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A REMARK ON NILPOTENT LIE ALGEBRAS THAT DO

NO ADMIT GRADINGS

Abstract. We explain why nilpotent Lie algebras usually are char-
acteristically nilpotent, i.e., do not admit Z-gradings.

Below we consider only Lie algebras over the complex field C. We denote
by adx the adjoint operator in a Lie algebra, adx(y) = [x, y].

By C× we denote the multiplicative group of C.
Recall that a nilpotent Lie algebra g is characteristically nilpotent if it

satisfies the following equivalent conditions:
• the algebra of derivations of g is nilpotent;
• g does not admit a nontrivial Z-grading;
• there are no nontrivial holomorphic actions of C× on g by automor-

phisms;
• an infinite reductive algebraic group cannot act nontrivially by auto-

morphisms of g.
• the group T := R/Z cannot act on g nontrivially by automorphisms.
All nilpotent Lie algebras of dimension 6 6 admit Z-gradings. Also,

nilpotent Lie algebras of large dimensions that arise in mathematical liter-
ature are usually graded. However, in 1957 Dixmier and Lister [11] found an
8-dimensional example of a characteristically nilpotent algebra. After this,
many works were published on constructions of characteristically nilpotent
algebras, some references are [1, 16, 19, 23, 24].

1. Several remarks on nilpotent Lie algebras. In textbooks, nilpo-
tent Lie algebras seem to be a simple topic. On the other hand, there are
attractive general theorems about nilpotent Lie algebras/groups, such as
Malcev’s rigidity theorem for cocompact lattices [28] and Kirillov’s theo-
rem [20] on the correspondence between unitary representations and coad-
joint orbits (for extensions of both theorems, see the book [10] by Corwin
and Greenleaf; see also [17, 34]). However, nilpotent Lie algebras are a
difficult and extremely viscous topic.
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A classification of such algebras is trivial up to dimension 5. The list
in dimension 6 was obtained (with gaps) in Umlauf’s thesis [40]1 in 1891.
Morozov obtained a final classification in 1958; there are 20 indecompos-
able algebras and 10 algebras decomposable into directs sums of algebras
of lower dimensions. Individual elements of Morozov’s list are pleasant
objects, but the whole list is not transparent.

In 1966, Safiullina, in her Ph.D. thesis2 [36], obtained a classification
of 7-dimensional algebras; the work was published only in a not easily
available edition [37]. Her list contains gaps (which are unavoidable in
such works); in the subsequent 30 years, several authors suggested their
versions of the classification (see a complete collection of references in [15]).
In 1993, Seeley [38] published a list which was considered to be correct;
however, it also contained minor gaps. A new version, which is apparently
final up to now, was obtained in Gong’s Ph.D. thesis [15] in 1998. The list
contains 6 one-parameter families, 119 indecomposable algebras, and 32
decomposable algebras. There remains a minor chance to cover the whole
set by several transparent families with observable degenerations; in any
case, the existing classification is hard to understand.

In 1961, Gerstenhaber [13] defined varieties of structure constants. Con-
sider an n-dimensional Lie algebra g with a fixed basis ej. The Lie bracket

in g has the form [ek, el] =
∑

j c
j
klej, where the structure constants cjkl

satisfy conditions of two types, cjkl = −cjlk (anticommutativity) and
∑

α

(
cαijc

β
αk + cαjkc

β
αi + cαkic

β
αj

)
= 0

(the Jacobi identity). Thus, we get an algebraic variety Lien in the space

with coordinates cjkl. Isomorphism classes of Lie algebras correspond to
orbits of the general linear group GL(n,C) on Lien. This variety is re-
ducible, i.e., consists of several components3. The first works on this topic
were published by Vergne [41,42]. A classification of components is known

1The author has not seen this thesis, the list was reproduced in [31].
2The author has not seen this thesis.
3A semisimple Lie algebra cannot be deformed, hence a GL(n)-orbit of a semisimple

algebra (its dimension is n2
− n) is open dense in a certain component. On the other

hand, for a semisimple Lie algebra the spectrum of an operator ad(x) is symmetric
with respect to 0, and this property is preserved under degenerations. For solvable
algebras, the symmetry of the spectrum of adx usually does not hold; therefore, in
general, solvable Lie algebras are not degenerations of semisimple algebras, hence they
are contained in other components.



