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EXTREMAL AREAS OF POLYGONS WITH FIXED

PERIMETER

Abstract. We consider the configuration space of planar n-gons
with fixed perimeter, which is diffeomorphic to the complex pro-
jective space CPn−2. The oriented area function has the minimum
number of critical points on the configuration space. We describe
its critical points (these are regular stars) and compute their indices
when they are Morse.

§1. Introduction

One of the results on the isoperimetric problem discussed in the classical
treatise by Legendre [7] states that the regular n-gon has the maximum
area among all n-gons with fixed perimeter. For the historic development of
this problem, we refer to [2]. The aim of the present paper is to elaborate
upon this classical result by placing it in the context of Morse theory
on a naturally associated configuration space. To this end, we follow the
paradigms used in [9,10] and begin with several definitions and recollecti-
ons.

An n-gon is an n-tuple of points (p1, . . . , pn) ∈ (R2)n, some of which
may coincide. Its perimeter is (as usual)

P(p1, . . . , pn) = |p1p2|+ |p2p3|+ · · ·+ |pnp1|.

The configuration space Cn considered in what follows is defined as the
space of all polygons (modulo rotations and translations) whose perimeter
equals 1 (one can fix any other positive number).

The oriented area of a polygon with vertices pi = (xi, yi) is defined as

2A = x1y2 − x2y1 + · · ·+ xny1 − x1yn.

The oriented area as a Morse function has been studied in various set-
tings: for configuration spaces of flexible polygons (those with the side
lengths fixed) in R2 and R3, see [5, 9–11]. We shall use some of the previ-
ous results in the new setting of this paper.

Key words and phrases: planar polygon, isoperimetric problem, configuration space,
oriented area, critical point, Morse index.
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Let σ be the cyclic renumbering: given a polygon P = (p1, . . . , pn),

σ(p1, . . . , pn) = (p2, p3, . . . , pn, p1).

In other words, we have an action of Zn on Cn which renumbers the vertices
of a polygon.

A regular star is an equilateral n-gon such that

σ(p1, . . . , pn) = (p1, . . . , pn),

see Figs. 1, 2.
A complete fold is a regular star with pi = pi+2. It exists for even n

only.
A regular star that is not a complete fold is uniquely determined by its

winding number w with respect to the center.
We can now formulate the main result of the paper.

Theorem 1. (1) The space Cn is homeomorphic to CPn−2. There-

fore, we regard it as a smooth manifold, keeping in mind the smooth

structure of the projective space.

(2) Smooth critical points of the function A on Cn are regular stars

and complete folds only.

(3) Nonsmooth points of A are Lipschitz-regular points of A.

(4) The function A has the minimum number of critical points on

CPn−2.

(5) The stars with the maximum winding numbers are nondegenerate

critical points of the function A.

(6) Under the assumption that all regular stars are nondegenerate crit-

ical points, the Morse index is

M(P ) =





2w(P )− 2 if w(P ) < 0;
2n− 2w(P )− 2 if w(P ) > 0;
n− 2 if P is a complete fold.

As an illustration, below we present figures showing some regular stars
together with their winding numbers.

It is worth mentioning that a scholarly example of an exact Morse func-
tion on the complex projective space is

F (u1 : · · · : un−1) =
a1|u1|

2 + · · ·+ an|un−1|
2

|u1|2 + · · ·+ |un−1|2
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Figure 1. Regular stars for n = 7 with their winding numbers.

Figure 2. Regular stars for n = 8 with positive winding numbers.

for distinct real numbers ai. We will discuss more on this in the last section;
now let us only mention that an obvious difference with the area function
is that a cyclic permutation of indices preserves the critical points of the
area and cyclically permutes the critical points of F .

§2. Proof of Theorem 1

There are three (well-known) statements to be used in the proof.

Statement A. Assume that a smooth manifold C′ is a codimension k
submanifold of a smooth manifold C. Let q ∈ C′ be a Morse point of some
function f : C → R. If q is also a Morse point of the restriction f |C′ , then
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for the Morse indices of f related to C and C′, we have

MC′(q) + k > MC(q) > MC′(q).

