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NOTES ON A GROTHENDIECK–SERRE CONJECTURE

IN MIXED CHARACTERISTIC CASE

Abstract. Let R be a discrete valuation ring with an infinite
residue field, X be a smooth projective curve over R. Let G be
a simple simply-connected group scheme over R and E be a prin-
cipal G-bundle over X. We prove that E is trivial locally for the
Zariski topology on X providing it is trivial over the generic point
of X. The main aim of the present paper is to develop a method
rather than to get a very strong concrete result.

In honour of 80-th birthday

of academician V.P. Platonov

§1. Main results

Let S be a commutative unital ring. Recall that an S-group scheme G is
called reductive, if it is affine and smooth as an S-scheme and if, moreover,
for each algebraically closed field Ω and for each ring homomorphism S →
Ω the scalar extension GΩ is a connected reductive algebraic group over Ω.
This definition of a reductive R-group scheme coincides with [2, Exp. XIX,
Definition 2.7].

Assume that U is a regular scheme, G is a reductive U -group scheme.
Recall that a U -scheme G with an action of G is called a principal G-bundle
over U , if G is faithfully flat and quasi-compact over U and the action is
simple transitive, that is, the natural morphism G ×U G → G ×U G is
an isomorphism, see [11, Section 6]. It is well known that such a bundle
is trivial locally in étale topology but in general not in Zariski topology.
Grothendieck and Serre conjectured that G is trivial locally in Zariski
topology, if it is trivial generically.

More precisely, a well-known conjecture due to J.-P. Serre and A. Gro-
thendieck (see [24, Remarque, p. 31], [8, Remarque 3, p. 26–27], and [14,

Key words and phrases: simple algebraic group, principal bundle, Grothendieck–
Serre conjecture, mixed characteristic rings.
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Remarque 1.11.a]) asserts that given a regular local ring S and its field of
fractions L and given a reductive group scheme G over S, the map

H1
ét(S,G) → H1

ét(L,G),

induced by the inclusion of S into L, has a trivial kernel. The conjecture
is true if S contains a field (see [5] and [22]). A survey article [19] on the
topic is published in proceedings of ICM-2018.

The following theorem is the main result of the present paper.

Theorem 1.1. Let R be a discrete valuation ring with an infinite residue
field, X̄ be a smooth projective irreducible curve over R. Let G be a simple
simply-connected group scheme over R and E be a principal G-bundle over
X̄, which is trivial over the generic point of X̄. Then E is trivial locally
for the Zariski topology on X̄.

Theorem 1.2 (Geometric). Let R be a discrete valuation ring with an
infinite residue field, X̄ be a smooth projective irreducible curve over R. Let
Z ⊆ X̄ be a closed subset of pure codimension one, which is finite over R.
Then there is an affine open X0 in X containing Z, a monic polynomial
h ∈ R[t], an étale morphism τ : X0 → A

1
R, a function f ∈ R[X0] such that

f = τ∗(h) and the following square

X0
f

τ |
X0

f

��

inc
// X0

τ

��

(A1
R)h

inc
// A

1
R

(1)

is an elementary distinguished square in the category of affine R-smooth
schemes in the sense of [15, Defn.3.1.3]. Particularly, Z is the vanishing
locus of the function f in X0.

Proposition 1.3. Let R, X̄, G and E be as in Theorem 1.1. Let X̄v

be the closed fibre of X̄. Let η1, . . . , ηr be generic points of all irreducible
components of X̄v. Let O be the semi-local ring of points η1, . . . , ηr on X̄.
Then E|Spec O is trivial.

This is a particular case of [18, Theorem 1.2], since O is a semi-local
Dedekind integral domain. The Proposition has the following obvious con-
sequence.
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Corollary 1.4. Under the notation and the hypothesis of Theorem 1.1
there exists a closed subset Z of pure codimention one in X̄, which is
finite over R and such that the G-bundle E|X̄−Z is trivial.

Theorem 1.5. Let R and G be as in Theorem 1.2. Let h ∈ R[t] be a
monic polynomial and Z(h) be the closed subset {h = 0} in A

1
R. Let E

be a principal G-bundle over P
1
R such that its restriction to P

1
R − Z(h) is

trivial. Then there exists a closed subscheme Y in A
1
R finite and étale over

Spec R such that
(i) the restriction of E to P

1
R − Y is trivial,

(ii) Y ∩ Z(h) = ∅.
In particular, the principal G-bundle E is trivial locally for the Zarisky
topology.