110 YU. A. NERETIN

up to dimension 7, see [8,21,32]. The proof in [32] is based on simple argu-
ments and is short. However, the components of Lie7 consisting of solvable
algebras are enumerated by nilpotent radicals, in particular, Morozov’s list
embeds into the list of components of Lie7 (clearly, this phenomenon is not
optimistic4 from the point of view of extending the classification to higher
dimensions).

In 1966, Vergne [41, 42] initiated an investigation of components of the
varieties Niln ⊂ Lien of structure constants of nilpotent Lie algebras. For
n 6 6, these varieties are irreducible. For instance, for n = 6 all nilpotent
Lie algebras are degenerations of the algebra with basis xj , where j = 1,

2, 3, 4, 5, 6
/

, 7, and the relations

[xk, xl] = xk+l for k < l.

According to Goze and Ancochea Bermudez [18], the space Nil7 consists
of two 40-dimensional components. Dense sets in these components form
the following two families of algebras5: pλ, with the relations

[x1, xi] = xi+1, 2 6 i 6 5, [x1, x6] = x7, [x2, x3] = x5, (1)

[x2, x4] = x6, [x2, x5] = λx7, [x3, x4] = (1− λ)x7; (2)

and qλ, with the relations

[x1, xi] = xi+1, i = 2, 3, 4
/
, 5, [x2, x3] = x5, [x2, x4] = x6, (3)

[x1, x4] = x7, (4)

[x2, x5] = λx7, (5)

[x1, x6] = x7, [x3, x4] = x7, (6)

[x2, x6] = x7, [x3, x5] = −x7. (7)

The algebras pλ are graded, deg xj = j; the algebras qλ are characteristi-
cally nilpotent.

4By [32], the maximum dimension of components of Lie7 is 2
27

n3 + O(n8/3), the

minimum dimension is 3
4
n2 + O(n). The growth of the number of components is at

least exponential, see [9]. As far as I know, there are no reasonable upper estimates for

this number, Bézout’s theorem gives the trivial estimate 6 2n
4

.
5We use the realizations due to Seeley [38]; in the numeration of Gong [15], they are

algebras (123457I) and (12457N).
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The classification of the components of Nil8 remains unknown; certainly,
this problem is solvable using a computer. However, we do not have effec-
tive tools for separating components in larger dimensions.6

It seems that we know almost nothing about generic nilpotent Lie alge-
bras of large dimensions (say, > 12) except few general theorems.

There is another observation showing the degree of our incomprehen-
sion. By the Ado theorem, any n-dimensional Lie algebra g can be realized
as an algebra of matrices of a certain size N = N(g). The known proofs
(for a simple proof, see [33]) give terrible upper estimates on N(g), which
seem to be superexponential in dim g; Burde showed that the estimates
are exponential, see [4]. Problems with upper bounds are caused by nilpo-
tent Lie algebras (passing to non-nilpotent Lie algebras causes a minor
increase in the dimension7). However, it is difficult even to construct ex-
amples with N − n > 2, see [5, 6, 30]. The presence of a grading simplifies
the construction of faithful representations8; therefore, it is reasonable to
search examples with large N(g) among the characteristically nilpotent
Lie algebras.

2. Two lemmas. Let g be a nilpotent Lie algebra. Denote by

g[1] = g, g[2] = [g, g[1]], g[3] = [g, g[2]], . . .

6Shafarevich formulated the following question. Consider the variety Comn of struc-
ture constants of commutative n-dimensional algebras. It has a distinguished compo-
nent Com•

n, where the algebras isomorphic to C⊕ · · · ⊕C form an open dense set. It is
clear that there are many components of larger dimensions (for details on varieties of
structure constants of commutative and associative algebras, see [26, 27]; see also [39]).
However, is it possible to give an explicit example of an algebra that is not contained in
Com•

n (without such words as “consider N algebraically independent numbers”)? Argu-
ments based on semi-continuity properties of algebras do not work here. For nilpotent
Lie algebras, the problem has a similar character.

