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TOWARDS THE REVERSE DECOMPOSITION OF

UNIPOTENTS. II. THE RELATIVE CASE

Abstract. Recently Raimund Preusser displayed very short poly-
nomial expressions of elementary generators in classical groups over
an arbitrary commutative ring as products of conjugates of an ar-
bitrary matrix and its inverse by absolute elementary matrices. In
particular, this provides very short proofs for description of normal
subgroups. In [27] I discussed various generalisations of these results
to exceptional groups, specifically those of types E6 and E7. Here,
I produce a further variation of Preusser’s wonderful idea. Namely,
in the case of GL(n,R), n > 4, I obtain similar expressions of el-
ementary transvections as conjugates of g ∈ GL(n,R) and g−1 by
relative elementary matrices x ∈ E(n, J) and then x ∈ E(n,R, J),
for an ideal J E R. Again, in particular, this allows to give very
short proofs for the description of subgroups normalised by E(n, J)
or E(n,R, J) – and thus also of subnormal subgroups in GL(n,R).

What bird has done yesterday, the man may do next

year, be it fly, be it moult, be it hatch, be it nest.

James Joyce, Finnegans wake

§1. Introduction

Let R be an commutative ring with 1, GL(n,R) be the general linear
group of degree n over R. As usual, e denotes the identity matrix, whereas
eij , 1 6 i, j 6 n, denotes a standard matrix unit. For ξ ∈ R and 1 6

i 6= j 6 n one denotes by tij(ξ) = e + ξeij the corresponding elementary
transvection. To an ideal I E R, one assigns the elementary subgroup

E(n, I) =
〈

tij(ξ), ξ ∈ I, 1 6 i 6= j 6 n
〉

.

In turn, the relative elementary subgroup E(n,R, I) of level I is defined as
the normal closure of E(n, I) in the absolute elementary group E(n,R).

Key words and phrases: classical groups, Chevalley groups, normal structure, ele-
mentary subgroups, decomposition of unipotents, reverse decomposition of unipotents.
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Consider the reduction homomorphism ρI : GL(n,R) −→ GL(n,R/I)
modulo I. Then the principal congruence subgroup GL(n,R, I) is the ker-
nel of the reduction homomorphism ρI , whereas the full congruence sub-
group C(n,R, I) is the full pre-image of the centre of GL(n,R/I), with
respect to ρI .

We need also the less familiar brimming congruence subgroupG(n,R, I),
which is the full preimage of the diagonal subgroupD(n,R/I)6GL(n,R/I).
In the terminology of Zenon Borewicz, G(n,R, I) = G(σ) is the net sub-
group corresponding to the D-net σ = (σij), 1 6 i 6= j 6 n, such that
σij = I for all i 6= j, while σii = R as they should be, for D-nets, see [6,7].

In the present paper we are interested in description of subgroups of
GL(n,R), normalised either by the elementary subgroup E(n, J), or by
the relative elementary subgroup E(n,R, J), for some ideal J E R.

As discovered by J. Wilson [31], for subgroups normalised by E(n,R, J)
the answer may be stated as follows: there exists an integer m, with the fol-
lowing property. For any subgroup H 6 GL(n,R) normalised by E(n,R, J)
there exists an ideal I ER such that

E(n,R, JmI) 6 H 6 C(n,R, I).

This line of research was then pursued in many further papers, see below.
For subgroups H 6 GL(n,R) normalised by E(n, J) the answer is sim-

ilar, but is stated in terms of different subgroups, the lower layer being
smaller, while the upper layer being larger, than for subgroups normalised
by the larger group E(n,R, J), namely

E(n, JmI) 6 H 6 G(n,R, I).

This is precisely what was established inside the proofs of results on sub-
groups normalised by E(n,R, J), even if it was not stated this way.

Unlike the absolute case, here the ideal I is not unique as such. But it
is unique up to the equivalence relation ♦J , which is described as follows.
Let A and B be two ideals of the ring R. We set A♦JB if there exist such
integers r, s that JrA 6 B and JsB 6 A, see [1, 15].

By a standard argument due to John Wilson [31], this description im-
plies also the description of subnormal subgroups in GL(n,R). Namely, let
H Ed GL(n,R) be a subnormal subgroup of depth d. Then

E(n,R, Ir) 6 H 6 C(n,R, I),

for some ideal I and some r 6 (md − 1)/(m− 1).
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Technically, the main issue is to find the smallest possible value of m,
in the above answer. Historically, the published estimates in chronological
order were as follows1:

• m 6 7 for n > 4, John Wilson, 1972 [31],

• m 6 24 (under some stability conditions), Anthony Bak, 1982 [1],

• m 6 6, Leonid Vaserstein, 1986 [23],

• m 6 40, Li Fuan and Liu Mulan, 1987 [15],

• m 6 5, the present author, 1990 [26],

• m 6 4, Vaserstein, 1990 [24].

