is trivial. We begin with the following

Claim 1. If the k(v)-simple group \mathbf{G}_v is anisotropic, then the principal \mathbf{G} -bundle \mathcal{E} is trivial itself.

To prove this Claim recall that \mathcal{E}_v is trivial over \mathbb{P}_v^1 by [6, Corollary 3.10(a)]. Since the restriction of \mathcal{E} to $\mathbb{P}_V^1 - Z(\mathbf{h})$ is trivial, the **G**-bundle \mathcal{E} is trivial itself by [26, Teopema 1]. This proves the Claim 1.

Claim 2. If the k(v)-simple group \mathbf{G}_v is isotropic, then there exists a closed subscheme Y in \mathbb{A}^1_V finite and étale over V such that

(i) the Y-group scheme $\mathbf{G}_Y := \mathbf{G} \times_V Y$ contains a parabolic Y-subgroup scheme;

(ii) the closed fibre Y_v of Y contains a k(v)-rational point;

(iii) $Y \cap Z(\mathbf{h}) = \emptyset$.

Repeat literally the proof of [5, Proposition 4.1] in order to find a closed

subscheme Y in \mathbb{A}^1_V finite and étale over V satisfying the conditions (i) and (ii). To achieve the third condition just apply an appropriate affine shift. These prove the Claim 2.

Claim 3. Suppose the k(v)-simple group \mathbf{G}_v is isotropic. Then for each closed subscheme Y in \mathbb{A}^1_V finite and étale over V subjecting to conditions (i) to (iii) the restriction of \mathcal{E} to $\mathbb{P}^1_V - Y$ is trivial.

To prove this Claim recall the following result which is not stated in [5] as a separate

Lemma 3.1. Suppose the k(v)-simple group \mathbf{G}_v is isotropic and $Y \subseteq \mathbb{A}_V^1$ is a closed subscheme finite and étale over V subjecting to conditions (i) to (iii). Then $E_v|_{\mathbb{P}^1_v - Y_v}$ is trivial.

Proof of Lemma 3.1. The \mathbf{G}_u -bundle \mathcal{E}_u is trivial over $\mathbb{P}_v^1 - Z(h)_v$. Thus, by [6, Corollary 3.10(a)] it is trivial locally for Zariski topology on \mathbb{P}_v^1 . Using again [6, Corollary 3.10(a)] and the equality $Pic(\mathbb{P}_v^1 - Y_v) = 0$, we see that \mathcal{E}_v is trivial over $\mathbb{P}_v^1 - Y_v$.

With Lemma 3.1 in hand the proof of the Claim 3 is literally the same as those of [5, Theorem 3]. Very briefly, we modify the **G**-bundle \mathcal{E} along the closed subscheme Y to get a new **G**-bundle \mathcal{E}^{mod} over \mathbb{P}^1_V . The latter **G**-bundle has two properties:

(i) its restriction to $\mathbb{P}_V^1 - Y$ coincides with the restriction of \mathcal{E} to $\mathbb{P}_V^1 - Y$; (ii) its restriction to \mathbb{P}_v^1 is a trivial \mathbf{G}_v -bundle.

By [26, Theorem 1] and the property (ii) there is a principal **G**-bundle \mathcal{E}_0 over V such that \mathcal{E}^{mod} and $pr^*(\mathcal{E}_0)$ are isomorphic as the principal **G**-bundle over \mathbb{P}_V^1 . Here $pr : \mathbb{P}_V^1 \to V$ is the projection. The restriction of \mathcal{E}^{mod} and \mathcal{E} to $\infty \times V$ are isomorphic as the principal **G**-bundles due to the property (i). The restriction of \mathcal{E} to $\infty \times V$ is trivial, because $\infty \times V \subset \mathbb{P}_V^1 - Z(h)$ and the restriction of \mathcal{E} to $\mathbb{P}_V^1 - Z(h)$ is trivial. Thus the restriction of \mathcal{E}^{mod} to $\infty \times V$ is trivial. Hence so is the restriction of $pr^*(\mathcal{E}_0)$ to $\infty \times V$. Thus, \mathcal{E}_0 is trivial over V. This yields the triviality of $pr^*(\mathcal{E}_0)$ and \mathcal{E}^{mod} over \mathbb{P}_V^1 . By the property (i) the restriction of \mathcal{E} to $\mathbb{P}_V^1 - Y$ is a trivial **G**-bundle. These prove the Claim 3.

Claims 1, 2 and 3 complete the proof of Theorem 1.5. $\hfill \Box$

Remark 3.2. Note for the reader that the desired **G**-bundle \mathcal{E}^{mod} is the **G**-bundle of the form $\operatorname{Gl}(\mathcal{E}', \varphi \circ \alpha)$ as in [5, Section 5.8, Claim], where $\mathcal{E}' = \mathcal{E}|_{\mathbb{P}^1-Y}$. Point out that Lemma 3.1 is used to get an analog of [5, Lemma 5.21] in our setting.