7Apparently, it reduces the dimension.
8Let g be Z-graded, g = ⊕gj . Then we add a generator h to g and consider a new

Lie algebra ĝ, with the relations [h, x] = jx for all x ∈ gj . The kernel of the adjoint
representation of ĝ is contained in the subalgebra g0. If g0 = 0, then we get a faithful
representation of ĝ (and hence of g).
If g = ⊕j>0gj , then g+ := ⊕j>0gj is an ideal and g0 = g/g+. So, we can consider the
direct sum of the adjoint representation of ĝ and a faithful representation of g0. Thus,
the problem is reduced to an algebra of smaller dimension.
However, if for some m both subspaces gm and g−m are nonzero, then such a reduction
does not work.
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its lower central series. Denote by z(g) the center of g. Let V ⊂ g be an
arbitrary subspace complementary to g[2]. Then V generates g.

Consider a nilpotent Lie algebra g. Let Aut(g) be its group of auto-
morphisms,9 and let D(g) be the Lie algebra of all derivations of g; recall
that D(g) is the Lie algebra of Aut(g). The group Aut(g) is an algebraic
group, therefore (see, e.g., [43, Chap. 6, Subsec. 1]), Aut(g) is a semidirect
product of a reductive subgroup L(g) and a (connected) normal unipotent
subgroup N(g):

Aut(g) = L(g)⋉N(g).

Similarly, D(g) is an algebraic Lie algebra, and it is a semidirect product
of a reductive subalgebra L(g) and the nilpotent radical N(g):

D(g) = L(g) ⋉N(g).

Recall that L(g) is the product of a semisimple algebra and an Abelian
algebra, the Abelian Lie algebra acting in g by diagonalizable operators10.
The representation of L(g) in g is semisimple, i.e., it is a direct sum of
irreducible representations.

The group L(g) regarded as an abstract group is canonically defined
as the quotient Aut(g)/N(g). This group regarded as a subgroup L(g) ⊂
Aut(g) is defined up to conjugations by elements of N(g). Moreover, for
any reductive subgroup H ⊂ Aut(g) there is an element q ∈ N(g) such
that qHq−1 ⊂ L(g).

Lemma 1. Let g be a nilpotent Lie algebra, and let I ⊂ [g, g] be a char-
acteristic ideal11 of g. Then there is a canonical (up to conjugation) em-
bedding from L(g) = Aut(g)/N(g) to L(g/I) = Aut(g/I)/N(g/I).

Proof. The group Aut(g) leaves I invariant and, therefore, acts on g/I;
hence we have a homomorphism Aut(g) → Aut(g/I). We must show that
the induced homomorphism ι : L(g) → L(g/I) is a monomorphism. Fix an
embedding L(g) → Aut(g). Since the action of L(g) is semisimple, we can
choose an L(g)-invariant complement W to I in g and an L(g)-invariant
complement V to W ∩ [g, g] in W . Assume that for some q ∈ L(g), its

9By [3], any algebraic group can be realized as the group of automorphisms of a
nilpotent Lie algebra.

10We emphasize that for algebraic groups and algebraic Lie algebras, these state-
ments are stronger than the Levi–Malcev theorem for general Lie algebras.

11An ideal is said to be characteristic if it is invariant with respect to all automor-
phisms of g. A description of all characteristic ideals can be a nontrivial problem. In
any case, the terms of the lower and upper central series are characteristic.
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image ι(q) is trivial. Then q acts trivially on W and, therefore, on V . But
V generates g. Hence q is trivial. �

A holomorphic action ρ of C× on g by automorphisms determines a
Z-grading of g. Namely, we define a homogeneous subspace gn ⊂ g as the
eigenspace such that

ρ(z)v = znv;

then [gn, gm] ⊂ gn+m. Conversely, a Z-grading determines an action of C×.
In a similar way, an action of a finite cyclic group Zn on g determines

a Zn-grading of gn.

Lemma 1 means that for a sequence of characteristic ideals

I1 ⊃ I2 ⊃ I3 ⊃ . . . ,

we have the decreasing chain

L(g/I1) ⊃ L(g/I2) ⊃ L(g/I3) ⊃ · · · ⊃ L(g).

The next lemma gives a simple condition for this chain to be strictly
decreasing.

Lemma 2. Let g be a nilpotent Lie algebra. Assume that

• z(g) ⊂ [g, g];

• the map ι : L(g) → L(g/z(g)) is an isomorphism.
Let I be a subspace in z such that the center of g/I coincides with z(g)/I.
Let σ∈Aut(g) be a semisimple element and σ◦ be its image in Aut

(
g/z(g)

)
.

