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THE ABSOLUTE OF THE COMB GRAPH

Abstract. In the 1970s R. Stanley introduced the comb graph
E whose vertices are indexed by the set of compositions of posi-
tive integers and branching reflects the ordering of compositions by
inclusion. A. Vershik defined the absolute of a Z+-graded graph
as the set of all ergodic probability central measures on it. We
show that the absolute of E is naturally parametrized by the space
Ω = {(α1, α2, . . . ) : αi > 0,

∑
i
αi 6 1}.

§1. Introduction

The Young graph is the Hasse diagram of the set of all Young dia-
grams (or partitions) partially ordered by inclusion (see [6] for details).
If, instead of partitions, we consider the set Comp of all compositions of
positive integers, we obtain the so-called comb graph E. It was introduced
by R. Stanley in [9, 10], and it corresponds to the following partial order
on N

2 (see Fig. 1):

(i, j) ≺ (k, l) ⇐⇒

{
i = k and j < k;

j = l = 1 and i < k.
(1)

Both the Young graph and comb graph are Z+-graded graphs without
multiple edges, where the grading |µ| =

∑
i µi of a diagram µ = (µ1, µ2, . . .)

is the number of boxes in the diagram (the weight of µ).

Definition 1.1. The comb graph E can be constructed as follows. The
vertices of the nth level En of E are identified with the set Compn of
compositions of weight n. Denote by ℓ(µ) the number of parts in µ ∈ En.
There is an edge between vertices µ ∈ En and µ ∈ En+1 if one of the two
situations occur:

• either there exists j ∈ {1, . . . , ℓ(µ)} with
µ =

(
µ1, . . . , µj + 1, . . . , µℓ(µ)

)
,

• or µ =
(
µ1, . . . , µℓ(µ), 1

)
.

Key words and phrases: comb graph, compositions, Martin boundary, ergodic cen-
tral measures, absolute.
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Figure 1. The “comb” partial order on N
2.

Denote any of these two situations by µ ր µ.

The first levels of the comb graph are shown in Fig. 2.

Figure 2. The comb graph.

A function h :
∞⋃
n=0

En 7→R+ is called a normalized harmonic function if

h(∅)=1 and

h(µ) =
∑

µրµ

h(µ) for any µ ∈
∞⋃

n=0

En.
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Denote the space of such functions by H(E). The characterization of the
harmonic functions for particular examples of Z+-graded graphs (or Brat-
teli diagrams) is one of the basic questions in the asymptotic theory of
such graphs, see [5, 6, 8, 11, 12] and the references therein. Such a function
is said to be extremal if it cannot be written as a nontrivial convex com-
bination ah1(µ) + (1− a)h2(µ), where a ∈ (0, 1), h1, h2 ∈ H(E), h1 6= h2.
The set Emin(E) of normalized nonnegative extremal harmonic functions
is called the minimal boundary of the graph E. In general, it is a proper
subset of the Martin boundary EMart(E), see Definition 2.2. For the comb
graph, we show that Emin(E) = EMart(E) and give an explicit description
of the boundaries.

Consider the topological space

Ω = {(α1, α2, . . . ) : αi > 0,
∑

i

αi 6 1}

with the topology of pointwise convergence, and the set of polynomials
{Qµ(α1, α2, . . . )}, µ ∈ Comp,

Qµ(α1, α2, . . . ) =

ℓ(µ)∏

i=1

(
1−

i−1∑

k=1

αk

)
αµi−1
i . (2)

Theorem (Main theorem). (i) EMart(E) = Emin(E) ∼= Ω.
(ii) The integral representation

φ(µ) =

∫

Ω

Qµ(ω)dPφ

gives a one-to-one correspondence between the harmonic functions
φ ∈ H(E) and the probability measures Pφ on Ω.

Recall (see [6, 8]) that there is a natural bijection between the nonneg-
ative harmonic functions and the central measures on a Z+-graded graph.
Under this bijection, the boundary Emin(E) corresponds to the set of all
ergodic probability central measures on the graph (the absolute of E).