Since there are examples where the above inclusions do not hold with
m = 2, see [23], it only remains to ascertain, whether the correct bound is
m = 3 or m = 4.

In the present paper I start chasing the constructive versions of the
above results, with the best possible bounds. With this end, we have to
start clearly distinguishing E(n, J) and E(n,R, J) in our results. For a
matrix g ∈ GL(n,R) we denote by lev(g) the upper level of g, generated
by its entries gij , 1 6 i 6= j 6 n outside of the principal diagonal and by
the pairwise differences gii − gjj , i 6= j, of its diagonal entries. As opposed
to that, the outer diagonal upper level of g, denoted by leo(g), is generated
by its outer diagonal entries gij , 1 6 i 6= j 6 n, alone, see § 2 for notation
and precise definitions of all requisite concepts.

The following result is a partial relative analogue of [27], Theorem 1.
The full such analogue will be established in Theorem 4 below.

Theorem 1. Let R be a commutative ring, J E R be an ideal of R,

n > 4. Further, let g ∈ GL(n,R). Then for any ξ ∈ leo(g), any five

elements a1, . . . , a5 ∈ J , and all 1 6 i 6= j 6 n the elementary transvec-

tion tij(a1 . . . a5ξ) is a product of 6 32(n2 − n) conjugates of g and g−1

by elements of E(n, J).

Of course, one would wish to give an absolute bound that applies to
all ideals J E R and to all ξ ∈ J5 leo(g). However, this is not possible. In
the absolute case the ideal R is principal, here the answer depends on the
number of generators of J . Let J be generated by d elements b1, . . . , bd,

1Clearly, [1] and [15] drop out of the mainstream. The reason is that [1] was published
some 15 years after completion, and [15] relied upon [1]. Nevertheless, these papers are
very pertinent in what concerns discussion of the relative commutator formulae and the
equivalence relation ♦J .
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then Jm is generated by at most

(

d+m− 1

m

)

products with repetitions

of m among b1, . . . , bd. In particular, it follows from Theorem 1 that for
an ideal J generated by d elements, tij(ξ), ξ ∈ J5 leo(g), is the product

of 6 32

(

d+ 4

5

)

(n2 − n) elementary conjugates of g and g−1. However,

for applications the exponent of J is much more important than the exact
number of factors, which may be unbounded, when R is not Noetherian.

This theorem is, in fact, a very powerful constructive version of the
following result, which was proven in [26], though not stated there this
way, see [34] for details.

Theorem 2. Let R be a commutative ring with 1, n > 4. Further, let

J E R be an ideal of R, and H 6 GL(n,R) be a subgroup normalised by

the elementary subgroup E(n, J). Then there exists an ideal I E R such

that

E(n, J5I) 6 H 6 G(n,R, I).

This ideal I is unique up to the equivalence relation ♦J .

The proof of Theorem 1 is presented in § 3. For the most part it is an
easy remoulding of the brilliant observation by Raimund Preusser [17,18],
see also another exposition of this result in [27]. Namely, he proposed to
express a conjugate of an elementary generator not as a product of factors
sitting in proper parabolics of certain types, as in [7] or [21], but as sitting
in the products of these parabolics by something small in the unipotent
radicals of the opposite parabolics. We were aware of the idea itself [20]
– in fact, it was implicit already in [4, 24] – but never appreciated the
whole significance of this apparently small variation. Actually, there is
another extremely important feature, which greatly facilitates analysis of
the relative case. Namely, with respect to the entries of our matrix g, the
degrees of parameters of the elementary matrices engaged at the first move
are 1, whereas they were equal to 2 in the decomposition of unipotents.

In turn, Theorem 2 is an immediate corollary of Theorem 1. Most of
the auxiliary results in § 3 hold for n > 3, the stronger assumption n > 4
is only invoked at the very end.

In §§ 4, 5 we prove Theorems 3 and 4, with E(n, J) in the above results
replaced by E(n,R, J). These are essentially minor variations of Theorem
2 and Theorem 1, respectively, imposing somewhat stronger conditions,
and arriving at somewhat stronger conclusions.
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Next, in § 6 we start discussing how by to relax the bound on m in the
above results from m = 5 to m = 4, which would then provide constructive
version of [24] in the commutative case. Eventually, we plan to relax it to
m = 3 for n > 4, but that would require much fancier calculations, than
the ones in the present paper.