Then σ◦ can be extended to an element of Aut(g/I) if and only if I is
invariant with respect to σ.

Proof. Choose a σ-invariant complement W to z in g. Let τ be an auto-
morphism of g/I extending σ◦; we may assume that

τ(g) = σ(g)
∣∣∣
W
.

Take a complement S to I in z(g). Then we have a natural bijection between
W ⊕ S and g/I; the algebra g is the direct sum of subspaces W ⊕ S ⊕ I.
We extend τ to a bijective linear map τ̃ : g → g that coincides with τ on
W ⊕ S and sends I to itself. This map satisfies the condition

[τ̃ (x), τ̃ (y)]− τ̃ ([x, y]) ∈ I. (8)

For w ∈ W , we have

τ̃ (w) = σ(w).
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e3 e4 e7 e10 e11 e13

Figure 1. The basis elements of the subalgebra of the al-
gebra of formal vector fields generated by e3 and e4.

Therefore, for w1, w2 ∈ W ,

[τ̃(w1), τ̃ (w2)] = [σ(w1), σ(w2)].

We have [W,W ] = [g, g]. Keeping in mind (8), we see that for all q ∈ [g, g],

τ̃ (q)− σ(q) ∈ I.

On the other hand, τ̃ (q) = σ(q) on W and g = W + [W,W ]. Therefore,
τ̃(q)−σ(q) ∈ I for all q ∈ g. However, τ̃ (q) sends I to itself; therefore, this
holds for σ(q). �

In the remaining part of the note, we explain the process of gradings
dying as an algebra grows. In Sec. 3, we consider two examples that do not
require calculations. In Sec. 4, we discuss the two families of 7-dimensional
Lie algebras mentioned above.

3. Two examples. Consider a Lie algebra g with basis xα. Consider the
linear subspace spanned by elements xi1 , xi2 , . . . . If this subspace is an
ideal, then we denote it by J{xi1 , xi2 , . . . }.

Example 1. Truncated Lie algebras of formal vector fields. Con-
sider the Lie algebra with basis ek and the commutation relations

[ek, el] = (l − k)el+k. (9)

For k ranging over Z, these relations define the Lie algebra of vector fields
on the circle. For k ranging over Z+, this algebra can be regarded as the
algebra V of formal vector fields on the line12, ek := xk+1 d

dx . We take the
finite-dimensional quotient V(N) of V by the ideal J{eN+1, eN+2, . . . }; in
this way we get the algebra with basis ek where k = 0, 1, . . . , N and the
same relations (9).

12Subalgebras of L and their quotients were the topic of numerous works, see, e.g.,
[12, 14, 22, 29].
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Choose α > 2. We take the subalgebra g of V(N) generated by eα,
eα+1. In particular, it contains all ek with k > α(α + 1). Note that

(ad eα+1)
[N/(α+1)] = 0,

where [. . . ] denotes the integer part. If N is sufficiently large, then

(ad eα)
[N/(α+1)]eα+1 6= 0.

This implies that the ideal J{eα+1, . . . , eN} is characteristic. Therefore, all
ideals J{eβ, . . . , eN} are characteristic13. Hence any automorphism of g is
a triangular matrix in the basis ej. This easily implies that the grading
deg ej = j of g is unique (up to a unipotent change of coordinates).

The center z = z(g) is J{eN−α+1, . . . , eN}. Consider a line I = C · u in
z in general position. More precisely, we need the following condition:

u =
N∑

j=N−α+1

tjej where at least two tj are nonzero.

The center of g/I is generated by z/I and the elements

y =
N−α∑

j=N−2α+1

sjej such that [eα, y] ∈ I, [eα+1, y] ∈ I.

The first condition gives si = σti+α/(i− α), where σ is a common factor.
Therefore,

0 = [xα+1, y] = σ
N∑

j=N−α+2

tj−1 ·
j − 2α

j − 2α+ 1
ej .

At least one of the coefficients in the sum is not zero, hence σ = 0.

By Lemma 2, the quotient g/I is characteristically nilpotent.

