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Abstract. It is known that for a prime p ≠ 2 there is the fol-
lowing natural description of the homology algebra of an abelian
group H∗(A,Fp) ≅ Λ(A/p)⊗Γ(pA) and for finitely generated abelian
groups there is the following description of the cohomology algebra
of H∗(A,Fp) ≅ Λ((A/p)∨)⊗Sym((pA)∨). We prove that there are no
such descriptions for p = 2 that “depend” only on A/2 and 2A but
we provide natural descriptions of H∗(A,F2) and H∗(A,F2) that

“depend” on A/2, 2A and a linear map β̃∶ 2A → A/2. Moreover, we
prove that there is a filtration by subfunctors on Hn(A,F2) whose
quotients are Λ

n−2i(A/2) ⊗ Γ
i(2A) and that for finitely generated

abelian groups there is a natural filtration on Hn(A,F2) whose quo-

tients are Λ
n−2i((A/2)∨) ⊗ Symi((2A)

∨).

Dedicated to Alexander Generalov

on the occasion of his 70th birthday

Introduction

Let K be a field and A be an abelian group. Then the summation homo-
morphism A⊕A→ A, (a, b) ↦ a+b induces a map H∗(A,K)⊗H∗(A,K) →
H∗(A,K) called Pontryagin product, which gives a structure of a graded
supercommutative algebra on H∗(A,K) (see [3, Ch. V]). Moreover, the di-
agonal map A→ A⊕A and the sign map A→ A induce a comultiplication
and an antipode on H∗(A,K) which gives a structure of a graded Hopf
algebra on H∗(A,K). For a prime p we set

A/p ∶= A/pA ≅ A⊗ Z/p, pA ∶= {a ∈ A ∣ pa = 0} ≅ Tor(A,Z/p).

For a vector space V we denote by V [n] the graded vector space concentra-
ted in the degree n. In work of H. Cartan [5] it was proved (and exposed
later in details in [4], see also [3, Ch. V. Th. 6.6]) that for a prime p ≠ 2
there is a natural isomorphism of graded algebras

H∗(A,Fp) ≅ Λ(A/p[1])⊗ Γ(pA[2]), (0.1)

Key words and phrases: homological algebra, algebraic topology, abelian group ho-
mology, Eilenberg–MacLane space, Hopf algebra, divided power algebra.

This work is supported by the Russian Science Foundation under grant 16-11-10073.

72



MOD-2 (CO)HOMOLOGY OF AN ABELIAN GROUP 73

where Λ denotes the exterior algebra over Fp, Γ denotes the divided power
algebra over Fp. In fact, this is a natural isomorphism of Hopf algebras.
Since for finitely generated abelian groups cohomology is dual to homology,
we obtain that there is an isomorphism

H∗(A,Fp) ≅ Λ((A/p)
∨[1])⊗ Sym((pA)

∨[2]),

where (−)∨ denotes the dual vector space. In particular, there is a natural
isomorphism for each homology group

Hn(A,Fp) ≅
⌊n/2⌋

⊕
i=0

Λ
n−2i(A/p)⊗ Γ

i(pA), (0.2)

and in the case of finitely generated groups for each cohomology group:

Hn(A,Fp) ≅
⌊n/2⌋

⊕
i=0

Λ
n−2i((A/p)∨)⊗ Symi((pA)

∨).

The isomorphism (0.1) means that the homology algebra H∗(A,Fp) can
be naturally recovered from the two vector spaces A/p and pA as a graded
Hopf algebra. Non-formally, the couple of vector spaces (A/p, pA) is the
“minimal information” about A that is needed to describe the homology
algebra naturally in the case p ≠ 2. More formally, if we denote by Vect

2

the category of couples of Fp-vector spaces and denote by t∶Ab → Vect
2

the functor A ↦ (A/p, pA), then there is a factorization of the functor
H∗(−,Fp) to the category of graded Hopf algebras via the functor t. In
particular, there is a factorization for each homology group.

Ab Vect

Vect
2

Hn(−,Fp)

t (0.3)

The isomorphism (0.2) gives a simple formula for H2(A,Fp) when p ≠ 2 ∶

H2(A,Fp) ≅ Λ
2(A/p)⊕ pA.

