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THE PROBLEM OF COMBINATORIAL ENCODING OF

A CONTINUOUS DYNAMICS AND THE NOTION OF

TRANSFER OF PATHS IN GRAPHS

Abstract. We introduce the notion of combinatorial encoding of
continuous dynamical systems and suggest the first examples, which
are the most interesting and important, namely, the combinatorial
encoding of a Bernoulli process with continuous state space, e.g., a
sequence of i.i.d. random variables with values in the interval with
the Lebesgue measure (or a Lebesgue space).

The main idea is to associate with a random object (a trajectory
of the random process) a path in an N-graded graph and param-
etrize it with the vertices of the graph that belong to this path.
This correspondence (encoding) is based on the definition of a de-
creasing sequence of cylinder partitions, and the first problem is
to verify whether or not the given combinatorial encoding has the
property of distinguishability, which means that our encoding is an
isomorphism, or, equivalently, the limit of the increasing sequence
of finite partitions is the partition into singletons mod 0. This is a
generalization of the problem of generators in ergodic theory.

The existence of a suitable N-graded graph is equivalent to the so-
called standardness of the orbit partition in the sense of the theory
of filtrations in measure spaces.

In the last section, we define the notion of a so-called transfer,
a transformation of paths in a graded graph, as a generalization of
the shift in stationary dynamics.

§1. General problems

1.1. Combinatorial encoding. We will consider N-graded locally finite
graphs Γ (Bratteli diagrams) and the spaces of their maximal infinite
paths T (Γ); clearly, T (Γ) endowed with the natural topology is a com-
pact space. We will also consider a filtration {Tn}, which is a sequence of
quotient spaces of T (Γ). Namely, Tn is the set of all paths that start at
vertices of level n, n = 1, 2, . . . ; here T1 = T (Γ). Thus, Tn is the result of
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forgetting the first n vertices of each path, or the quotient space of T (Γ)
with respect to the n-equivalence of paths (two paths are n-equivalent
if they coincide starting from level n + 1). This means that we have a
decreasing sequence of partitions ξn, n = 1, 2 . . . , and Tn = T (Γ)/ξn.

So, we have a chain of quotient spaces:

T (Γ) = T1 −→ T2 −→ . . . .

This is a canonical filtration on the path space T (Γ) of an N-graded
graph Γ. If we define a Borel measure on the space T (Γ), then we have
a filtration on the resulting measure space. In particular, if the measure
is a central measure (see [6]) on the path space, then {ξ}n is a semi-
homogeneous filtration.

On the other hand, consider an infinite product of measure spaces (e.g.,
the unit intervals with the Lebesgue measure) in the ordinary sense:

(I∞,m∞) =

∞
∏

n=1

(In,mn)

(a Bernoulli space).
Assume that we have a hyperfinite equivalence relation τ on the space

(I∞,m∞), which is, by definition, the limit of a sequence of equivalence
relations τn where τn is an n-cylinder equivalence relation on (I∞,m∞)
with finite blocks.

An important example appears if we have an action of a countable
locally finite group G =

⋃

n Gn and τ is the orbit partition of G while τn
is the orbit partition of the finite group Gn.

Definition 1. A homogeneous hyperfinite equivalence relation τ = limn τn
is said to be standard if there exists an increasing sequence of finite parti-
tions {ηn} such that

(i) ηn is an independent complement to τn and
(ii)

∨

n ηn = ǫ.
Here ǫ stands for the partition of the space into singletons mod 0; in other
words, the sequence of partitions {ηn}n=1,2... separates almost all pairs of
points.

Both conditions are essential: there exists an increasing sequence that
satisfies condition (i) but does not satisfy condition (ii).

For our purposes, it is convenient to define an increasing sequence of
finite cylinder measurable partitions {ηn}n=1,2... in the space I∞ (this
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means that ηn is a subpartition of the partition according to the first n
coordinates of the infinite product I∞ with the product measure m∞).