Next, we can take for g the algebra with the basis eα, . . . , eN and the
same relations (9). We can repeat the same considerations; to this end, we
must take N such that all integer parts [N/α], [N/(α + 1)], . . . , [N/2α]
are pairwise different. Under this condition, all ideals J{eβ, . . . , eN} are

13For an element eγ , we choose a Lie monomial Sγ(x1, . . . , xp; y1, . . . , yq) linear
with respect to each argument such that Sγ(eα, . . . , eα; eα+1, . . . , eα+1) = eγ . Consider
the ideal ISγ

spanned by all elements Sγ(eµ1
, . . . eµp

; eν1 , . . . eνq ) such that µi are

arbitrary and νj > α+1. By construction, ISγ
is characteristic. Therefore,

∑
γ>β ISγ

is

characteristic.
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characteristic. Note that for any k, for sufficiently large N , all algebras
g[2], . . . , g[k] are characteristically nilpotent (cf. [23]).

Example 2. Modified relatively free nilpotent algebras. Consider
the free Lie algebra f = f[κ] with generators x1, . . . , xκ . It is a graded Lie
algebra,

f[κ] =
⊕

j>0

f[κ]j , (10)

where the summand f[κ]j is spanned by all commutators of length j. Below,
κ is fixed and we exclude it from the notation.

Each subspace fj is the direct sum of weight subspaces fm1,...,mκ
con-

sisting of the Lie polynomials of degree14 mi with respect to xi. By the
classical Witt formula (see, e.g., [25]),

dim fm1,...,mκ
=

∑

d|m1,...,mκ

µ(d)
(j/d)!

(m1/d)! . . .mκ/d)!
,

where µ(d) is the Möbius function.
Consider the quotient fN := f/f[N+1]. In other words, we assume that

all commutators of length > N + 1 are zero; equivalently, in (10) we leave
the terms with 0 < j 6 N . The center z of our algebra is the last sum-
mand (fN )N .

The group Aut
(
fN

)
is generated by the group GL(κ) ≃ L

(
fN

)
acting

on the generators by linear transformations

xm 7→
∑

amlxl

and the unipotent subgroup N
(
fN

)
consisting of transformations of the

form

xi 7→ xi + ψi(x)

where ψi(x) are linear combinations of Lie monomials of degree > 2. The
Witt formula gives us the character of the representation of GL(κ) in the
homogeneous subspaces (fN )j .

Now let N be as large as we need. We intend to break the grading in
the relatively free algebra in two steps.

14Thus, we have a Zκ-grading on f by the number mj of entries of each xj in a

monomial.
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1◦. Consider a line I = C ·u ⊂ fN in general position. We wish to apply
Lemma 2. First, suppose that the center of fN/I is larger than z/I. Then
there is an element y of degree N − 1 such that [y, xj ] ∈ I. However, the
elements [y, xj ] are linearly independent15.

According to Andreev and Popov [2], irreducible faithful representations
of a given semisimple group on a space V for which the stabilizers of lines
in general position are nontrivial have bounded dimensions. We apply this
statement to the action of the group SL(κ) ⊂ GL(κ) in (fN )N . In fact,
in (fN )N we have a faithful action of the quotient SL(κ)/Zgcd(N,κ), where
Zgcd(N,κ) is a subgroup in the center Zκ of SL(κ). Second, the Witt formula
shows that for large N the representation of SL(κ) in z has large weights
and, therefore, contains subrepresentations of large dimensions. Thus, we
observe that SL(κ) ∩ L(f/I) is exhausted by the center of SL(κ).

However, passing to the quotient fN/I does not break the standard
Z-grading; therefore, L(fN/I) is the subgroup of scalar matrices in GL(κ),
i.e., C×.

2◦. Next, consider the larger relatively free algebra fN+1. Let u ∈
(fN+1)N be the same as above. Denote by J the subspace in (fN+1)N+1

spanned by [x1, u], . . . , [xκ , u]. Consider the Lie algebra

g := fN+1/J.

Since the ideal J is homogeneous, the quotient is Z-graded. The center is

z(g) = Cu⊕ (fN+1)N+1/J.

The quotient g/z(g) is the Lie algebra fN/I discussed a few lines above;
therefore, L(g) = C×.

Next, consider an element

w = αu+ ξ ∈ (fN+1)N+1/J where α 6= 0 and ξ ∈ (fN+1)N+1/J is nonzero.