Finally, in § 7 we discuss the current situation for other groups, such as
Chevalley groups or unitary groups, and suggest several related problems.

§2. Notation and preliminary facts

2.1. Basic notation. We use some basic commutator calculus in groups.
Our commutators are always left-normed, [x, y] = xyx−1y−1. Further,
xy = xyx−1 and yx = x−1yx denote the left and the right conjugates
of y by x, respectively. We use obvious commutator identities such as
[x, yz] = [x, y] · y[x, z] without any specific reference.

Recall, that an [elementary] transvection tij(ξ), corresponding to ξ ∈ R
and 1 6 i 6= j 6 n, equals tij(ξ) = e + ξeij . Here, as usual, e is the iden-
tity matrix and eij is a standard matrix unit. Transvections are subject
to the usual elementary relations, such as additivity, and the Chevalley
commutator formula [tij(ξ), tjh(ζ)] = tih(ξζ). In particular, additivity im-
plies that for a fixed pair 1 6 i 6= j 6 n of distinct indices all elementary
transvection tij(ξ), ξ ∈ R, form a subgroup Xij called an elementary root
subgroup.

As in the introduction, for an ideal IER we denote by E(n, I) the corre-
sponding elementary subgroup, generated by the elementary transvections
of level I. Further, the relative elementary subgroup E(n,R, I) of level
I is defined as the normal closure of E(n, I) in the absolute elementary
subgroup E(n,R).

Let g ∈ GL(n,R) be an invertible matrix. It is written in terms of its
entries as g = (gij), 1 6 i, j 6 n. Entries of the inverse matrix g−1 = (g′ij),

1 6 i, j 6 n, are denoted by g′ij . A matrix of the form gx = x−1gx, where
x ∈ E(n,R), is called an elementary conjugate of g.

By Rn we denote the free right R-module, consisting of columns of
height n with components in R. The standard base in Rn (consisting of
the columns of identity matrix e) is denoted by e1, . . . , en. The group G =
GL(n,R) acts on Rn by left multiplication. The stabiliser of the coordinate
subspace 〈e1, . . . , em〉 is called a [standard] parabolic [subgroup] and is
denoted Pm = StabG

(

〈e1, . . . , em〉
)

. Its conjugates are called parabolics of
type Pm. In the field case it is indeed a maximal subgroup.
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The subgroup of Pm generated by tij(ξ), where ξ ∈ R, 1 6 i 6 m,
m + 1 6 j 6 n, is denoted by Um and is called the unipotent radical of
Pm. Obviously, Um is an abelian normal subgroup of Pm.

Further, consider the reduction homomorphism

ρI : GL(n,R) −→ GL(n,R/I)

modulo the ideal I. We consider the following three congruence subgroups
of level I:

• the principal congruence subgroup GL(n,R, I) is the kernel of ρI ,

• the full congruence subgroup C(n,R, I) is the full preimage of the
centre of GL(n,R/I) under ρI .

• The brimming congruence subgroup G(n,R, I) is the full preimage of
the diagonal subgroup of GL(n,R/I) under ρI .

In other words, the elements g ∈ GL(n,R, I) are congruent to e modulo
I, meaning that gij ∈ I for all i 6= j, whereas gii ∈ 1 + I. The elements of
the full congruence subgroups are not necesssarily congruent to 1 modulo
I, but gii ≡ gjj (mod I) for all i 6= j. On the other hand, g ∈ G(n,R, I)
means simply that gij ∈ I for i 6= j, no further condition is imposed on
the diagonal entries. Clearly,

GL(n,R, I) 6 C(n,R, I) 6 G(n,R, I).

2.2. Levels. Next, we discuss the four natural notions of level, two upper
levels and two lower levels. The reason why we usually do not see the differ-
ence between all these levels is that when we consider E(n,R)-normalised
subgroups the two upper levels coincide, as do the two lower levels. When
the standard description of E(n,R)-normalised subgroup holds, upper lev-
els coincide with lower levels. But for E(n, J)-normalised subgroups they
may be all different, and relations among them are more complicated.

• Recall that the upper level of a matrix g = (gij) ∈ GL(n,R) is the
smallest ideal I = lev(g) such that g ∈ C(n,R, I). Such an ideal is gener-
ated by the off-diagonal entries gij , 1 6 i 6= j 6 n, and by the pair-wise
differences of its diagonal entries gii − gjj , 1 6 i 6= j 6 n. Clearly, it
suffices to consider only the fundamental differences gi+1,i+1 − gii, where
i = 1, . . . , n− 1.