However, for p = 2 we only have a short exact sequence

0Ð→ Λ
2(A/2)Ð→H2(A,F2) Ð→ 2AÐ→ 0,

which does not split naturally [10, §3]. So, the behavior of H∗(A,Fp) is
more complicated, when p = 2.

The goal of this paper is to work out the situation for p = 2 and, in par-
ticular, to give a natural description of the graded Hopf algebra H∗(A,F2)
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for arbitrary abelian group A and the algebra H∗(A,F2) for a finitely
generated group A. Moreover, our non-formal goal is to give a descrip-
tion that uses some “minimal information” about A to recover naturally
the homology algebra. We also obtain a natural filtration on Hn(A,F2)
whose quotients are Λ

i(A/2)⊗Γ
j(2A), and dually in the case of a finitely

generated group A a natural filtration on Hn(A,F2) whose quotients are

Λ
i((A/2)∨) ⊗ Sym

j((2A)∨). This is an analog of the decomposition (0.2)
in the case of p = 2.

We prove that there is no such factorization like (0.3) for any n ⩾ 2 in
the case p = 2 (Proposition 5.1). So the couple of vector spaces (A/2, 2A) is
not enough information to recover naturally the Hopf algebras H∗(A,F2)
and H∗(A,F2) or even the group Hn(A,F2) for some n ⩾ 2. However, it is
enough to add a linear map between these two vector spaces, to obtain the
information which is enough to recover naturally the homology algebra.
Namely, we need to add the map

β̃∶ 2AÐ→ A/2

which is the composition of the embedding 2A ↪ A and the projection
A↠ A/2.

We describe the cohomology of a finitely generated abelian group A as
follows. We set

T (A) = (A/2)∨[1]⊕ (2A)
∨[2]

and prove that there is a natural isomorphism

H∗(A,F2) ≅ Sym(T (A))/I,

where I is the ideal generated by the set {x2 − β̃∨(x) ∣ x ∈ (A/2)∨}. We
also prove that there is a unique structure of unstable A -algebra (where
A is the Steenrod algebra) on Sym(T (A))/I such that Sq1((2A)∨[2]) = 0
and the isomorphism is an isomorphism of unstable A -algebras. We also
prove that there is a short exact sequence of bicommutative Hopf algebras

F2 Ð→ Sym((2A)
∨)Ð→H∗(A,F2) Ð→ Λ((A/2)∨)Ð→ F2.

Moreover, we prove that the group Hn(A,F2) is naturally isomorphic to
the cokernel of a map

⊕
2k+l+2m=n; k⩾1

Symk(A/2∨)⊗ Syml(A/2∨)⊗ Symm(2A
∨) Ð→

⊕
i+2j=n

Symi(A/2∨)⊗ Symj(2A
∨)
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and that there is a natural filtration of Hn(A,F2) by subfunctors Φ
i such

that Φi/Φi+1 ≅ Λn−2i((A/2)∨)⊗Symi((2A)∨). All the results can be gener-
alized to the case of arbitrary abelian group A if we consider cohomology
(A/2)∨ and (2A)∨ as profinite vector spaces and replace all the construc-
tions to their profinite versions.

We describe the homology of an abelian group A (not necessary finitely
generated) as follows. The following square is a pullback in the category
of bicommutative Hopf algebras

H∗(A,F2) Γ(2A[2])

Γ(A/2[1]) Γ(A/2[2]),

Γ(β̃)

V

where V denotes the Verschiebung. We also prove that there is a short
exact sequence of graded bicommutative Hopf algebras

F2 Ð→ Λ(A/2)Ð→H∗(A,F2) Ð→ Γ(2A)Ð→ F2.

Moreover Hn(A,F2) is naturally isomorphic to the kernel of a natural
transformation

⊕
i+2j=n

Γ
i(A/2)⊗ Γ

j(2A)Ð→ ⊕
2k+l+2m=n; k⩾1

Γ
k(A/2)⊗ Γ

l(A/2)⊗ Γ
m(2A),

and there is a natural filtration of Hn(A,F2) by subfunctors Ψi such that
Ψi/Ψi−1 ≅ Λn−2i(A/2)⊗ Γ

i(2A).
As an auxiliary result we prove that for a short exact sequence of graded

connected bicommutative Hopf algebras

K Ð→ AÐ→ B Ð→ C Ð→K

over a field K and any n ⩾ 0 there is an isomorphism

An
+B/A

n+1
+ B ≅ A

n
+/A

n+1
+ ⊗ C,

which depends only on the short exact sequence (without a linear split-
ting). Moreover, the isomorphism is natural by the short exact sequence.
Note that the quotients depend only on A and C and do not depend on
the short exact sequence.