Under this condition, the stabilizer of the line Cw in the group C× is
trivial.

It remains to check that the center of fN+1/(J + C · w) coincides with
(
Cu⊕ (fN+1)N+1/J

)
/Cw.

15Suppose that [y,
∑

ajxj ] = 0. Send
∑

ajxj to x1 by an element τ ∈ GL(κ). Then
[τ(y), x1] = 0. Recall that the universal enveloping algebra of f[κ] is the free associative

algebra with κ generators. The equation τ(y)x1 = x1τ(y) implies τ(y) = s ·xN−1
1 where

s ∈ C. Since τ(y) is a Lie polynomial, we have s = 0.
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Assume that this is not the case and there exists an element h such that
[xj , h] ∈ J + Cw. We represent h in the form h = hN−1 + hN + hN+1

where hj ∈ (fN )j . Passing to the quotients with respect to (fN )N , we get
[xj , hN−1] ∈ Cu. This implies that hN−1 = 0. Also, we get [xj , hN ] ∈ J .
Therefore, hN ∈ Cu and h = βu+ hN is contained in the center of fN1/J .

Therefore, the group L(fN+1/J + Cw) is trivial, and the algebra g/K
does not admit a grading.

4. Two examples: 7-dimensional algebras.

Preliminaries. Central extensions and cohomology (see, e.g.,
[12]). Consider a Lie algebra g. Recall that an m-dimensional central ex-
tension of g is a linear space g⊕ Cm with commutator [·, ·]∼ defined by a
formula of the form

[
x⊕ t, y ⊕ s

]∼
= [x, y]⊕ c(x, y)

where c : g × g → Cm is a skew-symmetric bilinear map. This formula
determines a structure of a Lie algebra on g ⊕ Cm if and only if the map
c satisfies the following identity:

c
(
[x, y], z

)
+ c

(
[y, z], x

)
+ c

(
[z, x], y

)
= 0. (11)

Such a Lie algebra g̃ is called an m-dimensional central extension of g.
Let γ : g → Cm be a linear operator. A transformation of the form

c(x, y) 7→ c(x, y) + γ([x, y])

does not change the resulting Lie algebra, this operation corresponds to
the change of coordinates x⊕ s 7→ x⊕ (s+ γ(x)) in g̃.

Clearly, the description of central extensions of g reduces to one-dimen-
sional extensions. The group of cochains C2(g,C) consists of the skew-
symmetric maps g×g → C. The group Z2(g,C) consisting of the cochains
satisfying (11) is called the group of cocycles; the group B2(g,C) of the
maps c(x, y) = γ([x, y]) where γ is a linear functional is called the group of
coboundaries. The one-dimensional central extensions of g are enumerated
by the elements of the cohomology group

H2(g,C) := Z2(g,C)/B2(g,C).

The Lie algebras qλ. Consider the family of Lie algebras q := qλ de-
fined by (3)–(7). Denote by Ik the ideal in q spanned by {xk, xk+1, . . . , x7}.
The ideals I3, I4, I6, I7 are contained in the lower central series and are
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α

β

Figure 2. The algebra qλ/I7. The basis elements eα,β
(boldface points) and the nonzero homology groups
H2

p,q(qλ/I7,C) (crosses ×).

characteristic ideals. We have

L(g/I3) ≃ gl(2), L(g/I4) ≃ gl(2), L(g/I6) ≃ gl(2),

L(g/I7) ≃ C⊕ C, L(q) = 0.

Let us examine the last step. The Lie algebra q/I7 has the commutation
relations

[x1, xi] = xi+1, i = 2, 3, 5, [x2, x3] = x5, [x2, x4] = x6.

It is Z ⊕ Z-graded, the grading being determined by the following renu-
meration of the basis:

x1 = e1,0, x2 = e0,1, x3 = e1,1, x4 = e2,1, x5 = e1,2, x6 = e2,2.

Since the Lie algebra q/I7 is Z ⊕ Z-graded, the cohomology group
H2(q/I7,C) is also graded:

H2(q/I7,C) = ⊕(p,q)∈Z⊕ZH
2
p,q(q/I7,C);

the group H2
p,q(q/I7,C) is generated by the cocycles cp,q(·, ·) such that

α+ α′ 6= p or β + β′ 6= q ⇒ cp,q(eα,β, eα′,β′) = 0.