• Similarly the outer diagonal upper level of a matrix g = (gij) ∈
GL(n,R) is the smallest ideal I = leo(g) such that g ∈ G(n,R, I). Clearly,
such an ideal is generated by the off-diagonal entries gij , 1 6 i 6= j 6 n, and
by the pair-wise differences of its diagonal entries gii − gjj , 1 6 i 6= j 6 n.
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Again, it suffices to consider only the fundamental differences gi+1,i+1−gii,
where i = 1, . . . , n− 1.

Thus, the upper levels lev(g) and leo(g) are generated by n2− 1 and by
n2 − n elements, respectively. By looking at the generic invertible matrix
with commuting entries (say in the structure ring Z[GLn] of the affine
group scheme GLn), one immediately sees that these bounds cannot be
improved in general.

Further, denote by gE(n,R) the smallest E(n,R)-normalised subgroup
of GL(n,R) containing g.

• The lower level I = lol(g) of a matrix g ∈ GL(n,R) is the largest ideal
such that E(n,R, I) 6 gE(n,R).

• Similarly, the outer diagonal lower level I = loo(g) of a matrix g ∈
GL(n,R) is the largest ideal such that E(n, I) 6 gE(n,R).

Clearly, lol(g) 6 loo(g) 6 leo(g) 6 lev(g). The standard description
of E(n,R)-normalised subgroups (which holds, in particular, when R is
commutative and n > 3) is equivalent to the claim that for any matrix
g ∈ GL(n,R) its lower and the upper level coincide, lol(g) = lev(g). This
ideal is usually called simply the level of g.

2.3. Geometry of transvections. For a pair (X,Y ) of elementary root
subgroups X = Xij , Y = Xhk there are very few possibilities up to si-
multaneous conjugation corresponding to the interrelations of roots in the
root system of type An−1. We list them below, according to the growing
angle between the roots.

• Angle 0, the two corresponding groups are equal .

• Angle π/3, there are 3 distinct indices among i, j, h, k and at that i 6=
k, j 6= h. In this case the root subgroups will be called commuting. For n >

3 there are two orbits of commuting root subgroups with representatives
(X12, X13) and (X21, X31) respectively.

• Angle π/2, the indices i, j, h, k are all distinct, in which case the
subgroups are called orthogonal. For n > 4 there is just one orbit of pairs
of orthogonal root subgroups under conjugation.

• Angle 2π/3, there are 3 distinct indices among i, j, h, k and at that
i 6= h, j 6= k. In this case the root subgroups will be called non-commuting.
Actually in this case the mixed commutator [X,Y ] is again a root sub-
group. For n > 3 there are two orbits of such pairs with representatives
(X12, X23) and (X23, X12) respectively.
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• Angle π, which is the most interesting case, (i, j) = (k, h), when
the subgroups are called opposite. For n > 2 every pair of opposite root
subgroups is conjugate to the pair (X12, X21).

We will freely apply this terminology to the transvections tij(ξ) and
thk(ζ) sitting in these root subgroups, and to the matrix positions (i, j)
and (h, k) themselves.

§3. Subgroups normalised by E(n, J)

In this section we prove Theorems 1 and 2.

In [27], Theorem 1, we have already discussed the following result by
Raimund Preusser [17], and its proof. Of course, in the absolute case we
do not have to distinguish E(n,R) and E(n,R,R). Below we explain why
with the naive approach 8 in the absolute case becomes 32 in the relative
case.

Lemma 1. Let R be a commutative ring, n > 3, and g ∈ GL(n,R). Then

for any ξ ∈ lev(g) and all 1 6 i 6= j 6 n the elementary transvection

tij(ξ) belongs to the E(n,R)-normalised subgroup gE(n,R) generated by g,
and in fact is a product of 6 8(n2− 1) elementary conjugates of g and its

inverse g−1.

Let us start with the outer diagonal level. In fact, [17] proves the fol-
lowing fact.

Lemma 2. Let R be commutative, n > 3, and g ∈ GL(n,R). Then for

any 1 6 r 6= s 6 n and all 1 6 i 6= j 6 n the elementary transvection

tij(grs) belongs to gE(n,R), and in fact is a product of 6 8 elementary

conjugates of g and g−1.

The proof of this result consists of three elementary moves, when one
passes from g to the commutator [g, x], for some x ∈ E(n,R), to get
thk(grs) ∈ gE(n,R) in some position (h, k). After that it is concluded by
the reference to the fact that E(n,R) contains preimages of all permuta-
tions, so that it does not matter in which position outside of the principal
diagonal we landed.

