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Abstract. In the present paper, we study the subgroup lattice of a
Chevalley group G(Φ, R) over a commutative ring R, containing the
subgroup D(R), where D is a subfunctor of G(Φ, ). Assuming that
over any field F the normalizer of the group D(F ) is “closed to be
maximal”, we formulate some technical conditions, which imply that
the lattice is standard. We also study the conditions concerning the
normalizer of D(R) in the case, where D(R) is the elementary sub-
group of another Chevalley group G(Ψ, R) embedded into G(Φ, R)

Introduction

Let G = G(Φ, ) denote a Chevalley–Demazure group scheme with a
reduced irreducible root system Φ 6= A1 and let E = E(Φ, ) be its el-
ementary subgroup functor. All algebraic groups are considered as affine
group schemes over a commutative ring K with a unit, which in applica-
tions can be equal to Z or its localization. We always assume that E(R) is
perfect for all K-algebras R, which amounts to say that Φ 6= A1 and either
Φ 6= C2 or K has no epimorphism onto the field of 2 elements. Let D be a
subfunctor (not necessarily a subscheme) of G. For an arbitrary K-algebra
R with a unit let L = L

(
D(R), G(R)

)
be the lattice of subgroups of G(R)

containing D(R). In the present paper, we study the lattice L under cer-
tain conditions on D and G, formulated in Section 2. The lattice L is called
standard if it splits into a disjoint union of sublattices L(Ei, Ni) (so-called
sandwiches), where Ni is the normalizer of Ei and i ranges over some
index set. The statement claiming that L is standard is called sandwich

classification theorem.
Usually, the sandwich classification theorem is a broad generalization

of an assertion about maximality of certain subgroups of simple linear
groups. Over fields this topic was studied by M. Aschbacher, Li Shangzhi,
M. W. Liebeck, J. Saxl, G. M. Seitz, and many others. Here we sketch
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main results on sandwich classification theorem in Chevalley groups over
rings. A detailed survey can be found in [27].

Subsystem subgroups. One of the first results of this kind due to
Z. I. Borewich and N. A. Vavilov [4] was the description of subgroups of
GLn(R), containing the group of elementary block-diagonal matrices. More
generally, let ∆ be a (possibly reducible) root subsystem of Φ and let D
be the elementary subgroup generated by all root subgroups Xα, α ∈ ∆. If
∆ is large enough and has sufficiently big rank, then we can hope to prove
the sandwich classification theorem. This is done for subsystems subgroups
of classical groups in [4, 7, 17]. Here the sandwiches are parametrized by
systems of ideals.

Subring subgroups. The first result here was obtained by N. S. Ro-
manovski who considered the lattice L

(
SLn(Z), SLn(Q)

)
. In general nec-

essary and sufficient conditions for the lattice L
(
E(Φ, R), G(Φ, A)

)
to

be standard, where R is a subring of A, were found by Ya. N. Nuznin,
A. V. Yakushevich, and the second author in [14–16, 19, 20]. In this case
the sandwiches are indexed by intermediate subrings or form subrings (ad-
missible pairs).

Chevalley groups. Here D is the elementary subgroup of another
Chevalley group embedded to G(Φ, ). The results on classical groups
inside GLn in the natural representations were obtained by You Hong [28,
29] and in a series of papers by N. A. Vavilov with V. A. Petrov [24–26]. The
sandwich classification theorem in the case D = E(F4, ) inside G(E6, )
in the 27-dimensional representation was proved by A. Yu. Luzgarev [11].
The sandwiches correspond to ideals of the ground ring in these settings.

Tensor products and exterior powers. The group Em(R)⊗En(R)
maps into GLmn(R). Similarly, considering the action of GL(V ) on the ex-
terior power Λn(V ) we obtain a map Em(R) → GLN (R), where N =

(
m
n

)
.

Denote by D(R) the image of one of these maps. Preliminary results on
these problems are obtained in the papers by A. S. Ananievskii, N. A. Vav-
ilov, S. S. Sinchuk [2,3] and I. Nekrasov with the first author [9,10]. Strictly
speaking, this item is a particular case of the previous one. For instance, if
n dividesm, then the action of SLm on the exterior power is the embedding
of SLm /µn, which also is a Chevalley group of type Am−1.

The present paper is to prepare a general framework for proving the
sandwich classification theorem, basically for the last two cases, where
sandwiches are parametrized by one ideal of the ground ring. Reading the
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paper the reader can have in mind the example G = GLn and D being the
elementary subgroup of the split orthogonal or symplectic group.