As a result, we have a map

L : I∞ −→ T (Γ)

which sends the sequence {ηn}n to a canonical sequence on the path space
of an N-graded graph Γ, which is defined automatically if we assume that
the L-image of the partition ηn is the partition of the set of paths in Γ
according to the vertices of the nth level Γn of the graph Γ, n = 1, 2, . . . ;
the edges of Γ are defined according to the structure of the partition ηn
with respect to the coordinates of the space I∞. A concrete example of all
these steps will be given in the next section.

In order to check condition (ii), it suffices to prove that the map L is an
isomorphism of measure spaces between (I∞,m∞) and (T (Γ), µ) where µ
is the central measure that coincides with the L-image of the measure m∞.
This is the main point of our considerations.

If both conditions are satisfied, then we say that the increasing sequence
{ηn}n of finite partitions of (I∞,m∞) is a combinatorial encoding of the
equivalence relation τ on (I∞,m∞) (or of the Bernoulli scheme), and the
distinguishabilitity problem for the sequence {ηn}n has a positive solution.

1.2. Transfer. Our method of constructing the map L in the case where
I∞ =

∏

n I (for example, I = [0, 1]) allows us to define the transformation
LSL−1 of T (Γ) as the image of the one-sided shift S on I∞. A well-known
example is the Schützenberger transformation on the Young graph Y,
which is the image of the one-sided shift under the left (Q) part of the
RSK correspondence on T (Y), see [2]. In [3, 4], it is proved that this map
is an isomorphism. We will return to this subject in a separate paper. At
the end of this paper, we give a direct definition of a transfer, which is an
endomorphism (shift) on the space T (Γ), in graph terms for all graphs with
the following property: each 2-interval of the graph has at most 2 interme-
diate vertices. A general example of such a graph is the Hasse diagram of
a distributive lattice.

1.3. Several remarks. 1. The classical encoding process corresponds to
the case where Γ is a stationary graph (all levels, as well as all sets of edges
between adjacent levels, are isomorphic).

2. The standard filtrations do not exhaust the class of all filtrations,
and standard actions of locally finite groups are not even typical. In the
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generic case of a hyperfinite equivalence relation, there is no partition that
satisfies both conditions (i) and (ii). For the theory of general filtrations
and the related literature, see [6].

3. The list of N-graded graphs that can appear in this context is a very
interesting class of graphs. To my knowledge, there is no exact description
of this class.

4. Let us mention some important examples.

4A. The action of the group S∞ on ([0, 1]∞,m∞) by permutations (see
the next section).

4B. The action of the group U(∞) on the space of infinite Hermitian
matrices with Gaussian measure (GUE, GOE); it will be consid-
ered in a paper under preparation by the author and F. Petrov.

4C. An equivalence relation coming from the RSK algorithm (a paper
under preparation)

4D. Cases that should be considered: the action of S∞ on the space
of infinite {0, 1}-matrices by conjugation, the actions of U(∞) and
O(∞) on the spaces of forms in m variables, etc.

5. Let Z be a countable set, I = [0, 1], m be the Lebesgue measure on I,
and X = IZ , µ = mZ . Assume that we have a family of finite measurable
partitions {ξF } where F is a finite subset of Z and ξF is a finite partition
of IF which can be regarded as a cylinder partition of X . A family {ξF }
is called distinguishable if the product of the partitons ξF over all F is the
partition of X into singletons mod 0 with respect to the measure µ.

Conjecture. For all distinguishable families of partitions {ξF },

lim
n

H(ξFn)/|Fn| = ∞

where H(·) is the entropy of a partition, | · | is the number of elements,
and the limit is over a sequence of finite subsets of Z such that the union
of Fn is Z.

For one special case, this conjecture was proved by the student G. Veprev
in the paper published in this volume.

§2. Example: the Weyl encoding of a Bernoulli process
and the positive solution to the distinguishability

problem

Our first example is as follows. Let ηn be a cylinder partition with
the partition of the n-dimensional cube In into open Weyl simplices for
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the base. The last sentence means the following: we regard the space R
n

as a Cartan subalgebra of the An Lie algebra with a fixed root system.
By an “open Weyl simplex” we mean the intersection of an open Weyl
chamber in the ordinary sense with the unit cube [0, 1]n. We also assume
that the correspondence between the Weyl chambers and the elements of
the Weyl group (which is the symmetric group Sn) is also fixed. Although
the language of the theory of Lie algebras is not necessary for describing
our example, we nevertheless use it in order to generalize the construction
in future to the case of other series of simple Lie algebras.