The first part of that argument transcribes verbatim to E(n, J)-norma-
lised subgroups, but now it does matter, where we end up. We might need
one, two, or in the exceptional case of n = 3 even three additional moves to
return the entry from the position where we landed to all other positions.
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So now we have to carefully monitor not just the number of moves, but
also the position of grs after each move.

Lemma 3. Let R be commutative, n > 3, and g ∈ GL(n,R). Then for

any 1 6 r 6= s 6 n, any a1, a2, a3 ∈ J one has tsr(a1a2a3grs) ∈ gE(n,J).

These transvections are products of 6 8 elementary E(n, J)-conjugates of

g and g−1.

Proof. Below, we reproduce essentially the same argument as in the proofs
of Lemmas 1 and 2, but now for E(n, J)-normalised subgroups, instead of
E(n,R)-normalised subgroups, tracing the position where grs arrives after
each move.

Move 1. Let i, j, h be any three pair-wise distinct indices. Setting

xr = tij(a1ghr)tih(−a1gjr)

for some a1 ∈ J we see that the commutator [x−1
r , g−1] ∈ gE(n,J) is the

product of two E(n, J)-elementary conjugates of g and g−1. When r = j,
the r-th column of this commutator differs from the column er of the
identity matrix in exactly one position. Namely, its entry in the position
(i, j) equals −a1ghj. This means that even not being in the above parabolic
P = StabG(〈ej〉), this commutator has the form tij(−a1ghj)x, for some
x ∈ P .

Move 2. Next, observe that for any s 6= i, j and any a2 ∈ J the elementary
transvection tjs(a2) sits in UP (J) of the parabolic subgroup P . Obviously,
[xy, z]x = [y, z] · [x, z]x = [y, z] · [z, x−1]. Thus,

y = [tij(−a1ghj)x, tjs(−a2)]
tij(−a1ghj)

= [x, tjs(−a2)] · [tjs(−a2), tij(a1ghj)] ∈ gE(n,J)

is the product of four elementary conjugates of g and g−1. In the above
expression of y the first commutator z = [x, tjs(−a2)] belongs to the unipo-
tent radical UP , while the second commutator equals tis(a1a2ghj).

Naive move 3. Next, take any a3 ∈ J . Since tji(a2) ∈ UP (J) and UP is
abelian, one can conclude that

[tji(a3), y] = [tji(a3), ztis(a1a2ghj)] = tjs(a3a1a2ghj) ∈ gE(n,J)

is the product of eight E(n, J)-elementary conjugates of g and g−1. Since
j and h here are arbitrary distinct, in the case n = 3 there is a unique
choice for the third index i 6= j, h, and then again the unique choice of
the third index s 6= i, j, namely, s = h. Thus, in this case after three
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elementary moves we can only get inclusion tsr(J
3grs) 6 gE(3,J) in the

opposite position. �

For n > 4 even with a similar naive argument we arrive at a stronger
conclusion.

Lemma 4. Let R be commutative, n > 4, and g ∈ GL(n,R). Then for

any 1 6 r 6= s 6 n, any a1, a2, a3 ∈ J one has tsj(a1a2a3grs) ∈ gE(n,J)

and tir(a1a2a3grs) ∈ gE(n,J), for all j 6= s and all i 6= r. As above, these

transvections are products of 6 8 elementary E(n, J)-conjugates of g and

g−1.

Proof. Since n > 4, for any s 6= j we can always choose i 6= j, h, s in
the above argument to conclude that tsj(J

3grs) 6 gE(n,J) for all j 6= s.
Similarly, replacing in the above argument columns by rows (switching in
Move 1 matrices g and g−1 and taking xs = tih(a1gsj)tjh(−a1gsi) instead

of the initial xr), we get also the inclusion tir(J
3grs) 6 gE(n,J) for all

i 6= r. Thus, for n > 4, we also get the desired inclusions with m = 3 in
the non-commuting positions. �

In the absolute case, this was already the end of line, since E(n,R)
contains monomial matrix wπ corresponding to any permutation π ∈ Sn.
Conjugating by these matrices (which is just another elementary conjuga-
tion in E(n,R)) we conclude that all tij(grs), 1 6 i 6= j 6 n, 1 6 r 6= s 6 n,
are products of 6 8 elementary E(n,R)-conjugates of g and g−1.

Unfortunately, this does not work this way in the relative case. The
product wπx, where x ∈ E(n, J), does not belong to E(n, J). This means
that one needs two additional commutators with elementary transvections
of level J to put grs, r 6= s, into any position for n > 4.