Derivation of Theorem 1.1 from Theorems 1.2, 1.5 and Corolla-

ry 1.4. The G-bundle E is trivial over the generic point of X̄ . By Corol-
lary 1.4 there exists a closed subset Z of pure codimention one in X̄,
which is finite over R and such that the G-bundle E|X̄−Z is trivial. To
prove the theorem it is sufficient to check that E is trivial over a Zariski
neighborhood of Z.

Take an affine open X0 in X̄, an étale morphism τ : X0 → A
1
R, a monic

polynomial h ∈ R[t] and f satisfying the conclusion of Theorem 1.2. Since
Z is the vanishing locus of f and E|X0−Z is trivial, and the square (1) is
an elementary distinguished square, there exists a principal G-bundle Et

over A1
R such that τ∗(Et) = E|X0 and Et|(A1

R
)h is trivial.

Let Z(h) ⊆ A
1
R be the vanishing locus of h. Clearly, there is be a princi-

pal G-bundle E over P1
R such that its restriction to P

1
R−Z(h) is trivial and

its restriction to A
1
R is Et. By Theorem 1.5 there exists a closed subscheme

Y in A
1
R finite and étale over SpecR such that

(i) the restriction of E to P
1
R − Y is trivial,

(ii) Y ∩ Z(h) = ∅.
Hence the restriction of Et = E|A1

R

to A
1
R − Y is trivial and Z(h) is in

A
1
R − Y . Let X00 = τ−1(A1

R − Y ). Since τ∗(Et) = E|X0 we conclude that
E|X00 is trivial. Moreover, Z is in X00. This completes the proof of the
theorem. �

§2. Proof of Theorem 1.2

Lemma 2.1. Let R, X̄ be as in Theorem 1.1. Let Z be a closed subset
of pure codimention one in X̄, which is finite over R. Then there exists
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a closed subscheme X∞ in X̄, which is finite, étale over R and such that
X∞ ∩Z = ∅. Additionally, one can achieve the following property of X∞:
its intersection with each irreducible component of X̄v is non-empty.

Proof. Let V = SpecR, v ∈ V be its closed point and k(v) be the residue
field of R. So, as a scheme v is Spec k(v). If T is an R-scheme we write Tv

for the k-scheme T ×V v and call it the closed fibre of T . Particularly, Xv

is the closed fibre of X .
Take an embedding of X into a projective space

P
N
V = Proj(R[x0, . . . , xN ]).

Since k(v) is infinite, by a variant of Bertini’s theorem (see [25, Exp. XI,
Theorem 2.1]), there is a homogeneous quadratic polynomial

H ∈ k(v)[x0, . . . , xN ]

such that the subscheme Tv of PN
v given by the equation H = 0 intersects

the closed fiber Xv of X transversally. Moreover, we may assume that
Zv ∩ Tv = ∅, because Zv is a finite set. Take a lift of the polynomial H
to a quadratic polynomial H̃ ∈ R[x0, . . . , xN ]. Let T ⊆ P

N
V be the scheme

given by H̃ = 0. Then X∞ := T ∩X is the required subscheme. Indeed, we
only need to check that X∞ is étale over V . However, the closed fiber of
X∞ is étale by construction. Hence, it is enough to check that X∞ is flat
over V . The flatness follows immediately from [16, Theorem 23.1]. Since
Zv ∩ Tv = ∅, we see that Z ∩X∞ = ∅. Since Tv ⊂ P

N
v is a hypersurface,

it intersects each irreducible component of Xv in a non-empty subset.
Hence X∞ intersects each irreducible component of Xv in a non-empty
subset. �

Let R, X̄ and Z be as in Lemma 2.1. Let X∞ be from the conclusion
of the Lemma. Set X = X̄ −X∞. The nearest aim is to check that X and
its closed fibre Xv are affine R-schemes. Let L = OX̄(X∞). Then there is
an integer n >> 0 and a section s ∈ Γ(X̄,L⊗n) such that s has no zeros
on X∞ and s does not vanish identically on any of irreducible component
of Xv. Let s0 ∈ Γ(X̄,L) be the canonical section: its vanishing locus is the
Cartier divisor X∞. Then the sections s⊗n

0 and s have no common zeros.
Thus, they define a regular morphism of V -schemes

Π̄ := [s⊗n
0 : s] : X̄ → P

1
V .

It is easy to check that this morphism is finite surjective. Clearly, Π̄−1(∞×
V ) = X∞ (set theoretically). Thus, X = Π̄−1(A1

V ). Consider a morphism
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Π := Π̄|X : X → A
1
V . It is finite surjective, since Π is finite surjective.