The proof easily follows from Sylvester’s formula for the index of a
symmetric matrix.

Statement B. Assume that a smooth manifold C is a Cartesian prod-
uct C = C1 ×C2, and a function f : C → R is the sum f = f1 + f2 where
f1,2 : C1,2 → R. Then q = (q1, q2) ∈ C is a Morse point if and only if q1
and q2 are Morse points of f1 and f2, respectively. In this case, the Morse
indices sum up:

M(q)C = MC1
(q1) +MC2

(q2).

This follows by noticing that, in this case, the Hessian matrix has block
form.

Statement C. Assume that q is a point in a smooth manifold Mn

that is an isolated critical point of a smooth function f . Assume that
there exist two submanifolds of complementary dimensions Nk ⊂ Mn

and Ln−k ⊂ Mn intersecting transversally at q. Assume also that q is a
nondegenerate local maximum of the restriction f |Nk and a nondegenerate
local minimum of the restriction f |Ln−k . Then q is a Morse point of f whose
Morse index is k.

The proof again follows from Sylvester’s formula for the index of a
symmetric matrix.

Claim (1) of Theorem 1 was probably known earlier. Assume that we
have a polygon P ∈ Cn. Identifying its ambient space R

2 with C, let us
interpret its edges p1p2,. . . ,pn−2pn−1 as complex numbers u1, . . . , un−1.
This (n − 1)-tuple is never identically zero, so it determines a point (u1 :
· · · : un−1) ∈ CPn−2. Conversely, each point in the projective space yields
a set of mutually homothetic polygons with a unique representative whose
perimeter equals 1.

Сlaim (2) appeared already in [6] (yet is unpublished). The proof fol-
lows from two observations.

First, it is easy to show that a critical point is an equilateral polygon.
Second, freeze the points p1, p3, . . . , pn. Setting l1 = |p1p2|, l2 = |p2p3|,
move the point p2 in such a way that l1 + l2 remains fixed. The point p2
travels along an ellipse. The area of the triangle p1p2p3 is critical if and
only if l1 = l2.



140 G. KHIMSHIASHVILI, G. PANINA, D. SIERSMA

Second, if we freeze all the edge lengths of the polygon, we know from [9]
that being critical means being cyclic. Therefore, a critical polygon is an
equilateral polygon which is inscribed in a circle.

It remains to consider polygons having coinciding edges going in oppo-
site directions, that is, with pi = pi+2. These are complete folds. Claim (2)
is proven.

Claim (3) is missing in [6]. The configuration space Cn inherits a
smooth structure from CPn−2, but the function A is not everywhere con-
tinuously differentiable, since the perimeter involves square roots. The
nonsmooth points are the configurations with two (or more) colliding
consecutive vertices; they form an arrangement of hyperplanes in CPn−2.
To make sure that nonsmooth points of A “behave like regular ones” in
the Morse-theoretic sense, we will use the concept of Clarke subdifferential
δc from nonsmooth analysis. This subdifferential is related to the limits
of all gradients at smooth points in a neighborhood of singular points. It
was introduced by Clarke in [4]. The generalized gradient δcf of a locally
Lipschitz function f has values in the set of nonempty compact convex
sets, satisfies the sum, product, quotient, and chain rules with set addition
and scalar multiplication. We use especially the paper [1], which contains
also the definition of a critical point and the regular interval theorem.

In the homogeneous coordinates (u1 : · · · : un−1) ∈ CPn−2, the signed
area function is A

P2 , where A is the area on Cn−1 and P is the perimeter.
More precisely,

ACPn−2(u1 : · · · : un−1) =

∑
16i<j6n−1

(uiuj − ujui)

(|u1|+ · · ·+ |un−1|+ |u1 + · · ·+ un−1|)2
.