For an ideal a of a ring R denote by E(R, a) the relative elementary
subgroup and by N(R, a) the normalizer of D(R)E(R, a) in G(R). Put
N(R) = N(R, 0). For an affine schemeX over a ringK the affine algebra of
X is denoted by K[X ]. For all cases, where we plan to apply our technique,
all conditions are trivial or well-known except the following.

• For any field F the normalizer N(F ) is “closed to be maximal”
in G(F ).

• The transporter ofD(R) to N(R) equalsN(R) for anyK-algebraR.
• A subgroup, containing the generic element of G and D(K[G]),

contains a nontrivial elementary root unipotent element.

Under these conditions we prove the lattice L to be standard in the
following sense.

Definition 1. The lattice L = L
(
D(R), G(R)

)
is called standard if for

any subgroup Γ ∈ L there exist a unique ideal a of R such that

D(R)E(R, a) 6 Γ 6 N(R, a).

This result is the main theorem of the present paper. It is stated and
proved in Section 2. Following Bak the sublattices L(D(R)E(R, a), N(R,a))
are called sandwiches. With this terminology the lattice L is standard
whenever it splits into a disjoint union of sandwiches.

Besides, we study the structure of the normalizer N(R) in the following
settings. Let H be another Chevalley group with a reduced irreducible root
system Ψ and let D be its elementary subgroup functor. Let H → G be
a closed immersion. We shall identify H and D with their images in G.
We prove the condition on the normalizer given above (Condition 5 of
Section 2) provided that R contains an infinite field. The latter condition
does not seem to be essential but we cannot avoid it now. The proof is
based on the fact that H is the Zariski closure of D in G and H(R)/D(R)
is solvable for a finite dimensional ring R. For the proof we use the clas-
sification of automorphisms of a Chevalley group. This result over rings
was proved by E. Abe [1] with some gaps. In a series of papers E. Bunina
obtained a correct proof and removed unnecessary conditions on invertibil-
ity of 2, although the structure constants still must be invertible for the
classification. Use of the classification forces us to put extra conditions on
invertibility of structure constants. Since we really use only classification of
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automorphisms of a group scheme, we believe that these extra conditions
can be skipped.

The rest of the text is organized as follows. In the next section we set
notation that is used throughout the paper. In Section 2 we state and
prove the main theorem. The normalizer of the group D(R) is studied in
Sections 3–5. Namely, in Section 3 we give a sufficient condition for coin-
cidence of scheme-theoretic and group-theoretic transporters, in Section 4
we study conditions for equality of the normalizers of D(R) and H(R)
and the transporter TranG(R)

(
D(R), H(R)

)
. Coincidence of the last three

groups with the transporter TranG(R)

(
D(R), N(R)

)
is proved in Section 5.

§1. Notation

The notation is standard in Chevalley groups theory over rings, see,
e. g., [18]. Let G be an arbitrary group. By a commutator of two elements
we always understand the left-normed commutator [x, y] = xyx−1y−1,
where x, y ∈ G. Multiple commutators are also left-normed; in particular,
[x, y, z] = [[x, y], z]. By yx = x−1yx we denote the right conjugate to y
by x.

For a subset X ⊆ G, we denote by 〈X〉 the subgroup generated by X .
The notation H 6 G means H to be a subgroup in G. For H 6 G, we
denote by 〈X〉H the smallest subgroup in G containing X and normalized
by H . For two groups F,H 6 G, we denote by [F,H ] their mutual com-
mutator: [F,H ] = 〈[f, g] | f ∈ F, h ∈ H〉. The center of an abstract group
G is denoted by Cent(G). The normalizer of a subgroup H in G is denoted
by NG(H).

All rings and algebras are assumed to be commutative and to contain
a unit. All homomorphisms preserve the unit elements. For an ideal a

of a ring R denote by ρa the canonical homomorphism R → R/a. This
homomorphism is called the reduction homomorphism modulo a. If s is an
element of a ring R, then Rs = 〈s〉−1R denotes the principal localization,
i.e., the localization of R in the multiplicative subset, generated by s. The
localization homomorphism R → Rs is denoted by λs.