We will consider the subset of In of full (Lebesgue) measure mn that
consists of the vectors with pairwise distinct coordinates.

Each Weyl simplex is identified with some permutation of the set n =
{1, 2, . . . , n}, an element of the Weyl group.

Recall that the fact that the partitions ηn are finite means that the
number of blocks of positive measure in ηn is finite; in our case, it is equal
to ord(Sn) = n!.

The fact that the sequence {ηn}n is increasing means that for every n
each element C of the partition ηn+1 (regarded as a subset of In) is a
subset of an element D of the partition ηn, and each element D of the
partition ηn (regarded as subset of In) is exactly the disjoint union of
all elements of ηn+1 that belong to it. The union of all elements of all
partitions ηn, n = 1, 2 . . . (the set of all Weyl simplices), generates a tree
which we denote by W and call the permutation (or factorial) tree.

The nth level of the tree W has n! vertices which correspond to the
elements of the partition ηn, and each vertex can be identified with a
permutation from Sn.

The edges of the tree join each element C of ηn+1 with the element D
of ηn that contains C; see Fig. 1. We define coordinates for Weyl simplices
and the corresponding permutations as follows. Let xn = (x1, x2, . . . , xn)
be a point of In; then the coordinates

(k1, k2, . . . , kn)

corresponding to the simplex σxn are given by the formula

ki = #{s ∈ n : xs < xi}, i = 1, 2, . . . , n.

In particular, the coordinates (k1, k2, . . . , kn) do not depend on the choice
of a point of the simplex.

The invariance of the sequence of partitions {ηn}n with respect to the
one-sided shift S of the cube I∞ means that the images Sx, Sx′ of almost
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Figure 1. A permutation tree with a translation.

all pairs of points x, x′ of I∞ that belong to the same element of the
partition ηn (or to the same Weyl simplex) will belong to the same element
of the partition ηn−1 (or to the same Weyl simplex) for n = 2, 3 . . . .

This means that we have constructed another system of edges on the
tree W : each element of the partition ηn that corresponds to a vertex of
level n has an edge which goes to the vertex of the previous level n−1 that
corresponds to some element of the partition ηn−1. Such edges between
permutations will be called translations.

Proposition 1. The permutation (r1, r2, . . . , rn−1) corresponding to the
shifted simplex ΣSxn is given by the formula

ri =

{

ki+1 if ki+1 < k1,

ki+1 − 1 if ki+1 > k1.

The proof immediately follows from definitions. Passing from the se-
quence {ki} to the sequence {ri} is the “dynamics” of our coordinates.

So, we associate with our sequence of partitions {ηn}n a tree endowed
with additional structures, a translation and a transfer (see Fig. 1). The
tree W with these structures will be called the skeleton of the permutation
tree.

An ordinary edge of the tree joins a permutation g ∈ Sn with a per-
mutation h ∈ Sn+1 if and only if g is the result of removing the (n+ 1)th
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object from the permutation h. In contrast, the translation joins a permu-
tation g ∈ Sn with a permutation f ∈ Sn−1 if f is the result of removing
the first object from the permutation1 g.

Thus, we have defined the skeleton, which is a combinatorial scheme of
an increasing shift-invariant sequence of finite partitions. Now we want to
regard these data as new coordinates of points of the cube.

Definition 2 (transfer). Consider the space T (W ) of all paths of the
permutation tree W . The operation λ that sends a permutation g ∈ Sn

of level n by translation to a permutation h ∈ Sn−1 of level n − 1 in-
duces a map Λ : T (W ) → T (W ): a path {g1, g2, g3, . . . } goes to the path
{λ(g2), λ(g3), . . . }; we call Λ the transfer on the tree W . Since g ≺ h im-
plies λ(g) ≺ λ(h) (the two removals commute), this operation defines a
mapping on the paths of our tree.

We will give a transparent formula for this transfer, see Proposition 2
below.