Fix a nonsmooth point of P and let for this point u1 = x1 + iy1 = 0
and w := u2 + · · ·un−1 6= 0. Now take a local chart and consider the real
partial subderivative with respect to (x1, y1). We use the following facts:

(a) A′(0) = i · w (usual derivative); this is w rotated by π
2
;

(b) δc
√
x2
1 + y21 = D, where D is the unit disc in R2;

(c) δcP(0) = P ′(0) = w
|w| + D (Clarke derivative via the sum rule).

Next, we use the quotient rule:

( A

P2

)′

=
A′ · P − 2A · P ′

P3
= P0i · w − 2A0

w

|w|
− 2A0D.
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According to [1], a point q is called a critical point for a locally Lipschitz
function f : M → R on a smooth manifold M if and only if O ∈ δc(f)(q).
Proposition 1.2 of [1] extends the first Morse lemma (regular interval the-
orem) for Clarke regular points to locally Lipschitz functions.

We conclude the proof of (3) by showing that a nonsmooth point of P
is never critical with respect to A

P2 . It suffices to show this for the partial
subderivative with respect to (x1, y1).

The condition for a critical point in this case is

P0i · w − 2A0

w

|w|
∈ 2A0D.

By computing the norms of both sides we get P2
0 |w|

2 + 4A2
0 6 4A2

0, and
this is never the case. Claim (3) is proven.

Claim (4). We conclude that the number of critical points is n − 1.
Since the sum of the Betti numbers and the LS-category of CPn−2 is also
equal to n− 1, the number of critical points is minimal.

Claims (5) and (6). Each of the regular stars (which is not a complete
fold) is uniquely determined by its winding number. The latter ranges from
1 to [n−1

2
] and from −1 to −[n−1

2
].

Therefore, the Morse function is exact, and the Morse indices of the
critical points are 0, 2, 4, . . . , 2n− 4; it remains to understand which star
has which index.

Denote by S(n,w) the n-gonal regular star with index w.
First, observe that each of the regular stars (with winding number w)

has its symmetric image whose winding number is −w.
The only exception is a complete fold, which is symmetric to itself.

Splitting construction. Take a neighborhood of a regular star P with
a positive winding number w (which is not a complete fold) and consider
two transversally intersecting submanifolds of Cn. The first one is the con-
figuration space of equilateral polygons EQUILAT . That is, it consists of
all polygons whose edge lengths are equal. Its dimension is n− 3, and the
following is known from [9].

Lemma 1. The Morse index of P related to EQUILAT is n−1−2w. �

Therefore, for S(n, [n−1

2
]) the Morse index of P related to this manifold

is 0. Moreover, from [5] it is known that P is a nondegenerate minimum.
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The other manifold CY CL is the subspace of all polygons that are
cyclic. Its dimension is n− 1.

Lemma 2. Let P be a regular star that is not a complete fold with w > 0.
Then P is a nondegenerate local maximum on CY CL. So, the Morse index

of P related to CY CL is n− 1.

Proof. The problem is equivalent to the following setting. Take the space
of all n-gons inscribed in the unit circle and consider the function ACPn−2 =
A
P2 . It is well-defined in a neighborhood of a regular star. It suffices to prove
that the regular star with w > 0 is its local maximum.

Introduce local coordinates by setting xi to be the shift of the ith vertex

of the star and ti = xi+1 − xi. Note that
n∑

i=1

xi = 2π and
n∑

i=1

ti = 0. We

will compute the 2-jets j2 (Taylor expansions up to order 2). This suffices
to find the Morse indices. Computations show that in these coordinates,

j2Ã is a negative definite quadratic form. In more detail,

j2P(t1, . . . , tn) =
√
(2− 2cos α) · (n− 1/8

n∑

i=1

t2i ),

j2A(t1, . . . , tn) =
sin α

2
· (2n−

n∑

i=1

t2i ),

and

j2(2A/P
2)(t1, . . . , tn) =

1 + cos α

8n2 sin α
· (4n−

n∑

i=1

t2i ),

where α = 2wπ
n

. Note that since w > 0, the first factor is always positive
and, therefore, the quadratic part is negative definite.