Throughout the article the expression “group scheme” means “flat affine
group scheme of finite type”. Let G be an affine group scheme over K.
Denote by A = K[G] the affine algebra of G. By definition of an affine
scheme, an element h ∈ G(R) can be identified with a ring homomorphism
h : A → R. We always do this identification. Denote by g ∈ G(A) the
generic element of G, i.e., the identity map idA : A → A. An element
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h ∈ G(R) induces a group homomorphism G(h) : G(A) → G(R) by the
rule G(h)(a) = h ◦ a. Thus, the image of g under G(h) equals h. In the
sequel, for a ring homomorphism ϕ : R → R′ we denote by the same
symbol ϕ the induced homomorphism G(ϕ) : G(R) → G(R′). This cannot
lead to a confusion as we always can distinguish between two different
meanings of ϕ by the type of its argument. With this convention we have
h(g) = h◦ idA = h. Let a be an ideal of a ring R. As usual, G(R, a) denotes
the principal congruence subgroup of G(R) of level a, i.e., the kernel of the
reduction homomorphism ρa : G(R) → G(R/a).

In this article we always assume that G is a Chevalley–Demazure group
scheme over a ring K with a reduced irreducible root system Φ 6= A1,
and that either Φ 6= C2 or K has no epimorphisms onto the field of 2
elements. Denote by E(a) the subgroup of G(R) generated by elementary
root unipotents xα(r), α ∈ Φ, r ∈ a. Then E(R) is the [absolute] ele-
mentary subgroup of G(R) and E(R, a) = E(a)E(R) denotes the relative
elementary subgroup.

Throughout the article we keep the notation of the affine algebra A =
K[G] and of the generic element g ∈ G(A).

§2. Main theorem

In this section we state and prove the main theorem of the article under
the following conditions.
List of conditions. Let R be a ring.

1. The functor D preserves surjective maps.
2. For a K-algebra R and an ideal a of R, we have

[D(R), D(R)E(R, a)] = D(R)E(R, a)

and D(R) 6 E(R).
3. For any r ∈ R and α ∈ Φ such that xα(r) /∈ D(R), we have

〈D(R), xα(r)〉 = D(R)E(R, rR).

4. The map R 7→ N(R) defines a closed subscheme in G.
5. If D(R)h 6 N(R), then h ∈ N(R).
6. For any field F the subgroupD(F ) is an “almost maximal” subgroup

inG(F ), i.e., if a subgroup containsD(F ), then it either is contained
in N(F ) or contains E(F ).
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7. The subgroup 〈D(A), g〉 6 G(A) contains an elementary root unipo-
tent xα(ξ) /∈ N(A). Moreover, for any field F there exists an element
y ∈ E(F ) such that xα

(
y(ξ)

)
/∈ N(F ).

8. If h ∈ G(R,RadR) r N(R), then 〈D(R), h〉 contains a nontrivial
root unipotent.

In real examples Condition 1 is trivial. For Noetherian rings of finite
Bass–Serre dimension (Krull dimension works equally well here) the in-
clusion D(R) 6 E(R) in Condition 2 follows from the fact that D(R) is
perfect. Indeed, Theorem 1 of [8] (see also [21, Corollary 12.8]) implies that
E(R) is the largest perfect subgroup of G(R). But for infinite dimensional
rings one needs some extra conditions on D(R) to deduce the inclusion
into E(R). On the other hand, in real examples the inclusion can be easily
verified.

It is not difficult to show that requirement y ∈ E(F ) can be replaced by
y ∈ G(F ) in Condition 7. But to verify this condition one usually takes y
to be a root unipotent element or the like, so that the inclusion y ∈ E(F )
holds automatically.

Conditions 4 and 5 for an important special case are proved in Sec-
tions 3–5.

The following statement computes the normalizer N(R, a) in terms of
N(R/a). It will be used in the proof of the main theorem. The idea of
the proof is borrowed from the proof of [13, Theorem 3]. In the sequel,
we use the following commutator formulas. A direct computation shows

that [x, yz] = [x, y] · [x, z]y
−1

for all elements x, y, z of an abstract group.
Therefore, for subgroups X,Y, Z such that Y Z is a subgroup, we have

[X,Y Z] 6 [X,Y ] · [X,Z]Y . (1)

The second formula is the standard commutator formula obtained by
G. Taddei [22] and L. Vaserstein [23]. For an ideal a of a ring R, we have

[E(R), G(R, a)] = [E(R, a), G(R)] = E(R, a). (2)

Lemma 2.1. Let a be an ideal of a ring R. Under Condition 1, N(R, a)
is the full preimage of N(R/a) under the reduction homomorphism ρa.

Proof. Since the natural map D(R) → D(R/a) is surjective, the group
ρa
(
N(R, a)

)
normalizes D(R/a).