For a point x = (x1, x2, x3, . . . ) ∈ I∞, consider the quantities tn(x) =
♯{k ≤ n : xk < xn} and the map

x 7→ t(x) = {t1(x), t2(x), . . . }, tn(x) ∈ n, n = 1, 2 . . . .

It is clear that the sequence {tn(x)} is a path in the skeleton of our tree W .
This is the combinatorial encoding of the infinite-dimensional unit cube

I∞ with respect to the partition into Weyl simplices.

Definition 3. Consider the compact space

M = {{tn}
∞
n=1, tn ∈ n, n = 1, 2 . . . }.

We call M the triangular compact set.

We define a map J : I∞ → M, x = {x1, x2, . . . } 7→ {t1(x), t2(x) . . . },
as follows:

J({xn}) = {tn = tn(x1, . . . , xn)}
∞
n=1, tn = ♯{i : 1 ≤ i ≤ n, xi < xn}.

Also, we define a probability measure µ on the compact set M as the
product of the uniform measures on each factor n.

1Here, by abuse of notation, we have identified a permutation regarded as an element
of the symmetric group Sn and the image of the natural order 1, 2, . . . , n under this
permutation; of course, one must distinguish between these notions, see [8].
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§3. The distinguishability of the Weyl encoding

Our first observation is as follows.

Theorem 1. The map J is an isomorphism of measure spaces between
(I∞,m∞) and (M, µ); this means that the coordinates {tn(x)}

∞
n=1 deter-

mine almost all points x, or, in other terms, the product of the partitions ηn
is the identity partition, or the partition of the infinite-dimensional cube
I∞ into singletons:

∞
∨

n=1

ηn = ǫ.

In geometric terms, this means that the set of all Weyl simplices of
the cube I∞ separates almost all points of the cube. A more paradoxical
formulation is as follows: almost every point {x1, x2, . . . } of the cube I∞

with respect to the Lebesgue measure m∞ can be recovered if we know
only all inequalities xn > xm or xn < xm for all n,m ∈ N. Or, in an even
more expressive form, almost every Weyl simplex consists of a single point,
and almost every Weyl chamber consists of a single ray.

Proof. Let two sequences {xn} and {x′
n} have the same inequalities for

all pairs: xn > xm ⇔ x′
n > x′

m. Suppose that x1 6= x′
1; then there exists k

such that xk ∈ (x1, x
′
1) and x′

k ∈ (x1, x
′
1), so the points x1, xk satisfy the

opposite inequality as compared with x′
1, x

′
k, a contradiction. �

A more precise form of this claim is as follows.

Lemma 1. The limiting partition η = limn ηn of the infinite-dimensional
cube I∞ (the limit of the partitions into open Weyl simplices) coincides
mod 0 (with respect to the Lebesgue measure) with the partition into sin-
gletons. In other words, the distinguishability problem for the partition into
Weyl simplices has a positive solution. Therefore, the map J is an isomor-
phism of measure spaces. In more detail, there exists a set of full Lebesgue
measure in I∞ such that for any two points {ξn} and {ξ′n} of this set there
exist indices i and j for which the corresponding coordinates satisfy the
opposite inequalities:

ξi > ξj , but ξ′i < ξ′j .

We may say that the sequence of partitions into Weyl simplices gives
a positive solution to the distinguishability problem, the problem of how
to separate the points of the infinite-dimensional unit cube via a sequence
of finite measurable partitions. The real explanation of this effect lies in
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the individual ergodic theorem or in the theorem on the uniform distri-
bution on the interval of almost all points of the cube. This means that
the Lebesgue measure m∞ can be replaced with any measure having this
property.

Now we must describe the translation and transfer defined above in
terms of the coordinates {tn}, that is, describe how these coordinates
change when a point x = {x1, x2, x3, . . . } changes into Sx = {x2, x3, . . . }.
Namely, we want to express {t1(Sx) = t′1, t2(Sx) = t′2, . . . } in terms of
{t1(x), t2(x), t3(x), . . . }. Such an expression will give a formula for the
transformation

Λ = JSJ−1 : M → M

of the triangular compact set M.
This map Λ is the transfer of the permutation tree and of the triangular

compact set regarded as a set of paths of this tree. But we will give a precise
formula for Λ.