Lemma 5. Let R be commutative, n > 4, and g ∈ GL(n,R). Then for

any 1 6 r 6= s 6 n, any a1, . . . , a5 ∈ J one has tij(a1 . . . a5grs) ∈ gE(n,J),

for all i 6= j. These transvections are products of 6 32 elementary E(n, J)-
conjugates of g and g−1.

Proof. To return the entry to any position, we need two more commuta-
tions with the elementary generators of E(n, J).

Move 4. Take any a4 ∈ J . Then, in the above notation,

tij(a1 . . . a4grs) = [tis(a4), tsj(a1a2a3grs)] ∈ gE(n,J),
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for all i, j 6= s and, similarly,

tij(a1 . . . a4grs) = [tir(a1a2a3grs), trj(a4)] ∈ gE(n,J),

for all i, j 6= r. Since in the first case i = r is not excluded, and in the
second case j = s is not excluded, we get the required inclusions with
m = 4 in the orthogonal and commuting positions.

Move 5. One needs one more commutator to return grs to the initial
position. For any a5 ∈ J , and any i 6= r, s,

trs(a1 . . . a5grs) = [tri(a5), tis(a1 . . . a4grs)] ∈ gE(n,J),

which gives the desired inclusion with m = 5 also in this last case. �

However, with this naive approach for the exceptional case n = 3 after
Move 3 we only get grs in the opposite position, and we need three more
moves from there, Move 4 to a non-commuting position, Move 5 to a
commuting position, Move 6 to the initial position, which results in m = 6.

§4. Subgroups normalised by E(n,R, J)

Description of subgroups normalised by E(n,R, J) with the same expo-
nent m immediately follows from Theorem 2. The corresponding arguments
are standard, and were already contained in the works by John Wilson,
Leonid Vaserstein, myself, and Zuhong Zhang. However, since further we
are interested in the precise number of elementary conjugates, we need
details of computations as a model. It is not enough to invoke the cor-
responding lemmas from the above papers, we should rather go through
their proofs.

Theorem 3. Let R be a commutative ring with 1, n > 4. Further, let

J E R be an ideal of R, and H 6 GL(n,R) be a subgroup normalised by

the elementary subgroup E(n,R, J). Then there exists an ideal I E R such

that

E(n,R, J5I) 6 H 6 C(n,R, I).

This ideal I is unique up to the equivalence relation ♦J .

The following lemma mostly follows [23, 34], modulo correcting some
misprints.

Lemma 6. Let R be a commutative ring with 1, n > 3, and let J E R be

an ideal of R. Suppose there exists an m such that that for any subgroup
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H 6 GL(n,R) normalised by the elementary subgroup E(n, J) for some

ideal we have the inclusion

E(n, JmI) 6 H 6 G(n,R, I).

Then for any subgroup H normalised by the relative elementary subgroup

E(n,R, J) we have the inclusion

E(n,R, JmI) 6 H 6 C(n,R, I)

with the same m. This ideal I is unique up to the equivalence relation ♦J .

Proof. By assumption, [H,E(n,R, J)] 6 H . Since E(n,R, J) is already
normal in E(n,R), it follows that for any x ∈ E(n,R) one has

[Hx, E(n,R, J)] 6 Hx.

As the first step, we prove that

E(n, JmI) 6 H 6 C(n,R, I),

more precisely, that E(n, Jm lev(H)) 6 H .
With this end observe that the entry of the matrix gtrs(1) ∈ Htrs(1) in

the position (r, s) equals grs + grr − gss − gsr, it follows from the above
that

tij(J
m(grs + grr − gss − gsr)) ∈ Htrs(1)

for any i 6= j. But whenever j 6= r and i 6= s, tij(∗) commutes with trs(1).
This means that in fact already

tij(J
m(grs + grr − gss − gsr)) ∈ H

for all such i, j. But since tij(J
mgrs) and tij(J

mgsr) are already accounted
for, we can conclude that in this case tij(J

m(grr − gss)) ∈ H .
For the remaining pairs (i, j) one could prove the same inclusion by

considering gtsr(1), whose entry in the position (s, r) equals gsr + grr −
gss − grs, so that we get the inclusion tij(J

m(grr − gss)) ∈ H for all pairs
i 6= j, as claimed.