Conversely, let h ∈ G(R) be such that h̄ = ρa(h) ∈ N(R/a). Then

ρa
(
D(R)h

)
6 D(R/a)h̄ 6 D(R/a).
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Using the surjectivity of the map D(R) → D(R/a), we obtain

D(R)h 6 D(R)G(R, a). (3)

By formulas (1) and (2),

[D(R), D(R)h] 6 [D(R), D(R)G(R, a)] 6 D(R)[D(R), G(R, a)]D(R)

= D(R)[D(R), G(R, a)] 6 D(R)E(R, a).

Take the mutual commutator subgroups of the both sides of inclusion (3)
with D(R)h. By Condition 2, we get

D(R)h = [D(R)h, D(R)h] 6 [D(R)h, D(R)G(R, a)]

6 [D(R)h, D(R)] · [D(R)h, G(R, a)]D(R)h

6 D(R)E(R, a)[E(R), G(R, a)] = D(R)E(R, a)

(we used also the standard commutator formula and normality of E(R)
in G(R) ). Since E(R, a) is normal in G(R) this inclusion implies that h
normalizes the group D(R)E(R, a). �

The following lemma shows that the conditions above imply that the
set N(R, a) r D(R)E(R, a) contains no elementary root unipotents and
establish the uniqueness property in Definition 1.

Lemma 2.2. Let a 6= b be ideals of a K-algebra R. Conditions 2 and 3
imply that the set N(R, a) r D(R)E(R, a) contains no elementary root

unipotents and that the sandwiches

L
(
D(R)E(R, a), N(R, a)

)
and L

(
D(R)E(R, b), N(R, b)

)

have empty intersection.

Proof. Let Γ ∈ L
(
D(R)E(R, a), N(R, a)

)
. By Condition 2,

[D(R),Γ] > [D(R), D(R)E(R, a)] = D(R)E(R, a).

On the other hand,

[D(R),Γ] 6 [D(R)E(R, a), N(R, a)] 6 D(R)E(R, a).

Thus, the ideal a is defined uniquely by the subgroup Γ from the sandwich.
If xα(r) ∈ N(R, a) r D(R)E(R, a), then by Condition 7, E(R, rR) 6

N(R, a). It follows that D(R)E(R, a) 6 D(R)E(R, a + rR) 6 N(R, a),
which contradicts the first paragraph of the proof. �
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Theorem 1. Suppose conditions 1–8 are satisfied; then for any K-algebra

R the lattice L = L
(
D(R), G(R)

)
is standard.

Proof. Let Γ be a subgroup of G(R) containing D(R). Put

a := {s ∈ R | there exists α ∈ Φ : xα(s) ∈ ΓrD(R)}.

Using Condition 3, we have D(R)E(R, a) 6 Γ. Let R = R/a and Γ =
ρa(Γ). Suppose xα(r̄) ∈ Γ r D(R) for some α ∈ Φ and r̄ ∈ R. Using
Condition 1, we get D(R) 6 Γ and by Condition 3, D(R)E(R, r̄R) 6 Γ.
Let r ∈ R be a preimage of the element r̄ under ρa. Then

D(R)E(R, rR) 6 ΓG(R, a).

Taking the commutator subgroup of D(R) with the both sides of the latter
inclusion, we obtain

[D(R), D(R)E(R, rR)] 6 [D(R),ΓG(R, a)]. (4)

By Condition 2, the left-hand side equals D(R)E(R, rR). On the other
hand, by formula (1) the right-hand side of inclusion (4) is contained in
[D(R),Γ] · [D(R), G(R, a)]Γ. Since D(R) 6 E(R), by the standard com-
mutator formula this group is contained in Γ · E(R, a)Γ = Γ. Note that
xα(r̄) /∈ D(R) implies xα(r) /∈ D(R). By definition of the ideal a, it follows
that r ∈ a. Thus, r̄ = 0 and the set ΓrD(R) does not contain nontrivial
root unipotents.

Now, let ξ ∈ A be an element from Condition 7. Put x = xα(ξ) ∈ G(A).
For a K-algebra B let

S(B) = {b ∈ G(B) | b(x) ∈ N(B)}.

By Condition 4, N is a closed subscheme of G defined by some ideal q of A.
As usual, we denoteN = V (q). Then, it is easy to see that S = V

(
x(q)A

)
is

a closed subscheme of G. For an element h ∈ Γ the root unipotent element
xα

(
h(ξ)

)
= h

(
x
)

belongs to the subgroup generated by h and D(R). By

the previous paragraph of the proof it must lie in N(R), hence h ∈ S(R).
Since h is an arbitrary element of Γ, we conclude that Γ ∈ S(R).