The number of possible nonzero cocycles cp,q(eα,β, eα′,β′) is small (zero,
one, or two), and we easily see that the groups H2

1,3, H
2
3,1, H

2
2,3, H

2
3,2 are

one-dimensional and the remaining groups are trivial. So, let us add to the
algebra q/I7 central basis elements ξ1,3, ξ3,1, ξ2,3, and ξ3,2 satisfying the
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following relations:

[x1, x4] = ξ3,1,

[x2, x5] = ξ1,3,

[x1, x6] = ξ3,2, [x3, x4] = ξ3,2,

[x2, x6] = ξ2,3, [x3, x5] = −ξ2,3.

We get a four-dimensional central extension q̃ of q/I7. The Lie algebra q

is the quotient of this central extension by a three-dimensional subspace
in general position in the center. In fact, we set

ξ1,3 = λ−1ξ3,1 = ξ2,3 = ξ3,2.

Example 2 (the algebras pλ). Consider the algebras p := pλ defined
by (1)–(2). Let Ik ⊂ g be the ideal spanned by {xk, . . . , x7}. The upper
central series16 of p is

p ⊃ I2 ⊃ I3 ⊃ I4 ⊃ I5 ⊃ I6 ⊃ I7.

Therefore, all these ideals are characteristic. We have

L(p/I2) = L(p/I3) = gl(2), L(p/I4) = C⊕ C,

L(p/I5) = L(p/I6) = L(p/I7) = L(p) = C.

Consider the group H2(p,C). Since p is Z-graded, the group H2 is also
Z-graded,

H2(p,C) = ⊕mH
2
m(p,C).

Define cochains vkl, where 1 6 k < l 6 7, by the formula

vkl(xα, xβ) =





1 if α = k, β = l;

−1 if α = l, β = k;

0 otherwise.

They form a basis in C2(p,C); the elements of the basis in the cochains of
degree m correspond to the pairs k < l such that k+ l = m. The equations
defining the group Z2

m(p,C) have the form

c([xk, xl], xj) + c([xl, xj ], xk) + c([xj , xk], xl) = 0 (12)

16Let g be a nilpotent Lie algebra. Consider the quotients g[2] := g/z(g), g[3] :=

g[2]/z(g[2]), etc. We get a decreasing sequence of quotients of g and an increasing se-

quence of ideals. These ideals form the so-called upper central series.
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where

k < l < j, k + l+ j = m

(conditions (12) can be dependent). The groups B2
p(p,C) are nonzero only

if p = 3, . . . , 7; in these cases, they are one-dimensional and are generated
by the cochains σm([u, v]) defined from the expansion

[u, v] =

7∑

j=3

σj([u, v])xj .

After these remarks, a description of H2
m(p,C) for m 6 8 is clear (larger

m require explicitly writing the equations). For m = 5, 7, 8, the group
H2

m(p,C) is one-dimensional. Clearly, a generic one-dimensional central
extension of p is characteristically nilpotent.

5. Some conjectures. Finally, we formulate several conjectures.

1. For sufficiently large n there are components of the variety Lien con-
sisting only of nilpotent algebras. Note that a generic algebra g of such a
component must satisfy the following necessary (but not sufficient) condi-
tion: each ideal I ⊂ g of codimension 1 must be characteristically nilpo-
tent17.

2. Let Ω be a component of the variety Niln. Denote by ξ(Ω) the number
dim g/[g, g] for a generic algebra of Ω. Fix k. Then for sufficiently large n,
the condition ξ(Ω) 6 k implies that generic elements of Ω are characteris-
tically nilpotent.

3 (a stronger version). For sufficiently large n, the characteristically
nilpotent Lie algebras form a Zariski-dense set in each component of Niln.

4. For a nilpotent Lie algebra g, denote by N(g) the minimum dimension
of a faithful representation of g. Let

A(n) = max
g: dimg=n

N(g).

Then the growth of A(n) is exponential.

17Indeed, let d be a derivation of I. Let us add an element e to I and consider the
new algebra nI,d ⊃ I with the commutation relations [e, x] = d(x) for any x ∈ I. In this
way we get a family nI,d in Lien enumerated by the differentiations d; the algebra g is

a point of this family.
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