Corollary 1.1. The absolute of E is parametrized by Ω.

Remark 1.2. In [13], A. Vershik described the Plancherel measure on the
Young graph as the unique nondegenerate central measure on it; this can be
deduced from the fact that the Plancherel measure is the unique measure
with zero frequencies. He inspired the present work by conjecturing that the
family of nondegenerate central measures for the comb graph is richer. We
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see from Corollary 1.1 and Proposition 2.4 that there is only one harmonic
function h0 with zero frequencies (see Definition 2.1):

h0(λ) =

{
1 if λ = (1r), r ∈ N;

0 otherwise;

therefore, the conjecture does not hold.

For any sequence L = {li : li ∈ N}∞i=1, consider the subset

∞⋃

i=1

{(i, j) : 1 6 j 6 li} ⊂ N
2

and restrict the partial order (1) to it. The corresponding branching graph
E
L is a subgraph of the comb graph.

Corollary 1.3. For any sequence L = {li : li ∈ N}∞i=1, the absolute of the
graph E

L consists of the unique central measure with zero frequencies.

Remark 1.4. One can easily see from Proposition 2.4 and formulas (2)
that the central measure corresponding to (α1, α2, . . . ) ∈ Ω can be de-
scribed as a random walk on E with transition probabilities

p

(
(µ1, µ2, . . . ),µ

)
=

{
αj if µ =

(
µ1, . . . , µj + 1, . . . , µℓ(µ)

)
;

1−
∑ℓ(µ)

j=1 αj if µ =
(
µ1, . . . , µℓ(µ), 1

)
.

Remark 1.5. A similar description for the boundaries of the Kingman
graph K was given in [4, 5, 7]. In this case, the boundaries EMart(K) =
Emin(K) are parametrized by the ordered version of Ω:

ΩK = {(α1 > α2 > . . . > 0) :
∑

i

αi 6 1}.

Another nonsymmetric generalization of the Kingman graph, the refined
Kingman graph, was considered in [2, 3]. In this case, the Martin boun-
dary and the minimal boundary of the graph also coincide, but their
parametrization is more subtle.

§2. Proofs

For any two vertices µ = µ(n) ∈ En, µ = µ(N) ∈ EN , denote by
dim(µ,µ) the number of paths µ = µ(n) ր · · · ր µ(N) = µ, |µ(i)| = i,
and denote by dim(µ) the number of paths from ∅ ∈ E0 to µ.
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Lemma 2.1. For µ = (µ1, µ2, . . . , µl) ∈ En, µ = (µ1,µ2, . . . ,µL) ∈ EN ,
n 6 N , we have

dim(µ) = N !

(
L∏

i=1

(N −
i−1∑

k=1

µk)(µi − 1)!

)−1

, (3)

dim(µ,µ) =(N − n)!

(
L∏

i=l+1

(N−

i−1∑

k=1

µk)

l∏

i=1

(µi−µi)!

L∏

i=l+1

(µi−1)!

)−1

,

(4)

dim(µ,µ)

dimµ
=

(N − n)!

N !

l∏

i=1

(
N −

i−1∑

k=1

µk

)
(µi − 1)µi−1, (5)

where (x)n denotes the Pochhammer symbol (falling factorial):

(x)n = x(x − 1) . . . (x− n+ 1).

Denote by dim′(µ,µ) the right-hand side of (4). The only difficulty is to
prove the branching rule for dim′(µ,µ). For the convenience of the reader,
we first show it for a representative special case.

Example 2.1. Let ℓ(µ) = 2, ℓ(µ) = 5. We show that

dim′(µ,µ) =

5∑

j=1

dim′(µ, (µ1, . . . ,µj − 1, . . . ,µ5)).