The first named author believes that statements proven in the paper are
useful because his article [9] could be twice shorter, if he could use them.
We also think that there are some gaps in arguments in some articles that
are filled by our results. For example, Bousfield in [2] uses the following
statement without any reference: if A is a module over a group G such



76 S. O. IVANOV, A. A. ZAIKOVSKII

that A/p and pA are nilpotent G-modules, then Hn(A,Fp) is a nilpotent
G-module (see the proof of [2, Prop. 2.8]). This statement is an obvious
corollary of the result of Cartan for p ≠ 2. Apparently, Bousfild missed the
case of p = 2, and our results fill the gap.

§1. Filtration of a Hopf algebra associated with a

short exact sequence

In this section we prove that a short exact sequence of graded connected
bicommutative Hopf algebras K → A → B → C →K over a field K provides
a natural filtration on B whose quotients depend only on A and C and do
not depend on the short exact sequence.

Let α∶A → Ã be a morphism of augmented algebras. Assume that V is
a vector space and M is a Ã-module. Then for a linear map f ∶V →M we
denote by f̄ the A-module homomophism

f̄ ∶A⊗ V Ð→M, f̄(a⊗ v) = α(a)f(v).

It is easy to see that f̄(An
+ ⊗ V ) ⊆ Ãn

+M. Then the map f induces a map
on the quotients

f ′n∶A
n
+/A

n+1
+ ⊗ V Ð→ Ãn

+M/Ã
n+1
+ M.

Lemma 1.1. If Im(f) ⊆ Ã+M, then f ′n = 0 for any n ⩾ 0.

Proof. Since Im(f) ⊆ Ã+M, we have Im(f̄) ⊆ Ã+M. Using that f̄ is a

homomorphism of A-modules, we obtain that f̄(Ãn
+⊗V ) ⊆ α(Ã

n
+) ⋅Im(f̃) ⊆

Ãn+1
+ M. The assertion follows. �

Assume now that we have a short exact sequence in the category bicom-
mutative Hopf algebras

K Ð→ A
i
Ð→ B

π
Ð→ C Ð→K. (1.1)

and Ã = A, α = idA. Then B has a natural structure of an A-module and
for any linear map f ∶C → B we obtain an A-module homomorphism

f̄ ∶A⊗ C Ð→ B.

Lemma 1.2. Let (1.1) be a short exact sequence of graded connected com-
mutative and cocommutative Hopf algebras. Assume that f ∶C → B is a
graded linear map such that πf = idC. Then

f̄ ∶A⊗ C
≅
Ð→ B, a⊗ c↦ a ⋅ f(c)

is an isomorphism of A-modules.
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Proof. It follows from Proposition 1.7 of [11]. See also the proof of The-
orem 4.4 and Proposition 4.9 of [11]. �

Theorem 1.3. For a short exact sequence of graded connected bicom-
mutative Hopf algebras

K Ð→ A
i
Ð→ B

π
ÐÐ→ C Ð→K

and any n ⩾ 0 there is an isomorphism

An
+B/A

n+1
+ B ≅ A

n
+/A

n+1
+ ⊗ C, (1.2)

which depends only on the short exact sequence (without a linear splitting).
Moreover, the isomorphism is natural by the short exact sequence.

Proof. If we take any graded linear splitting f ∶C → B of the epimorphism
π∶B → C, then by Lemma 1.2 we obtain that f̄ ∶A⊗C ≅ B is an isomorphism
of A-modules. It follows that f ′n is an isomorphism of the form (1.2).