Denote ξn = {ξi}
n
i=1, and let dn(ξ

n) be the number of coordinates in
the vector ξn that are less than ξ1. It is clear that dn+1 is either equal
to dn + 1 if ξn+1 < ξ1, or equal to dn if ξd+1 > ξ1. Let us say that some
positions in the vector (t1, t2, . . . , tn) are special : the first position t1 = 1
is special; and if the number of special positions among the first n ones is
dn(t), then tn+1 is special if and only if tn+1 ≤ dn, n = 1, 2, . . . .

Proposition 2 (formula for Λ = JSJ−1). We have Λ({tn}) = {t′n} where

t′n =

{

tn+1 if tn+1 is special,

tn+1 − 1 if tn+1 is not special.

The following formula holds:

tn+1 − t′n = 1− (dn+1(t)− dn(t)).

The proof follows automatically from the previous formulas.
Now consider a formula for the inverse map. From the formula for dn

we directly obtain the following.

Theorem 2. For almost every trajectory {ξn}n ∈ I∞ with respect to the
measure m∞ on I∞,

lim
n

dn
n

= ξ1.
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So, we can find the first coordinate from the infinite vector {tn}. In the
same manner we can find the other coordinates {x2, x3, . . . , xn} using the
transfer.

This means that we can recover the shift S as a map on I∞ with the
help of Λ.

We establish an isomorphism between two triples

(I∞,m∞, S) and (S, µ,Λ).

In particular, this means that Λ is a Bernoulli automorphism of (S, µ) in
the sense of ergodic theory.

By definition, the translation (see Sec. 2.3) associates with every vertex
of level n (for n > 1) a vertex of level n − 1 following the rule accord-
ing to which the simplex σxn of sequences starting from a vector xn =
(x1, x2, . . . , xn) changes when we remove the first coordinate x1 after the
application of the shift S, that is, pass to the vector Sxn = (x2, x3, . . . , xn).
Recall that the permutation (k1, k2, . . . , kn) corresponding to the simplex
σxn is given by the formula

ki = #{s ∈ n : xs < xi}, i = 1, 2, . . . , n.

Using this rule, we construct a correspondence with the tree of Weyl
simplices, see Fig. 1.

Thus, we have defined a translation which is a map from the set of
permutations of length n to the set of permutations of length n− 1. In the
next section, where we compute the transfer for this graph, we use this
map and interpret it in a slightly different way.

§4. A more complicated case: encoding via the RSK
correspondence; see [3, 4]

In the previous section, we considered the partition ηn of the cube In

into Weyl simplices and constructed an encoding of the dynamical system
(I∞,m∞, S) using this kind of partitions. We obtained a combinatorial
version of a Bernoulli shift as a transformation on the space of paths of a
tree (the permutation tree).

Looking at more complicated examples, assume that partitions αn of the
cube In are coarser than the partitions ηn into Weyl simplices (αn ≺ ηn),
namely, each element of αn consists of several Weyl simplices. In this case,
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we can loose the distinguishability property: the limit
∨

n αn can be differ-
ent from the identity partition. How to refine the distinguishability prob-
lem for such sequences of partitions? How to single out the case where
limn αn = ǫ?

As one of the important further examples, we will keep in mind the
situation with the so-called RSK correspondence. A related question was
considered in the 1980s in [2] and recently in the important papers [3, 4].

In the framework of this paper, the positive answer to the distinguisha-
bility problem for the combinatorial encoding is equivalent to the fact
that the homomorphism of a Bernoulli shift to the space of infinite Young
tableaux with the Plancherel measure and the Schützenberger shift is an
isomorphism. The question of whether this homomorphism is an isomor-
phism appeared as a result of the paper [2], in which a generalization of
the RSK correspondence for the infinite case was defined; and this ques-
tion was recently answered in the papers [3, 4]. Here we mention another
approach to the isomorphism problem in the spirit of this paper and the
article [7], as well as the theory of filtrations [6].

We will use the identification of Weyl simplices with permutations; more
exactly, a permutation g = (i1, i2, . . . , in) ∈ Sn parametrizes the Weyl sim-
plex σg whose elements x = (x1, x2, . . . , xn) ∈ In have the same ordering
of coordinates as the permutation g.