Let m be a maximal ideal of the ring R. Denote by F the residue field

R/m. The subgroup Γ̃ = ρm(Γ) is contained in S(F ), hence, by Condition 7,

Γ̃ does not contain E(F ). On the other hand, Γ̃ > D(F ). Consequently,

using Condition 6, we get Γ̃ 6 N(F ).

Let h ∈ Γ and let h̃ = ρm(h) = ρm ◦ h. Since h̃ ∈ N(F ), we see that

h̃(q) = 0. Hence, h(q) ⊆ m. Since m is an arbitrary maximal ideal, we
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obtain h(q) ∈ RadR. Consequently, ρRadR ◦ h(q) = 0 and ρRadR(h) ∈

N(R/RadR).
Since h is an arbitrary element of Γ, we get ρRadR(Γ) ∈ N(R/RadR).

This implies that

ρRadR

(
D(R)Γ

)
6 D(R/RadR)ρRad R

(Γ) 6 D(R/RadR),

Therefore, D(R)Γ 6 D(R)G(R,RadR).

If there exists an element ab ∈ D(R)ΓrN(R), where a ∈ D(R) and b ∈

G(R,RadR), then b ∈ D(R)ΓrN(R). Since D(R)Γ contains the subgroup

generated by D(R) and b, Condition 8 implies that D(R)Γ contains a
nontrivial root unipotent. But we have already proved that Γ does not

contain such elements. The contradiction shows D(R)Γ 6 N(R). Now,
Condition 5 implies that Γ 6 N(R) and by Lemma 2.1, Γ 6 N(R, a). �

§3. Transporters

We start with studying properties of transporters. In this section G
denotes an algebraic group over a ring K and X , Y are subfunctors of
G. Unfortunately, the function R 7→ TranG(R)

(
X(R), Y (R)

)
in general is

not a subfunctor of G. Therefore, we define a scheme-theoretic transporter
TranG(X,Y ) as a subfunctor of G given by the formula

TranG(X,Y )(R) = {a ∈ G(R) | za ∈ Y (R̃)

for all z ∈ X(R̃) and all R-algebras R̃}

(we always identify elements ofG(R) with their canonical images inG(R̃) ).
More generally, let w be a group word in 2 letters, i.e., an element of the

2-generated free group. For elements z, a of an abstract group Γ we write
w(z, a) to denote the image of w in Γ under the group homomorphism,
sending the first generator of the free group to z and the second to a. For
subsets ∆,Ω of Γ define

TranwΓ (∆,Ω) = {a ∈ Γ | w(z, a) ∈ Ω for all z ∈ ∆}.

Similarly, define the scheme-theoretic w-transporter TranwG(X,Y ) as a sub-
functor of G given by the formula

TranwG(X,Y )(R) = {a ∈ G(R) | w(z, a) ∈ Y (R̃)

for all z ∈ X(R̃) and all R-algebras R̃}.
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Now we give sufficient conditions for the scheme-theoretic w-transporter
to be closed and discuss the equation

TranwG(X,Y )(R) = TranwG(R)

(
X(R), Y (R)

)
.

For usual transporters (i.e., for w = x−1
2 x1x2) the results can be found

in [12, Theorem 6.1] or [6, I, §2, 7.7 and II, §2, 3.6]). Recall that a K-
scheme X is called locally free if there exists an open affine covering Xi,
where i ranges over an index set, such that the affine algebra of Xi is a free
K-module for each i. In our case X is affine, therefore refining the open
covering we may assume that each Xi is a principal affine open subscheme
ofX , i.e.,K[Xi] is a principal localization ofK[X ]. Throughout this section
B = K[X ] and x ∈ X(B ⊗R) denotes the image of the generic element of
X under the natural homomorphisms X(B) → G(B) → G(B ⊗R).

Lemma 3.1. Let X be a representable subfunctor of G and R a K-algebra.

Then

TranwG(X,Y )(R) = {a ∈ G(R) | w(x, a) ∈ Y (B ⊗R)}.