Prove that this isomorphism does not depend on the choice of the split-
ting f. The difference of two such splittings is a map g∶C → B such that
Im g ⊆ Kerπ. Then it is enough to prove that for any linear map g∶C → B
such that Im g ⊆ Kerπ = A+B we have g′n = 0. This follows from Lemma 1.1.
So, the isomorphism (1.2) does not depend of the choice of f.

Prove that this isomorphism is natural by the short exact sequence.
Assume that we have a morphism of short exact sequences

K A B C K

K Ã B̃ C̃ K.

αA

π

αB αC

π̃

Fix a splitting f of π and a splitting g of π̃. Set h = αBf − gαC. We claim
that Im(h) ⊆ Ker π̃. Indeed, ths follows from Im(h) = Im(hπ) and π̃hπ =
π̃αBfπ − π̃gαCπ = αCπhπ − π̃gπ̃αB = αCπ − π̃αB = 0. Then Im(h) ⊆ Ã+B̃.
Lemma 1.1 implies h′n = 0. It follows that the diagram

(An
+/A

n+1
+ )⊗ C An

+B/A
n+1
+ B

(Ãn
+/Ã

n+1
+ )⊗ C̃ Ãn

+B̃/Ã
n+1
+ B̃

f ′n

g′n

is commutative. The assertion follows. �
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§2. Generalities about Bockstein homomorphism and the

universal coefficient theorem

For a space X we denote by

β∶Hn(X,Z/p)Ð→Hn−1(X,Z/p)

the Bockstein homomorphism. The short exact sequence Z
⋅p
↣ Z ↠ Z/p

induces a boundary map β′∶Hn(X,Z/p) → Hn−1(X,Z), whose compositi-
on with the map Hn−1(X,Z) →Hn−1(X,Z/p) is β [8, §3E]. The universal
coefficient theorem says that there is a short exact sequence

0Ð→Hn(X,Z)/p
θn
Ð→Hn(X,Z/p)

τn
Ð→ pHn−1(X,Z) Ð→ 0,

where the map τn is constructed as the restriction of the image of β′.

Hn(X,Z/p) Hn−1(X,Z) Hn−1(X,Z)

pHn−1(X,Z)

τn

β
′

⋅p

This follows that β equals the following composition

β ∶ Hn(X,Z/p)
τn
Ð→ pHn−1(X,Z) ↪Hn−1(X,Z) →Hn−1(X,Z/p).

The last homomorphism can be also decomposed as

Hn−1(X,Z)↠Hn−1(X,Z)/p
θn−1
ÐÐ→Hn−1(X,Z/p).

This implies the following lemma.

Lemma 2.1. The Bockstein homomorphism β decomposes via homomor-
phisms from the universal coefficient theorem as follows

Hn(X,Z/p) Hn−1(X,Z/p)

pHn−1(X,Z) Hn−1(X,Z)/p,

τn

β

β̃

θn−1 (2.1)

where β̃ is the composition of the embedding pHn−1(X,Z) ↪ Hn−1(X,Z)
and the projection Hn−1(X,Z)↠Hn−1(X,Z)/p.
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§3. Cohomology

For an abelian group A we set T (A) = (A/2)∨[1]⊕ (2A)∨[2].

Theorem 3.1. Let A be a finitely generated abelian group. Then

(a) There is a natural isomorphism of graded Hopf algebras

H∗(A,F2) ≅ Sym(T (A))/I, (3.1)

where I is the ideal generated by the set {x2
− β̃∨(x) ∣ x ∈ (A/2)∨}.

(b) The following square is a pushout and pullback in the category of
graded bicommutative Hopf algebras

Sym((A/2)∨[2]) Sym((A/2)∨[1])

Sym((2A)∨[2]) H∗(A,F2),

Sym(β̃∨)

F

(3.2)

where F is the Frobenius homomorphism.
(c) There exists a unique structure of unstable A -algebra on the al-

gebra Sym(T (A))/I such that Sq1(x) = 0 for any x ∈ (2A)∨. The
morphism (3.1) is an isomorphism of unstable A -algebras with
respect to this structure.

Proof of Theorem 3.1. Dualizing the universal coefficient theorem we
obtain a short exact sequence

0Ð→ (2Hn−1(A,Z))
∨ τn

Ð→Hn(A,F2)
θn

Ð→ (Hn(A,Z)/2)
∨ Ð→ 0.