We multiply both sides by the common denominator to obtain

(N − n)(N − µ1 − µ2 − 1)(N − µ1 − µ2 − µ3 − 1)

=

(
(µ1 − µ1) + (µ2 − µ2)

)
(N − µ1 − µ2 − 1)(N − µ1 − µ2 − µ3 − 1)

+ (N − µ1 − µ2)(N − µ1 − µ2 − µ3 − 1)(µ3 − 1)

+ (N − µ1 − µ2)(N − µ1 − µ2 − µ3)(µ4 − 1)

+ (N − µ1 − µ2)(N − µ1 − µ2 − µ3)(N −
4∑

i=1

µi) = 0 ⇐⇒



130 P. NIKITIN

⇐⇒ (N − µ1 − µ2)

(
(N − µ1 − µ2 − 1)(N − µ1 − µ2 − µ3 − 1)

− (N − µ1 − µ2 − µ3 − 1)(µ3 − 1)− (N − µ1 − µ2 − µ3)(µ4 − 1)

(N − µ1 − µ2 − µ3)(N −

4∑

i=1

µi)

)
= 0 ⇐⇒ (N − µ1 − µ2 − µ3)

×

(
(N − µ1 − µ2 − µ3 − 1)− (µ4 − 1)− (N −

4∑

i=1

µi)

)
= 0.

Proof of lemma 2.1. Formulas (3) and (5) follow from (4). We prove (4)
by induction. Obviously, dim′(µ, µ) = 1 and dim′(µ,µ) = 0 if µ 6⊂ µ.
Therefore, it suffices to prove that

dim′(µ,µ) =

ℓ(µ)∑

j=1

dim′(µ, (µ1, . . . ,µj−1,µj − 1,µj+1, . . . ,µℓ(µ))). (6)

We set l = ℓ(µ), L = ℓ(µ) and rewrite (6) as

(N−n)
L−1∏

k=l+1

(N−
k−1∑

m=1

µm−1)−

( l∑

i=1

(µi−µi)

) L−1∏

k=l+1

(N−
k−1∑

m=1

µm−1)

−

L−1∑

j=l+1

(µj − 1)

j∏

k=l+1

(N −

k−1∑

m=1

µm)

L−1∏

k=j+1

(N −

k−1∑

m=1

µm − 1)

−

L∏

k=l+1

(N −

k−1∑

m=1

µm) = 0 ⇐⇒ (N −

l∑

m=1

µm)

( L−1∏

k=l+1

(N −

k−1∑

m=1

µm − 1)

−

L−1∑

j=l+1

(µj − 1)

j∏

k=l+2

(N −

k−1∑

m=1

µm)

L−1∏

k=j+1

(N −

k−1∑

m=1

µm − 1)

−

L∏

k=l+2

(N −

k−1∑

m=1

µm)

)
= 0 ⇐⇒ (N −

l+1∑

m=1

µm)

( L−1∏

k=l+2

(N −

k−1∑

m=1

µm − 1)

−

L−1∑

j=l+2

(µj − 1)

j∏

k=l+3

(N −

k−1∑

m=1

µm)

L−1∏

k=j+1

(N −

k−1∑

m=1

µm − 1)

−

L∏

k=l+3

(N −

k−1∑

m=1

µm)

)
= 0 ⇐⇒ · · · ⇐⇒ (N −

L−2∑

m=1

µm)



THE ABSOLUTE OF THE COMB GRAPH 131

×

(
(N −

L−2∑

m=1

µm − 1)− (µL−1 − 1)− (N −

L−1∑

m=1

µm)

)
= 0. �

Lemma 2.2. In the notation of the previous lemma, we have
∣∣∣∣∣
dim(µ,µ)

dimµ
−Qµ

(
µ1

N
,
µ2

N
, . . .

)∣∣∣∣∣ 6
C(µ)

N
,

where the constant C(µ) depends on µ only.

Proof. By the previous lemma, we have

∣∣∣∣∣
dim(µ,µ)

dimµ
−Qµ

(
µ1

N
,
µ2

N
, . . .

)∣∣∣∣∣

=

∣∣∣∣∣
(N − n)!

N !