As we observed immediately after the statement of Lemma 6, if H
is normalised by E(n,R, J), then all its elementary conjugates Hx, x ∈
E(n,R), are normalised by E(n,R, J). In particular, E(n, Jm lev(Hx)) 6
Hx for all elementary x, with the above m. Since lev(Hx) = lev(H), it
means that E(n, Jm lev(H)) 6 Hx, again for all elementary x. Or, what is
the same, E(n, Jm lev(H))x 6 H for all such x. But this means precisely
that E(n,R, Jm lev(H)) 6 H . �



RELATIVE REVERSE DECOMPOSITION OF UNIPOTENTS 17

Alternatively, Theorem 3 immediately follows from Theorem 4 of the
next section, but then, of course, the derivation of Theorem 4 itself from
Theorem 1 follows the pattern of Lemma 6.

§5. Relative reverse decomposition of unipotents

The analogue of Theorem 1 looks as follows. Here we consider conjugates
of g and g−1 by elements of E(n,R, J), not just by elements of E(n, J). But
then we can express transvections with parameters in J5 lev(g), not just in
J5 leo(g). Notice also the change of length. You need the additional 32(n−
1) factors to express parameters corresponding to diagonal differences grr−
gr+1,r+1, 1 6 r 6 n− 1.

Theorem 4. Let R be commutative, JER be an ideal of R, n > 4. Further,

let g ∈ GL(n,R). Then for any ξ ∈ lev(g), any a1, . . . , a5 ∈ J , and all

1 6 i 6= j 6 n the elementary transvection tij((a1 . . . a5ξ) is a product of

6 32(n2 − 1) conjugates of g and g−1 by elements of E(n,R, J).

Proving Theorem 1 we have already expressed tij(a1 . . . a5grs) as prod-
ucts of 32 conjugates of g and g−1 by elements of E(n, J). It only remains
to express tij((a1 . . . a5(grr − gss)) as products of 6 32 such conjugates
modulo the above. Below we reproduce the argument for an arbitrary m,
not just for m = 5.

Lemma 7. Let R be commutative, n > 3, and g ∈ GL(n,R). Further,

let J E R be an ideal of R. Suppose there exists an m such that for

any a1, . . . , am ∈ J , any r 6= s and all 1 6 i 6= j 6 n the elemen-

tary transvection tij(a1 . . . amgrs) is a product of 6 2m conjugates of g
and g−1 by elements of E(n, J). Then modulo those transvections any

tij(a1 . . . am(grr − gss)) is a product of 6 2m further conjugates of g and

g−1 by elements of E(n,R, J).

Proof. Observe that the entry of gtrs(1) in the position (r, s) equals grs+
grr − gss − gsr. Thus, by assumption applied to gtrs(1) any transvection

z = tij(a1 . . . am(grs + grr − gss − gsr))

is the product of 6 2m elementary conjugates of gtrs(1)x or g−trs(1)x, where
x ∈ E(n, J). It follows that ztrs(−1) is the product of 6 2m factors of the
form

gtrs(1)xtrs(−1) or g−trs(1)xtrs(−1), where x ∈ E(n, J).
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Obviously, trs(1)xtrs(−1) ∈ E(n,R, J). Thus, z−trs(1) is the product of
6 2m factors of the form gy and g−y, for y ∈ E(n,R, J).

When j 6= r and i 6= s one has [Xij , Xrs] = 1 so that already z itself
is such a product. On the other hand, by assumption applied to g itself
tij(a1 . . . amgrs) and tij(a1 . . . amgsr) are products of 6 2m factors of the
form gx and g−x, for x ∈ E(n, J). It follows that modulo these transvections

tij(a1 . . . am(grr − gss)) is a product of 6 2m factors of the form gy and
g−y, for y ∈ E(n,R, J).

In the remaining cases, j 6= s and i 6= r and we would start our argument
with the matrix gtsr(1), whose entry in the position (s, r) equals gsr+grr−
gss − grs, instead. �

§6. Further ramblings

Now, wielding the idea of replacing g by its elementary conjugates, we
can start expressing further small elementary matrices, whose parameters
are the entries of g with some extra factors from J . Now, we are not as
much concerned with the number of elementary conjugates, as with the
occurring power of J . Instead of passing to Move 5 we dwell a bit at Moves
3 and 4, however not for H itself, but rather for its elementary conjugates.
Of course, such improvements are only possible for subgroups normalised
by E(n,R, J).

Move 41

2
. Let g ∈ H , and let h 6= r, s. Then the entries of gtrs(1) ∈ Htrs(1)

in positions (h, r), (h, s) are equal to ghr and ghs+ ghr, respectively. From
Move 4 applied to gtrs(1) ∈ Htrs(1) we already know thr(a1 . . . a4(ghs +
ghr)) ∈ Htrs(1) for all a1, . . . , a4 ∈ J . It follows that

thr(a1 . . . a4(ghs + ghr))
trs(−1)

= thr(a1 . . . a4(ghs + ghr))ths(a1 . . . a4(ghs + ghr)) ∈ H.