Hence X is an affine R-scheme. We write R[X ] for Γ(X,OX). By the same
reason Xv is an affine k(v)-scheme. We write k(v)[Xv] for Γ(Xv,OXv

).
The following result is a simplified version of [20, Theorem 3.8]. Its proof

is very closed to the proof of [20, Theorem 3.8]. However we decided to
give its proof in details for convenience of the reader.

Proposition 2.2. Let R, X̄ and Z be as in Lemma 2.1. Let X∞ be as in
the conclusion of that Lemma. Then there is a finite morphism σ̄ : X̄ → P

1
V

of V -schemes such that
(i) X∞ = σ̄−1(∞× V ) (an equality of closed subsets);
(ii) σ̄|Z : Z → P

1
V is a closed embedding;

(iii) σ̄ is étale along Z.

Proof of Proposition 2.2. Step (i). For the closed point v ∈ V and any
point z ∈ Zv there is a closed embedding z(2) →֒ A

1
v, where z(2) :=

Spec k(v)[Xv]/m
2
z for the maximal ideal mz ⊂ k(v)[Xv] of the point z

regarded as a point of Xv. This holds, since the k(v)-scheme Xv is equi-
dimensional of dimension one, affine and k(v)-smooth.

Step (ii). There is a closed embedding iv :
∐

z∈Zv
z(2) →֒ A

1
v of the

k(v)-schemes. To see this apply Step (i) and use that the field k(v) is
infinite.

Step (iii). Introduce some notation. For these consider the closed sub-
scheme X∞ as a Cartier divisor on X̄ . Let L := OX̄(X∞) be the corre-
sponding invertible sheaf and let s0 ∈ Γ(X̄,L) be its section vanishing
exactly on X∞. One has a Cartesian square of V -schemes

X∞,v
j∞

//

inv

��

X∞

in

��

X̄v
j

// X̄,

(2)

which shows that the closed embedding inv : X∞,v →֒ X̄v is a Cartier
divisor on X̄v. Set Lu = j∗(L) and s0,v = s0|X̄v

∈ Γ(X̄v,Lv).
Step (iv). Since Z and X∞ are finite over V , there is a closed reduced

subscheme W ⊂ X̄v of dimension zero such that W ∩X∞ = ∅ = W ∩ Z
and W has exactly one point on each irreducible component of the closed
fibre X̄v. Let s∞ : OX∞

→ L|X∞
be a trivialization of L|X∞

. Let t be
the coordinate function on A

1
v and iv be the closed embedding from the
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Step (ii). Let J ⊂ OX̄ be a sheaf of OX̄ ideals such that

OX̄/J = OX∞
×OW ×

∏

z∈Zv

k(v)[Xv]/m
2
z.

Claim. There exists an integer n > 0 and a section s1 ∈ H0(X̄,L⊗n) such
that

s1mod J ⊗ L⊗n = (sn∞, 0, i∗v(t) · s
n
0 ) ∈ Γ(X̄,L⊗n ⊗ (OX̄/J)).

Prove the Claim. For the coherent sheaf J on X̄ there is an integer n(J) > 0
such that for any integer n > n(J) one has H1(X̄, J ⊗ L⊗n) = 0. Thus
the map H0(X̄,L⊗n) = H0(X̄,L⊗n ⊗ OX̄) → H0(X̄,L⊗n ⊗ (OX̄/J)) is
surjective. This proves the Claim.

Step (v). Set s1,v = s1|X̄v
. Then s1,v ∈ Γ(X̄v,L

⊗n
v ) has no zeros on

X∞,v and hence the morphism

σ̄v := [sn0,v : s1,v] : X̄v → P
1
v

is well-defined. We claim that it is finite surjective. To see this take an
irreducible component Y of X̄v and recall that ∅ 6= Y ∩X∞ = Y ∩X∞,v.
The morphism [sn0,v : s1,v] takes Y ∩ X∞,v to the point [0 : 1] ∈ P

1
v and

takes points of W ∩ Y to the point [1 : 0] ∈ P
1
v. Thus [sn0,v : s1,v] is finite

and surjective. Conclude now the step (v) with an observation:
(∗) there is an equality σ̄v|∐

z∈Zv
z(2) = iv :

∐

z∈Zv
z(2) →֒ A

1
v ⊂ P

1
v, where

iv is from the step (ii); in particular, σ̄v is étale at every point z ∈ Zv.
Step (vi). Let s1 ∈ H0(X̄,L⊗n) be as in the Claim. Then the morphism