If we identify H1(A,Z) = A, we get the morphisms

(θ1)−1∶ (A/2)∨
≅
Ð→H1(A,F2), τ2∶ (2A)

∨ ↣H2(A,F2). (3.3)

These maps are natural by A. The diagram of naturality of these mor-
phisms with respect to the homomorphism of addition A⊕A→ A implies
that the images of the maps (3.3) consist of primitive elements. Then they
give morphisms of Hopf algebras from symmetric algebras

Sym((A/2)∨[1])→H∗(A,F2), Sym((2A)
∨[2]) →H∗(A,F2). (3.4)

The Bockstein homomorphism in degree one β∶H1(A,F2) →H2(A,F2)
equals the Frobenius homomorphism. Then Lemma 2.1 implies that the
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following diagram is commutative

(A/2)∨ (2A)∨

H1(A,F2) H2(A,F2).

≅

β̃∨

x↦x2

It follows that the square of Hopf algebras (3.2) is commutative. It is
known [12, Th. 4.4], [14, Cor. 4.16] that the category of bicommutative
Hopf algebras is abelian, the direct sum is given by the tensor product and
cokernel of a morphism α∶C →D is given by D/α(C+)D, where C+ is the
augmentation ideal of C. It is easy to check that a commutative square
in the category of bicommutative graded Hopf algebras is pushout if and
only if it is pushout in the category of bicommutative (non-graded) Hopf

algebras. Therefore the pushout of the morphisms F and Sym(β̃) in the
diagram (3.2) is Sym(T (A))/I (here we use that in an abelian category the
pushout of two maps is the obvious quotient of their direct sum and that
Sym(T (A)) ≅ Sym((A/2)∨[1]) ⊗ Sym((2A)∨[2])). Therefore we obtain a
natural morphism of graded Hopf algebras

Sym(T (A))/I →H∗(A,F2)

and the square (3.2) is a pushout if and only if the morphism is an iso-
morphism.

All functors in the diagram (3.2) are additive as functors from the
category of abelian groups to the category of bicommutative Hopf alge-
bras (they send direct sums to tensor products). It follows that in or-
der to prove that the square is a pushout for finitely generated abelian
groups, it is enough to prove that the square is a pushout for cyclic groups
A = Z,Z/pn, where p is prime and n ⩾ 1. If p ≠ 2 and n ⩾ 1, then all
algebras in the square are trivial. The case A = Z follows from the stan-
dard fact that H∗(Z,F2) ≅ F2[x]/(x2). The other cases Z/2 and Z/2n for
n ⩾ 2 follow from the isomorphisms H∗(Z/2,F2) ≅ F2[x], H∗(Z/2n,F2) ≅
F2[x, y]/(x2), where deg(x) = 1 and deg(y) = 2 (see [6, §3.2]).

Recall that a square in an abelian category is a pushout (pullback) if
and only if its totalization is a right (left) exact sequence. So, if a square
is a pushout, then it is a pullback if and only if the first arrow of its
totalization is a monomorphism. Therefore the fact that our square is
also a pullback follows from the fact that the Frobenius homomorphism
Sym((A/2)∨) → Sym((A/2)∨) is a monomorphism.
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We proved (a) and (b). Now we prove (c). The Verschiebung on the
Steenrod algebra v∶A → A is an endomorphism that acts as follows
v(Sq2n) = Sqn, v(Sq2n+1) = 0 (see [13, Ch. II, Prop. 3.5]). For any vector
space V there is a unique structure of unstable A -algebra on the algebra
Sym(V [1]) which comes from the isomorphism Sym(V [1]) ≅ H∗(V,F2).
The action via Verschiebung gives a structure of unstable A -algebra on
Sym(V [2]). Using the natural structure of Hopf algebra on A , we obtain
that there is a natural structure of unstable A -algebra on the tensor prod-
uct Sym(V [1])⊗Sym(U[2]) ≅ Sym(V [1]⊕U[2]) for any two vector spaces
V,U . This gives a structure of A -module on Sym(T (A)). Prove that the
ideal I is closed under this action. It is enough to prove that the image of
the generating set with respect to the action of Sqn lies in I. This follows
from the equations Sq1(x2