ℓ(µ)∏

i=1

(
N −

i−1∑

k=1

µk

)
(µi − 1)µi−1 −Qµ

(
µ1

N
,
µ2

N
, . . .

)∣∣∣∣∣

=

∣∣∣∣∣
(N − n)!

N !

∑

1ℓ(µ)⊂µ′(µ

c(µ, µ′)N |µ′|Qµ′

(
µ1

N
,
µ2

N
, . . .

)∣∣∣∣∣ 6
C(µ)

N
,

where c(µ, µ′) is a combinatorial factor depending on µ and µ′ only. Here
we have used the obvious estimate |Qµ′(x1, x2, . . . )| 6 1 for any µ′ ∈ Comp
if
∑

xi 6 1 and xi > 0. �

Lemma 2.3. The linear space spanned by the polynomials {Qµ(ω)}µ∈Comp

is uniformly dense in the space of continuous functions on Ω.

Proof. The topological space Ω is compact as a closed subspace of [0, 1]N.
The polynomials {Qµ(ω)} are, obviously, continuous. We show that the

closure of their linear span contains all the monomials
∏ℓ

i=1 α
µi

i , ℓ ∈ N,
µ1, µ2, . . . µℓ−1 ∈ N ∪ {0}, µℓ ∈ N, and then apply the Stone–Weierstrass
theorem. Indeed, for ℓ = 2 we have

αµ1

1 αµ2

2 = (1− α1)α
µ1

1 αµ2

2

∞∑

j=0

αj
1 =

∞∑

j=0

(1 − α1)α
µ1+j
1 αµ2

2

=

∞∑

j=0

Q(1+µ1+j,1+µ2)(α1, α2, . . . ),
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where the sum is uniformly convergent, because we have
∞∑

j=j0

(1− x1)x
µ1+j
1 xµ2

2 6 xµ1+j0
1 (1− x1) 6

1

µ1 + j0
(7)

if x1 > 0, x2 > 0, 1 > x1 + x2. In the general case, we write

ℓ∏

i=1

αµi

i =

ℓ−1∏

n=0

α
µn+1

n+1 =

ℓ−1∏

n=0

(
1−

n∑

k=1

αk

)
α
µn+1

n+1

∞∑

j=0

( n∑

k=1

αk

)j

=
ℓ−1∏

n=0

(
1−

n∑

k=1

αk

)
α
µn+1

n+1

∞∑

jn,1,jn,2,...,jn,n=0

(
jn,1 + · · ·+ jn,n
jn,1, . . . , jn,n

) n∏

m=1

αjn,m
m

=
∑(

j2,1 + j2,2
j2,1, j2,2

)
· · ·

(
jn,1 + · · ·+ jn,n
jn,1, . . . , jn,n

)
· · ·

×Q(1+µ1+j1,1+j2,1+...,1+µ2+j2,2+j3,2+...,... )(α1, α2, . . . ),

where the last sum is over all jp,q ∈ N ∪ {0}, p, q ∈ N, p > q. This sum is
uniformly convergent because of the same uniform bound (7). �

For a fixed n ∈ N, there is a natural mapping from Compn to Ω:

µ = (µ1, µ2, . . . ) 7→ ωµ =

(
µ1

n
,
µ1

n
, . . .

)
.

We identify the set Comp of all compositions with the set

Ẽ =

∞⋃

n=1

⋃

µ∈En

(
1

n
, ωµ

)
⊂ [0, 1]× Ω,

and put

Ω̃ = Ẽ ∪ ({0} × Ω).

For a sequence of compositions (µ(k)), we say that
(
1/|µ(k)|, ωµ(k)

)
→ (q, ω) ∈ [0, 1]× Ω

as k → ∞ if and only if 1/|µ(k)| → q in [0, 1] and ωµ(k) → ω in Ω. Note

that the boundary of the subset Ẽ in [0, 1] × Ω is {0} × Ω ∼= Ω, and,
following [5], we call Ω the geometric boundary of the graph E.