σ̄ := [sn0 : s1] : X̄ → P
1
V

is finite surjective. As we already know the morphism [sn0,v : s1,v] : X̄v → P
1
v

is finite. Thus the morphism [sn0 : s1] is quasi-finite over a neighborhood
of P

1
v. Since V is local, hence any Zariski neighborhood of P

1
v coincides

with P
1
V . Since the morphism [sn0 : s1] is projective, hence it is finite and

surjective.
By the step (vi) the resulting morphism σ̄ : X̄ → P

1
V is a V -scheme

morphism, finite and surjective. The property (∗) from step (v) shows
that the morphism

σ̄v

∣

∣ ∐

z∈Zv

z(2) :
∐

z∈Zv

z(2) →֒ A
1
v ⊂ P

1
v
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is a closed embedding and σ̄v : Xv → A
1
v is étale at every point z ∈ Zv. It

is checked above that σ̄v is finite and surjective.
We are ready now to complete the proof of the Proposition. Obviously,

σ̄−1(∞× V ) = X∞ (set theoretically). This proves the assertion (i) of the
proposition and shows an equality X = σ̄−1(A1

V ).
Prove now the assertion (iii) of the proposition. To do this consider a

morphism σ := σ̄|X : X → A
1
V . It is finite surjective, since σ̄ is finite

surjective. Since the schemes X and A
1
V are regular irreducible and the

morphism σ is finite surjective, the morphism σ is flat by a theorem of
Grothendieck [4, Theorem 18.17]. So, to check that σ is étale at a closed
point z ∈ Z it suffices to check that the morphism σv : Xv → A

1
v is étale

at the point z. The latter does hold by the step (v). Whence σ is étale at
all the closed points of Z. The scheme Z is semi-local. Thus, σ is étale in
a neighborhood of Z. This proves the assertion (iii) of the proposition.

Prove finally the assertion (ii) of the proposition. By the step (v) for
each point z ∈ Zv the k(v)-algebra homomorphism σ∗

v : k(v)[t] → k(v)[Xv]
is étale at the maximal ideal mz of the k(v)-algebra k(v)[Xv] and the

composite map k(v)[t]
σ∗

v−→ k(v)[Xv] → k(v)[Xv]/mz is an epimorphism.
Thus, for any integer r > 0 the k(v)-algebra homomorphism k(v)[t] →
k(v)[Xv]/m

r
z is an epimorphism. The local ring OZv ,z of the scheme Zv at

the point z is of the form k(v)[Xv]/m
s
z for an integer s. Thus, the k(v)-

algebra homomorphism k(v)[t]
σ∗

v−→ k(v)[Xv] → OZv ,z is surjective. By the
step (v) the morphism σv|∐

z∈Z′
v
z(2) is the closed embedding iv from the

step (ii). This yields the surjectivity of the k(v)-algebra homomorphism

k(v)[t] →
∏

z/v

OZv ,z = Γ(Zv,OZv
). (3)

The R-module Γ(Z,OZ) is finite. Thus, the k(v)-module Γ(Zv,OZv
) is

finite. Now the surjectivity of the k(v)-algebra homomorphism (3) and
the Nakayama lemma show that the R-algebra homomorphism R[t] →
Γ(Z,OZ) is surjective. Thus, σ|Z : Z → A

1
V is a closed embedding. The

proposition is proved. �

Proof of Theorem 1.2. Let X∞ be the closed subscheme in X̄ as in the
conclusion of Lemma 2.1. Set X = X̄ −X∞ and note that X = σ̄−1(A1

V ).
Set σ = σ̄|X : X → A

1
V . Then σ is a finite surjective V -scheme morphism,

because σ̄ is finite and surjective. The following hold by Proposition 2.2
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(a) σ|Z : Z → A
1
R is a closed embedding;

(b) σ is étale along Z.
Properties (a) and (b) yield a scheme theoretic equality

σ−1(σ(Z)) = Z ⊔ Z ′.

Thus, there is an affine open subset X0 ⊆ X containing Z such that
(i′) τ := σ|X0 : X0 → A

1
R is étale;

(ii′) Z is in X0 and τ |Z : Z → A
1
V is a closed embedding;

(iii′) τ−1(τ(Z)) = Z;
By items (ii′) and (iii′) there is a monic polynomial h ∈ R[t] such that
τ(Z) is a closed subscheme in A

1
V defined by the principal ideal (h). Put

f = τ∗(h) ∈ R[X0]. Then the closed subscheme Z in X0 is defined by the
principal ideal (f). We constructed the affine open X0 in X containing Z,
the monic polynomial h ∈ R[t], the étale morphism τ : X0 → A

1
V , the

function f ∈ R[X0] such that the square (1) is an elementary distinguished
square in the category of affine R-smooth schemes in the sense of [15,
Defn.3.1.3]. �

§3. Proof of Theorem 1.5

Proof of Theorem 1.5. Let V = SpecR, v ∈ V be its closed point and
k(v) be the residue field of R. So, as a scheme v is Spec k(v). If T is an
R-scheme we write Tv for the k-scheme T ×V v and call it the closed fibre
of T .