The lemma is proven. �

Assume that n is odd. Now, an application of Statement C proves
Claims (5) and (6) of Theorem 1 for S(n, [n−1

2
]). By symmetry, Claims (5)

and (6) are also proven for S(n,−[n−1

2
]).

Proof of Claim (6) for the remaining cases. We now assume that all
critical points are nondegenerate. Two mutually symmetric stars have in-
dices i and n − 2 − i, so it suffices to prove (6) for one of them. Besides,
by symmetry reasons we immediately conclude that Claim (6) holds for
complete folds.
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First, we prove the statement for odd n. Take all the stars S(n,w) with
n−1

2
> w > 0. By Lemma 2, we have M(S(n,w)) > n− 1. So, their indices

taken together are 2n− 4, 2n− 6, . . . , n+ 1.
Now let us take all the stars S(n,w) with n−1

2
< w < 0. By symmetry,

their indices taken together are 0, 2, 4, ..., n − 5. On the other hand, by
Lemma 1, their indices relative EQUILAT give exactly the same set.
This relative index never exceeds the index rel Cn, so Claim (6) for odd n
is proven.

Next, we prove the statement for even n. By a kind of analogy, consider
all stars S(n,w) with w > 0. By Lemma 2, we have M(S(n,w)) > n− 1.
So, their indices taken together are 2n− 4, 2n− 6, ..., n.

Now let us take all the stars S(n,w) with w < 0. By symmetry, their
indices taken together are 0, 2, 4, ..., n−4. On the other hand, by Lemma 1,
their indices relative EQUILAT give exactly the same set. Since the rel-
ative index never exceeds the index rel Cn, Claim (6) is proven. We have
now completed the proof of Theorem 1. �

§3. Concluding remarks

The study of Morse functions on the space Cn = CPn−2 can be related to
its Veronese-type embedding into the space HMat of Hermitian matrices.
Its image is known (see [3]) to be a taut embedding. It follows that the
restriction of almost every R-linear function on HMat to the image of
Cn = CPn−2 is an exact Morse function, so it has the minimum number of
critical points. The function F mentioned in the introduction is of this type.
Our function A is not of this type, since in the coordinates of Cn = CPn−2

it is the quotient of the area and the squared perimeter:

ACPn−2(u1 : · · · : un−1) =

∑
16i<j6n−1

(uiuj − ujui)

(|u1|+ · · ·+ |un−1|+ |u1 + · · ·+ un−1|)2
.

The numerator extends to a linear function, but the denominator
contains square roots of the coordinates. But it still has the good property
that it has the minimum number of critical points. A more general ques-
tion is how the geometry and metric of the projective space can be used
to obtain a deeper understanding.

It seems also worth adding that Theorem 1 suggests several further
developments in the same spirit.
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First, one can obtain similar descriptions of extremals of the area under
different constraints. The most obvious option is to fix the sum of certain
powers of the side lengths. In other words, one looks for extremals of the
area under the condition that

∑
(ai)

p = const,

where p is a fixed positive number. For symmetry reasons, regular stars
and complete folds are critical in this case too. However, it is not obvious
that there are no other extremals, since the geometric reasoning used for
fixed perimeter is not directly applicable. For p = 2, a rigorous analytic
proof of this fact is given in [6] without discussing the nondegeneracy and
Morse indices of stars. Perhaps, this case fits better in the framework of
the Veronese embedding. Moreover, it is not difficult to verify that the
same method of proof is applicable for any positive p.

Finally, in line with the general idea of duality in the calculus of
variations, one may consider a dual problem by fixing the values of the area
and looking for extremals of the perimeter. Some conclusions and lines of
research are immediate. For example, it is easy to verify that generically
the critical points of A with P fixed are the same as the critical points of
P with A fixed. One can also derive the Morse index formula for the dual
problem from our Theorem 1.
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