Proof. Let R̃ be an R-algebra, z ∈ X(R̃), and a belongs to the right-
hand side of the above formula. Applying z⊗ idR to the inclusion w(x, a) ∈

Y (B⊗R), we get w(z, a) ∈ Y (R̃⊗R). Sending this element to Y (R̃) by the

multiplication homomorphism R̃⊗R→R̃, we see that a∈TranwG(X,Y )(R).
Thus, we proved that the right-hand side is contained in the transporter.
The inverse implication is trivial. �

Theorem 2. Suppose that X is a locally free K-scheme and Y is a closed

subscheme of G. Then TranwG(X,Y ) is a closed subscheme.

Proof. Identify the generic element g of the scheme G with its canonical
image in G(B ⊗ A). Take an open covering SpecBsi of X such that each
Bsi is a free K-module and denote by hi the canonical image of w(g, x) in
G(Bsi ⊗A). Thus, hi : A→ Bsi ⊗A regarded as a map. In other words, hi
is the composition of the map w(g, x) : A → B ⊗ A with the localization
homomorphism λsi . A basis of the K-module Bsi defines an isomorphism
Bsi ⊗A

∼=
∏

j∈Ji

A of A-modules. Denote by hij : A→ A the composition of

hi with the projection to the j-th component of the direct product above.
As usual, I(Y ) denotes the ideal of A that defines the subscheme Y . Let
q be the ideal generated by all images of I(Y ) under the maps hij .
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Let a ∈ G(R). By Lemma 3.1, a ∈ TranwG(X,Y )(R) whenever w(x, a) ∈
Y (B⊗R). Since SpecBsi is an open covering of X , this inclusion is equiv-
alent to the inclusions vi ∈ Y (Bsi ⊗R), where vi is the canonical image of
w(x, a) in G(Bsi ⊗R). Note that considered as a map vi is the composition

(λsi ⊗ id) ◦ (id⊗ a) ◦w(x, g) = (id⊗ a) ◦ (λsi ⊗ id) ◦w(x, g) = (id⊗ a) ◦ hi.

The inclusion vi ∈ Y (Bsi ⊗R) is equivalent to

vi
(
I(Y )

)
= 0 ⇐⇒

(
id⊗ a

)(
hi
(
I(Y )

))
= 0 ⇐⇒ a

(
hij

(
I(Y )

))
= 0

for all j ∈ Ji. Thus, a ∈ TranwG(X,Y )(R) whenever a(q) = 0, which means
that TranwG(X,Y ) is the closed subscheme of G defined by the ideal q. �

Next, we prove that under some natural conditions group theoretic and
scheme theoretic normalizers coincide. Let Z be a function from the class
of rings to the class of sets such that Z(R) is a subset of G(R). Since the
intersection of closed subschemes of G is a closed subscheme, there exists
the smallest subscheme Z of G, containing Z (i.e., Z(R) ⊇ Z(R) for all
rings R). This subscheme is called the closure of Z in G. In other words, Z
is the closed subscheme defined by the intersection of the kernels of z over
all z ∈ Z(R) and all K-algebras R. A function Z is called dense in G if
Z = G. If X is a subfunctor of G and R is a K-algebra, then by the closure
of X(R) in G we mean the closure of the function that equals X(R) at R
and the empty set elsewhere.

Proposition 3.2. Let X be a representable subfunctor of G and let Y be

a closed subscheme of G. If X(R) = XR(R) is dense in XR, then

TranwG(R)

(
X(R), Y (R)

)
= TranwG(X,Y )(R).

Proof. Let h ∈ G(R). By Lemma 3.1, h ∈ TranwG(X,Y )(R) whenever
w(x, h) ∈ Y (B ⊗ R). Put u = w(x, h) : A→ B ⊗R. If q = I(Y ), then the
inclusion u ∈ Y (B ⊗R) is equivalent to u(q) = 0. On the other hand,

h ∈ TranwG(R)

(
X(R), Y (R)

)
⇐⇒ w(a, h) ∈ Y (R) for all a ∈ X(R)

⇐⇒ w(a, h)(q) = 0 for all a ∈ X(R)

⇐⇒ (a⊗ id) ◦ u(q) = 0 for all a ∈ X(R),

where a⊗ id is the composition B⊗R
a⊗id
−−−→ R⊗R

mult
−−−→ R. The closure of

XR(R) in XR is equal to V (a), where a is the intersection of the kernels of
the R-algebra homomorphisms â : B⊗R → R over all â ∈ XR(R). The R-
algebra homomorphisms â : B ⊗R → R are in one-to-one correspondence
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with the K-algebra homomorphisms a : B → R, namely, â = a⊗ id. Thus,
XR(R) is dense in XR if and only if the intersection of the kernels of the
homomorphisms a⊗ id over all a ∈ X(R) is trivial. It follows that u(q) = 0
if and only if (a ⊗ id) ◦ u(q) = 0 for all a ∈ X(R), which completes the
proof. �

§4. Computation of the normalizer

Let H be a closed K-subgroup of G. Suppose that H itself is a Che-
valley–Demazure group scheme with a reduced irreducible root system Ψ
and denote by D its elementary subgroup functor. Suppose also that D(R)
is perfect for all K-algebras R, which amounts to say that Ψ 6= A1 and
either Ψ 6= C2 or K has no epimorphisms onto the field of 2 elements. Let
R be a K-algebra. For a functor X on the category of K-algebras denote
by XR its restriction to the category of R-algebras (of course, HR and GR

are affine group schemes over R).

Let N(R) be the normalizer of D(R) in G(R) and let Ñ(R) be the nor-
malizer of H(R) in G(R). Put Tran(R) = TranG(R)(D(R), H(R)). Clearly,

both normalizers, N(R) and Ñ(R), are contained in Tran(R).

Lemma 4.1. N(R) = Tran(R) > Ñ(R).

Proof. Let h ∈ Tran(R) and let R′ be a finitely generated Z-subalgebra
of R. Then D(R′)h 6 H(R′′) for some finitely generated Z-subalgebra
R′′ ⊇ R′ of R. By the main theorem of [8] H(R′′)/D(R′′) is solvable, hence
D(R′′) is the largest perfect subgroup of H(R′′). Since D(R′)h 6 H(R′′)
and D(R′)h is perfect, it is contained in D(R′′) 6 D(R). Any ring R is a
direct limit of finitely generated Z-subalgebras, hence D(R)h 6 D(R), i.e.,
h ∈ N(R). �

In the next corollary we consider the scheme-theoretic normalizers. For
a subfunctor X of G put NG(X) = TranG(X,X).

Corollary 4.2. Both NG(D) and NG(H) are closed in G.

Proof. LetXα, α ∈ Ψ be the root subgroups ofH , corresponding to a cho-
sen split maximal torus. Note that by Lemma 4.1 NG(D) = TranG(D,H).
Then NG(D) = TranG(D,H) = ∩α∈Ψ TranG(Xα, H). Since H is a closed
subscheme and K[Xα] = K[t] is a free K-module, the assertion about
NG(D) follows from Theorem 2.

The Gauss decomposition in a split reductive group states that there
exists an open covering of H such that each piece is isomorphic (as a
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scheme) to U×U×T , where U is the unipotent radical of a Borel subgroup
and T is a split torus. Therefore, H is locally free and the result again
follows from Theorem 2. �

Proposition 4.3. NG(D) = TranG(D,H) = NG(H).

Proof. The inclusions NG(D) = TranG(D,H) > NG(H) follows immedi-
ately from Lemma 4.1 and the definition of scheme theoretic transporters.
Conversely, let R be a K-algebra and h ∈ NG(D)(R) = TranG(D,H)(R).
Consider the functor Dh

R on the category of R-algebras given by Dh
R(R

′) =
D(R′)h with obvious action on morphisms (we still identify h with its
image in G(R′) under the structure homomorphism R → R′). Clearly,

Dh
R 6 HR, hence the closure Dh

R of Dh
R in GR is contained in HR as

well. The conjugation by h is a scheme automorphism of GR, therefore

Dh
R = (DR)

h. Since the closure of the elementary subgroup is the whole

Chevalley group, DR = HR. It follows that (HR)
h 6 HR, which means

that h ∈ NG(H)(R). �

The following statement is to verify the density condition of Proposi-
tion 3.2 and establish the equality of group theoretic and ring theoretic
normalizers.

Lemma 4.4. Suppose that R is an algebra over an infinite field K. Then

Ga(R) is dence in Ga,R.

Proof. An R-algebra homomorphism R[Ga] = R[t] → R is the evaluation
homomorphism. A polynomial p ∈ R[t] is in the intersection of the kernels
of all such homomorphisms whenever p(r) = 0 for all r ∈ R. In particular,
p(ri) = 0, i = 0, . . . , deg p, for degP + 1 distinct elements of K. Since
the Vandermonde determinant is nonzero, all coefficients of p must be
zero. Thus, the intersection of the kernels of all R-algebra homomorphisms
R[Ga] → R is trivial, which means that the closure of Ga(R) is Ga,R. �

Proposition 4.5. If K is an infinite field, then

NG(D)(R) = TranG(D,H)(R) = NG(H)(R) = N(R) = Ñ(R) = Tran(R).