Theorem [26, Theorem 1] replaces in our setting a reference to [23, Proposition 9.6] in the proof of [5, Proposition 5.1]. We are not able refer to [23, Proposition 9.6], since we work in the mixed characteristic case.

References

- J.-L. Colliot-Thélène, M. Ojanguren, Espaces principaux homogènes localement triviaux. – Publ. Math. IHÉS 75, No. 2 (1992), 97–122.
- M. Demazure, A. Grothendieck, Schémas en groupes, Lect. Notes Math., vol. 151– 153, Springer-Verlag, Berlin-Heidelberg-New York, 1970.
- M. Demazure, A. Grothendieck, Structure des schémas en groupes réductifs. Lect. Notes Math., 153.
- D. Eisenbud, Commutative algebra with a view toward algebraic geometry. Graduate Texts in Mathematics 150, Springer-Verlag, New York, 1995.
- R. Fedorov, I. Panin, A proof of Grothendieck-Serre conjecture on principal bundles over a semilocal regular ring containing an infinite field. Publ. Math. IHE'S, **122** (2015), pp. 169-193. http://www.arxiv.org/abs/1211.2678v2.
- Ph. Gille, Torseurs sur la droite affine. Transform. Groups 7, No. 3 (2002), 231–245.
- Ph. Gille, Le problème de Kneser-Tits. Astérisque **326**, No. 983 (2010), 39–81, 2009. Séminaire Bourbaki. Vol. 2007/2008.
- A. Grothendieck, Torsion homologique et sections rationnelles, Anneaux de Chow et applications, Séminaire Chevalley, 2-e année, Secrétariat mathématique, Paris, 1958.
- 9. A. Grothendieck, Le group de Brauer II, in: Dix exposés sur la cohomologie des schémas, Amsterdam, North-Holland, 1968.
- A. Grothendieck, Le group de Brauer III: Exemples et compléments, in: Dix exposés sur la cohomologie des schémas, Amsterdam, North-Holland, 1968.
- A. Grothendieck, Technique de descente et théorèmes d'existence en géométrie algébrique: I. Generalites. Descente par morphismes fidèlement plats. In Seminaire Bourbaki, Vol. 5, Exp. No. 190., pages 299–327. Soc. Math. France, Paris, 1995.
- A. Grothendieck, Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné) : III. Étude cohomologie des faisceaux cohérents, Première partie: Publ. Math. IHÉS 11 (1961), 5–167.
- A. Grothendieck, Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné) : IV. Étude locale des schémas et des morphismes de schémas, Seconde partie: Publ. Math. IHÉS 24 (1965), 5–231.
- A. Grothendieck, Le groupe de Brauer II, in: Dix exposés sur la cohomologie des schémas, Amsterdam, North-Holland, 1968.
- F. Morel, V. Voevodsky, A¹-homotopy theory of schemes. Publ. Math. IHÉS 90 (1999), 45–143.
- H. Matsumura, Commutative Ring Theory, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1989, translated from the Japanese by M. Reid.

- Y. Nisnevich, Rationally trivial principal homogeneous spaces and arithmetic of reductive group schemes over Dedekind rings. - C. R. Acad. Sci. Paris, Série I, 299, No. 1 (1984), 5–8.
- Ning Guo, The Grothendieck-Serre conjecture over semi-local Dedekind rings, arXiv:1902.02315v2.
- I. Panin, On Grothendieck-Serre conjecture concerning principal bundles. Proc. Intern. Congress of Math. 2018, Rio de Janeiro, Vol.1, 201–222.
- I. Panin, Nice triples and moving lemmas for motivic spaces. IZV MATH 83, No.4 (2019), 796–829, arXiv:1707.01755.
- I. Panin, Nice triples and Grothendieck-Serre's conjecture concerning principal G-bundles over reductive group schemes. — Duke Math. J., 168, No. 2 (2019); DOI 10.1215/00127094-2018-0042 arXiv:1707.01756.
- 22. I. Panin, Proof of Grothendieck-Serre conjecture on principal G-bundles over semi-local regular domains containing a finite field, arXiv:1707.01767.
- I. Panin, A. Stavrova, N. Vavilov, On Grothendieck–Serre's conjecture concerning principal G-bundles over reductive group schemes: I. — Compositio Math. 151 (2015), 535–567.
- 24. J.-P. Serre, Espaces fibrés algébriques, in Anneaux de Chow et applications, Séminaire Chevalley, 2-e année, Secrétariat mathématique, Paris, 1958.
- 25. Théorie des topos et cohomologie étale des schémas. Tome 3, Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4). Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat. Lecture Notes in Mathematics 305, Springer 1973.
- A. Tsybyshev, A step toward the mixed-characteristic case of the Grothendieck-Serre conjecture. — Algebra i Analiz 31, No. 1 (2019), 246–254.

St.Petersburg Department

Поступило 29 октября 2019 г.

of Steklov Institute of Mathematics St.Petersburg, Russia

E-mail: panin@pdmi.ras.ru