Definition 2.1. If the limit limk→∞ µ(k)i/|µ(k)| exists, then we call it
the ith frequency of the sequence (µ(k)).
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It turns out that harmonic functions are fully characterized by their
frequencies. The following argument is standard once the density in C(Ω)
is proved.

Proposition 2.4. Let

{(
|µ(k)|−1, ωµ(k)

)}∞

k=1

be a sequence of elements

of Ω̃ with lim |µ(k)| = ∞. The following two conditions are equivalent:

(1) There exists (0, ω) ∈ Ω̃ such that
(

1

|µ(k)|
, ωµ(k)

)
−−−−→
k→∞

(0, ω) in Ω̃. (8)

(2) For each µ ∈ Comp, the limit

lim
k→∞

dim(µ,µ(k))

dimµ(k)
(9)

exists.

The limit in (9) equals Qµ(ω).

Proof. If the limit (8) exist, then we use Lemma 2.2 to see that

lim
k→∞

dim(µ,µ(k))

dimµ(k)
= Qµ(ω).

Conversely, assume that (9) holds, and suppose that there are two subse-
quences in (8) with different limits (0, ω1), (0, ω2). We construct a function
f ∈ C(Ω) with f(ω1) 6= f(ω2) and use the density of the space spanned
by {Qµ(ω)} in C(Ω) to see that f(ω1) = f(ω2), a contradiction. �

Definition 2.2. Consider the image ∆̃ of a Z+-graded graph ∆ under the
following mapping to R

∆
+:

B 7→

(
β 7→

dim(β,B)

dimB

)
,

where the space of functions is endowed with the topology of pointwise

convergence. Let Ẽ be the closure of ∆̃, and denote by EMart(∆) the cor-

responding boundary, EMart(∆) = Ẽ\∆̃. It is called the Martin boundary
of the branching graph ∆.

Every point ω ∈ EMart(∆) of the Martin boundary corresponds to a nor-
malized nonnegative harmonic function K( · , ω) : µ 7→ K(µ, ω). We have
Emin(∆) ⊂ EMart(∆), and the following integral representation holds.
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Theorem 2.5 ( [1]). Every normalized nonnegative harmonic function
φ ∈ H(∆) admits a unique integral representation

φ(µ) =

∫

Emin(∆)

K(µ, ω)dPφ,

where Pφ is a probability measure. Conversely, every probability measure P
on Emin(∆) corresponds to a normalized nonnegative harmonic function.

Theorem (Main theorem). (i) EMart(E) = Emin(E) ∼= Ω.
(ii) The integral representation

φ(µ) =

∫

Ω

Qµ(ω)dPφ

gives a one-to-one correspondence between the harmonic functions
φ ∈ H(E) and the probability measures Pφ on Ω.

Proof. We see from Proposition 2.4 that EMart(E) ∼= Ω. Moreover, the
functions Q·(ω) : µ 7→ Qµ(ω) are normalized nonnegative harmonic func-
tions on E. Therefore, it suffices to check that all these functions are ex-
tremal.

Assume that Q·(ω0) is not extremal for ω0 ∈ Ω. By Theorem 2.5, there
exists a probability measure dPω0 such that

Qµ(ω0) =

∫

Emin(E)

Qµ(ω)dPω0

for any µ ∈ Comp. By Lemma 2.3, the linear space spanned by the poly-
nomials {Qµ(ω)} is uniformly dense in C(Ω); therefore, the equality

f(ω0) =

∫

Emin(E)

f(ω)dPω0

holds for any f ∈ C(Ω). However, it is easy to construct a nonnegative
function f0 ∈ C(Ω) such that f(ω0) = 1 and f(ω) < 1 for ω 6= ω0. We
have

1 = f0(ω0) =

∫

Emin(E)

f0(ω)dPω0 <

∫

Emin(E)

dPω0 = 1,

a contradiction.
Part (2) of the theorem follows from (2) and Theorem 2.5. �
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