Proof. The groupD(R) is generated by the root subgroupsXα(R), α ∈ Ψ,
therefore

Tran(R) =
⋂

α∈Ψ

TranG(R)

(
Xα(R), H(R)

)
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and
TranG(D,H)(R) =

⋂

α∈Ψ

TranG
(
Xα, H

)
(R).

Since Xα
∼= Ga, by Proposition 3.2 and Lemma 4.4

TranG(R)

(
Xα(R), H(R)

)
= TranG

(
Xα, H

)
(R),

hence
Tran(R) = TranG(D,H)(R).

Then, we obtain the following chain of inclusions.

Ñ(R) 6 Tran(R) = TranG(D,H)(R) = TranG(H,H)(R)

6 TranG(R)

(
H(R), H(R)

)
= Ñ(R).

Thus Ñ(R) = Tran(R) and all other equalities were already proved in
Lemmas 4.1 and 4.3. �

§5. Equality of the transporters and the normalizers

This section is to prove Condition 5 in the settings of sections 3–4.

Theorem 3. Let K be an infinite field of characteristic not 2 if Ψ =
A2, Bl, Cl, F4, G2, and not 3 if Φ = G2. Suppose further that there exists an

absolutely irreducible representation of H in G, i.e., a linear representation

of G such that the K-submodules KD(K) and KG(K) of the matrix ring

Mn(K) are equal. Then Tran(D,N) = N .

Proof. The condition on existence of a representation ensures that the
centralizer of D in G is equal to the center of G and to the center of D.
For a K-algebra R denote by Dad(R) the quotient group of D(R) modulo
its center. The center of D(R) is known to coincide with the (scheme
theoretic) center of H , therefore Dad(R) is the elementary subgroup of the
adjoint Chevalley group of type Ψ.

Let a ∈ Tran(D,N)(R). Put C = R[H ] and let h ∈ H(C) ⊆ G(C)
be the generic element of HR. By Lemma 3.1, ha ∈ N(C) (as usual, we
identify a with its canonical image inG(C) ). Consider the map θ : N(C) →
Aut(D(C)), where N(C) acts on D(C) by conjugation. Since θ(b) acts
identically on the center of D(C), we may consider θ as an automorphism
of Dad(C).

By the classification of automorphisms of an adjoint elementary Cheval-
ley group [5, Theorem 1] θ(ha) = θ(b) · γ · ϕ, where b ∈ Had(C), γ is a
graph automorphism, and ϕ is induced by a ring automorphism. Then
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ϕ = γ−1θ(b−1ha) is an automorphism of the group scheme HC . Being in-
duced by a ring automorphism ψ : C → C, ϕ acts on a root subgroup Xα

sending xα(r) to xα(ψ(r)). Since ϕ is a scheme automorphism, ψ induces
an automorphism of the scheme Ga,C . But a scheme automorphism of Ga,C

preserving the element 1 is identity. Therefore, ψ and ϕ are identities as
well.

Thus, we have θ(b−1ha) = γ. The counit map ε : C → R takes h to
the identity element of H(R) (this is equivalent to the definition of the
counit). Both sides of equation θ(b−1ha) = γ are natural transformations
Dad → Dad, therefore the diagram

Dad(C)
ε

−−−−→ Dad(R)

γ=θ(b−1ha)

y
yγ=θR(ε(b)−1)

Dad(C)
ε

−−−−→ Dad(R)

commutes, where θR : N(R) → Aut
(
Dad(R)

)
denotes the conjugation by

the argument of θR. We see that θ(ε(b))γ acts trivially on Dad(R). This
means that γ is induced by the inner automorphism of the root system
Ψ and can be substituted by conjugation by an appropriate element from
the Weyl group. Multiplying b by this element we may assume that γ is
identity.

Now, θ(ha) = θ(b), which means that b−1ha acts trivially on Dad(C),
hence also on D(C). It follows that ha = bc for some element c from the
center of G(C). Let R′ be an R-algebra. Sending h to each element from
D(R′), we see that D(R′)a 6 D(R′) · Cent(G(R′)). Finally,

D(R′)a = [D(R′)a, D(R′)a]

6 [D(R′) · Cent(G(R′)), D(R′) · Cent(G(R′))] 6 D(R′),

which means that a ∈ N(R). �
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