−β̃∨(x)) = 0 and Sq2(x2
−β̃∨(x)) = (x2

−β̃∨(x))2.
So, we obtain a required structure of unstable A -algebra on Sym(T (A))/I.
It is easy to see that it is unique. In order to prove that the isomorphism
Sym(T (A))/I ≅H∗(A,F2) respects the action of A , it is enough to prove
it for elements from T (A). Since they are both unstable A -algebras, the
action of Sq1 on (A/2)∨[1] and the action of Sq2 on (2A)∨[2] are respected
by the isomorphism. So we only need to prove that the isomorphism re-
spects the action of Sq1 on (2A)∨[2], which is trivial. So we need to prove
that Sq1(Im (τ2A∶ (2A)

∨ → H2(A,F2))) = 0. Consider the vector space
V = 2A. Then the embedding V ↪ A induces a commutative square

V ∨ 2A
∨

H2(V,F2) H2(A,F2).

τ2

V

id

τ2

A

Hence the assertion follows from the equation Sq1(τ2V (x)) =
Sq1Sq1(x′) = 0, where x′ is the image of x under the isomorphism V ∨ ≅
H1(V,F2). �

Corollary 3.2. For a finitely generated abelian group A there is a natural
short exact sequence of Hopf algebras

F2 Ð→ Sym((2A)
∨)Ð→H∗(A,F2) Ð→ Λ((A/2)∨)Ð→ F2.

Proof. This follows from the fact that the sequence F2 → Sym(V )
F
→

Sym(V ) → Λ(V ) → F2 is short exact in the category of bicommutative
Hopf algebras for any vector space V and the pushout from Theorem
3.1. �
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Corollary 3.3. For a finitely generated abelian group A there is a nat-
ural filtration of Hn(A,F2) by subfunctors Hn(A,F2) = Φ

0 ⊇ Φ
1 ⊇ ⋅ ⋅ ⋅ ⊇

Φ
⌊n/2⌋+1 = 0 such that

Φ
i/Φi+1 ≅ Λn−2i((A/2)∨)⊗ Sym

i((2A)
∨).

Proof. This follows from Corollary 3.2 and Theorem 1.3. �

Corollary 3.4. Let A be a finitely generated abelian group. Then the group
Hn(A,F2) is naturally isomorphic to the cokernel of the map

⊕
2k+l+2m=n; k⩾1

Symk(A/2∨)⊗ Syml(A/2∨)⊗ Symm(2A
∨)Ð→

⊕
i+2j=n

Symi(A/2∨)⊗ Symj(2A
∨).

In particular, there is a short exact sequence

0Ð→ (A/2)∨ Ð→ Sym
2(A/2∨)⊕ 2A

∨ Ð→H2(A,F2) Ð→ 0,

where the first map is x↦ (x2, β̃∨(x)), and a short exact sequence

0Ð→ (A/2)∨ ⊗ (A/2)∨ Ð→ Sym3((A/2)∨)⊕ (A/2)∨ ⊗ (2A)
∨ Ð→

H3(A,F2) Ð→ 0,

where x⊗ y ↦ (x2y, y ⊗ β̃∨(x)).

Proof. Theorem 3.1 implies that H∗(A,F2) is the cokernel of the mor-
phism Sym((A/2)∨[2]) → Sym((A/2)∨[1])⊗Sym((2A)∨[2]) in the category
of bicommutative Hopf algebras. The assertion follows. �

§4. Homology

In this section dual results for homology are presented. They hold in
a more general setting: for arbitrary abelian group, not just for finitely
generated ones. The reason why the results hold in a more general setting
is that homology, divided powers, tensor products and all other functors
that occur in the statements commute with filtered colimits. The proof for
all the statements is the following: first we prove the results for finitely
generated abelian groups dualising the results for cohomology; and then
use that all the functors commute with filtered colimits, and present an
abelian group as a colimit of its finitely generated subgroups.

For a vector space V we denote by Γ(V ) =⊕Γ
n(V ) the divided power

algebra of V. It is a subalgebra of the shuffle algebra Sh(V ) such that Γn(V )
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is the space of invariants of V ⊗n under the action of the symmetric group.
It is well known that, if V is finite dimensional, then Γ(V ) = Sym(V ∨)∨.