Particularly, one has the simple algebraic k(v)-group Gv = G×V v and
the principal Gv-bundle Ev, where G and E are as in Theorem 1.5. The
restriction of Ev to P

1
v − Z(h)v is trivial. We begin with the following

Claim 1. If the k(v)-simple group Gv is anisotropic, then the principal
G-bundle E is trivial itself.

To prove this Claim recall that Ev is trivial over P
1
v by [6, Corolla-

ry 3.10(a)]. Since the restriction of E to P
1
V −Z(h) is trivial, the G-bundle

E is trivial itself by [26, Теорема 1]. This proves the Claim 1.
Claim 2. If the k(v)-simple group Gv is isotropic, then there exists a

closed subscheme Y in A
1
V finite and étale over V such that

(i) the Y -group scheme GY := G×V Y contains a parabolic Y -subgroup
scheme;

(ii) the closed fibre Yv of Y contains a k(v)-rational point;
(iii) Y ∩ Z(h) = ∅.

Repeat literally the proof of [5, Proposition 4.1] in order to find a closed



146 I. PANIN

subscheme Y in A
1
V finite and étale over V satisfying the conditions (i)

and (ii). To achieve the third condition just apply an appropriate affine
shift. These prove the Claim 2.

Claim 3. Suppose the k(v)-simple group Gv is isotropic. Then for each
closed subscheme Y in A

1
V finite and étale over V subjecting to conditions

(i) to (iii) the restriction of E to P
1
V − Y is trivial.

To prove this Claim recall the following result which is not stated in [5]
as a separate

Lemma 3.1. Suppose the k(v)-simple group Gv is isotropic and Y ⊆ A
1
V

is a closed subscheme finite and étale over V subjecting to conditions (i)
to (iii). Then Ev|P1

v
−Yv

is trivial.

Proof of Lemma 3.1. The Gu-bundle Eu is trivial over P
1
v − Z(h)v.

Thus, by [6, Corollary 3.10(a)] it is trivial locally for Zariski topology on
P
1
v. Using again [6, Corollary 3.10(a)] and the equality Pic(P1

v − Yv) = 0,
we see that Ev is trivial over P

1
v − Yv. �

With Lemma 3.1 in hand the proof of the Claim 3 is literally the same
as those of [5, Theorem 3]. Very briefly, we modify the G-bundle E along
the closed subscheme Y to get a new G-bundle Emod over P

1
V . The latter

G-bundle has two properties:
(i) its restriction to P

1
V − Y coincides with the restriction of E to P

1
V − Y ;

(ii) its restriction to P
1
v is a trivial Gv-bundle.

By [26, Theorem 1] and the property (ii) there is a principal G-bundle
E0 over V such that Emod and pr∗(E0) are isomorphic as the principal G-
bundle over P

1
V . Here pr : P1

V → V is the projection. The restriction of
Emod and E to ∞ × V are isomorphic as the principal G-bundles due to
the property (i). The restriction of E to ∞ × V is trivial, because ∞ ×
V ⊂ P

1
V − Z(h) and the restriction of E to P

1
V − Z(h) is trivial. Thus the

restriction of Emod to ∞×V is trivial. Hence so is the restriction of pr∗(E0)
to ∞× V . Thus, E0 is trivial over V . This yields the triviality of pr∗(E0)
and Emod over P1

V . By the property (i) the restriction of E to P
1
V − Y is a

trivial G-bundle. These prove the Claim 3.
Claims 1, 2 and 3 complete the proof of Theorem 1.5. �

Remark 3.2. Note for the reader that the desired G-bundle Emod is the
G-bundle of the form Gl(E ′, ϕ ◦ α) as in [5, Section 5.8, Claim], where
E ′ = E|P1−Y . Point out that Lemma 3.1 is used to get an analog of [5,
Lemma 5.21] in our setting.
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Theorem [26, Theorem 1] replaces in our setting a reference to [23,
Proposition 9.6] in the proof of [5, Proposition 5.1]. We are not able refer
to [23, Proposition 9.6], since we work in the mixed characteristic case.
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posés sur la cohomologie des schémas, Amsterdam,North-Holland, 1968.

11. A. Grothendieck, Technique de descente et théorèmes d’existence en géométrie
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de Jean Dieudonné) : III. Étude cohomologie des faisceaux cohérents, Première
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