Since from Move 4 applied to g ∈ H we also know that thr(a1 . . . a4ghs)∈H
and ths(−a1 . . . a4ghr)∈H , we can conclude that

thr(a1 . . . a4ghr)ths(−a1 . . . a4ghs) ∈ H.

Switching, as in Move 3 above, columns and rows, we also get similar
inclusions trh(a1 . . . a4grh)tsh(−a1 . . . a4gsh) ∈ H , for all a1, . . . , a4 ∈ J .

At this point, we can start rethinking also the previous steps, to get
further inclusions.
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Move 31

2
. In the notation of Move 4 1

2 , from Move 3 applied to gtrs(1) ∈

Htrs(1) we know that tsj(a1a2a3(ghr+ghs))6Htrs(1), for any a1, a2, a3∈J
and any j 6= r, s. It follows that

tsj(a1a2a3(ghs + ghr))
trs(−1)

= tsj(a1a2a3(ghs + ghr))trj(a1a2a3(ghs + ghr)) ∈ H.

Since from Move 3 applied to g ∈ H we also know that

tsj(a1a2a3ghs) ∈ H and trj(a1a2a3ghr) ∈ H,

we can conclude that tsj(a1a2a3ghr)trj(a1a2a3ghs)∈H . Switching columns
and rows, as in Moves 3 and 4 1

2 above, we also get similar inclusions
tjs(a1a2a3grh)tjr(a1a2a3gsh) ∈ H , for all a1, a2, a3 ∈ J .

However, to really get the necessary inclusions this way is not immedi-
ate. At some point you have to perform the tough computation involving
two opposite root elements. But then, if you have started the computa-
tion as in §3 above, you still get the bound m = 4. In the next paper,
I intend to rethink the whole computation from scratch, to commit two
opposite root elements from the very start, and to eventually obtain for
n > 4 the best possible bound m = 3. The case n = 3 has to be considered
separately anyway, and it might well happen that in this case Vaserstein’s
bound m = 4 cannot be improved.

§7. Final remarks

It would be natural to generalise results of the present paper to other
groups, such as Chevalley groups, Bak unitary groups, or Petrov odd uni-
tary groups. Analogues of Theorem 3 (and partly of Theorem 2) are known
in some cases, but usually with bounds that are far from optimal.

In the following problems we assume that Φ is an irreducible root system
of rank rk(Φ) > 3; – rank 2 has to be considered separately anyway.

Problem 1. Describe subgroups of a Chevalley group G(Φ, R), normalised

by the relative elementary subgroup E(Φ, J), for an ideal J ER.

Problem 2. Describe subgroups of a Chevalley group G(Φ, R), normalised

by the relative elementary subgroup E(Φ, R, J), for an ideal J ER.

The simply laced case should be comparatively easy. There is no doubt
that combining ideas of the present paper with those of [27], one would get
analogues of our Theorems 1–4 for Φ = Dl,E6,E7 and E8 by essentially
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the same arguments and with precisely the same bounds, as for GL(n,R),
n > 4. Presently, the author and Zuhong Zhang are writing up detailed
proofs.

However, the situation for multiply laced systems is substantially harder
in several respects. Even in the absolute case, the bounds in [17, 18] seem
to be grossly exaggerated. On the other hand, there is a genuine difficulty.
As we have already mentioned, in the simply laced case the degrees of
parameters of the elementary matrices occurring in the first move are 1. In
the doubly laced case, the degrees of these parameters with respect to the
entries of the initial matrix g are 2. This makes subsequent computations
much trickier.

When 2 is not invertible in R the situation becomes even worse. Again
even in the absolute case form parameters or admissible pairs occur, in
the statement of definitive answers. In our problem this leads to the corre-
sponding complications at the relative level, such as relative form parame-
ters, etc. Thus, solution of the above problems would provide description of
subnormal subgroups only when 2 ∈ R∗. Otherwise, one should solve simi-
lar, but technically more demanding problems stated in terms of birelative
elementary subgroups.

We do not try to describe results for generalised unitary groups. Let us
cite some of the recent papers, where one can find many further references
[9, 10, 32–36].

Over years I worked on localisation and relativisation jointly with An-
thony Bak, Roozbeh Hazrat, Victor Petrov, Alexei Stepanov, and Zuhong
Zhang. Successive incentive and inspiration that led to the present pa-
per came from discussions with John Wilson in April 2018, with Zuhong
Zhang in July 2018, and with Raimund Preusser and Alexei Stepanov in
November 2018. I am very grateful to all of them.
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