Theorem 4.1. Let A be an abelian group (not necessary finitely genera-
ted). Then the following square is a pullback in the category of graded
bicommutative Hopf algebras

H∗(A,F2) Γ(2A[2])

Γ(A/2[1]) Γ(A/2[2]),

Γ(β̃)

V

where V denotes the Verschiebung.

Corollary 4.2. For an abelian group A there is a short exact sequence of
graded bicommutative Hopf algebras

F2 Ð→ Λ(A/2)Ð→H∗(A,F2) Ð→ Γ(2A)Ð→ F2.

Corollary 4.3. For an abelian group A there is a natural filtration of
Hn(A,F2) by subfunctors 0 = Ψ−1 ⊆ Ψ0 ⊆ ⋅ ⋅ ⋅ ⊆ Ψ⌊n/2⌋ = Hn(A,F2) such
that

Ψi/Ψi−1 ≅ Λ
n−2i(A/2)⊗ Γ

i(2A).

Corollary 4.4. For an abelian group A the group Hn(A,F2) is naturally
isomorphic to the kernel of a map

⊕
i+2j=n

Γ
i(A/2)⊗ Γ

j(2A)Ð→

⊕
2k+l+2m=n; k⩾1

Γ
k(A/2)⊗ Γ

l(A/2)⊗ Γ
m(2A).

In particular, there is a short exact sequence

0Ð→H2(A,F2)Ð→ Γ
2(A/2)⊕ 2AÐ→ A/2Ð→ 0,

and a short exact sequence

0Ð→H3(A,F2)Ð→ Γ
3(A/2)⊕A/2⊗ 2AÐ→ A/2⊗A/2Ð→ 0.

§5. Non existence of a factorization via pairs of vector

spaces

Proposition 5.1. Let Vect
2 be the category of pairs of vector spaces over

F2 and t∶Ab → Vect
2 be the functor t(A) = (A/2, 2A). Assume that n ⩾ 2.
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Then there is no a functor Φ∶Vect
2 → Vect such that Φ ○ t ≅Hn(−,F2).

Hn(A,F2) /≅ Φ(A/2, 2A).

Moreover, there is no such a functor even if we restrict the functors to
the category of finitely generated abelian groups and the category of finite
dimensional vector spaces.

Proof. Here we use the theory of quadratic functors from the category of
free finitely generated abelian groups fAb → Ab and quadratic modules; we
use the equivalence of these two categories (see [1, 7, 10]).

Prove the proposition for n = 2. Assume the contrary, that there is a
functor Φ∶Vect

2 → Vect such that there is a natural isomorphism H2(A,F2) ≅
Φ(A/2, 2A). Take a free finitely generated abelian group F. Then there
is an isomorphism Φ(F /2,0) ≅ H2(F,F2) ≅ Λ

2(F /2), which is natural
by F. Note that the standard isomorphism Sym((F /2)∨) ≅ H∗(F /2,F2)
implies that there is an natural isomorphism H∗(F /2,F2) ≅ Γ(F /2). It
follows that H2(F /2,F2) ≅ Γ

2(F /2). Therefore Φ(F /2, F /2) ≅ Γ
2(F /2).

Since (F /2, F /2) = (F /2,0) ⊕ (0, F /2) in the category Vect
2, we obtain

that Φ(F /2,0) ≅ Λ
2F /2 is a natural retract Φ(F /2, F /2) ≅ Γ

2(F /2). On
the other hand it is easy to compute the quadratic Z-module of Λ2(F /2) ∶

0 → Z/2 → 0, the quadratic Z-module of Γ
2(F /2) ∶ Z/2

1
Ð→ Z/2

0
Ð→ Z/2,

and note that the first one is not a retract of the second one. This is a
contradiction. So we proved the proposition for n = 2.

Prove for n > 2 by induction. Note that the Künneth theorem implies
Hn(A × Z,F2) =Hn(A,F2)⊕Hn−1(A,F2). Then

Hn−1(A,F2) = Coker(Hn(A,F2) →Hn(A ×Z,F2)).

It follows that the existence of such a functor Φ for Hn implies the existence
of such a functor for Hn−1. The assertion follows. �
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