The main property of the finite RSK correspondence (see [5]) is a set-
theoretic isomorphism between the symmetric group Sn and the set of all
pairs of Young tableaux with the same Young diagrams:

Sn =
∐

λ∈Ŝn

TP
λ × TQ

λ ,

where Tλ is the set of all Young tableaux of shape λ; the indices P,Q mean
that a tableau is either insertion (P ) or recording (Q).

The index of any simplex is a permutation g ∈ Sn, but we regard g (as
above) as a pair of Young tableaux of the same shape λn, i.e., g = (tPg , t

Q
g )

(in short, we may say that g is associated with the diagram λn).
Now denote by Σλn

the cylinder set that is the union of all simplices σg

with diagram λn.
We define two partitions ηλn and φλ

n of Σλn
. The first partition ηλn is

finite and cylinder, with elements of the form

CtQ =
⋃

tP

σtP ,tQ , tP , tQ ⊢ λ.
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The second partition φλ
n is cofinite (i.e., all its elements are finite sets),

each its element is a finite set of points {xn} ∈ I∞ with equal coordi-
nates xi for i > n, and the vector (x1, x2, . . . , xn) runs over all normalized
permutations with given tableau tP :

DtP =
⋃

g=(tP ,tQ)

{

x = (x1, x2, . . . , xn) : xi =
g(i)

n
, i = 1, 2, . . . , n

}

.

Lemma 2. The partitions ηλn and φλ
n of the set Σλn

are mutually indepen-
dent complements: every element of the first partition and every element
of the second partition intersect in exactly one point, and the indepen-
dence properties for the conditional measures also hold. The partition ηλn
increases with n, and the partition φλ

n decreases with n.

So, the elements of the partition ηλn (respectively, φλ
n) are parametrized

by the set of permutations with given P -tableau (respectively, with given
Q-tableau). Recall that in the previous section, an element of the parti-
tion ηn was parametrized by one permutation.

Now we can consider the partition θn (respectively, θ⊥n ) of the cube I∞

whose restriction to each set Σλn
is ηλn (respectively, φλ

n). It is clear that the
first partition is finite and measurable (the number of elements is equal to
the number of Young tableaux with given number of cells), and the second
one is cofinite (the number of points in one element of the partition is
finite and does not depend on the element). Obviously, the partition θn
is coarser than ηn (i.e., θn ≺ ηn), and the partition θ⊥n is finer than the
orbit partition of the symmetric group Sn for all n. Moreover, θn ≺ θn+1,
n = 1, 2, . . . , and θ⊥n ≻ θ⊥n+1, n = 1, 2, . . . .

It is useful to give an interpretation of these partitions in terms of
the Knuth equivalence and dual Knuth equivalence, see the book [5] and
Fomin’s addendum to the Russian translation of this book.

Question. What is the limit of the increasing sequence of partitions θn?

The following theorem is equivalent to the remarkable theorem by D. Ro-
mik and P. Sniady [3, 4] in which they proved that the homomorphism
defined in [2] is a true isomorphism. This homomorphism in the case of
the Plancherel measure was defined as a map from I∞ to the space of
infinite standard Young tableaux. It sends the Lebesgue measure to the
Plancherel measure. The question of whether this homomorphism is indeed
an isomorphism remained open for many years and was solved in [3,4]. We
give a statement of the theorem in terms related to our approach.
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Theorem 3. The limit of the sequence of partitions θn on the space I∞

is the identity partition:
lim
n

θn = ǫ.

Thus, the distinguishability problem (see above) has a positive solution.

Corollary 1. The limit of the decreasing sequence of partitions θ⊥n is the
trivial partition:

lim
n

θ⊥n = ν.

Note that, in general, the fact that the limit of a decreasing sequence
of partitions {αn} is trivial is only necessary, but not sufficient for the
limit of an increasing sequence {α⊥

n } of partitions that are independent
complements to αn to be the identity partition.

In terms of the dual Knuth equivalence relation on the cube I∞, the
conclusion of the theorem means that it is the identity equivalence relation
mod 0.

At the same time, we have the following corollary of the theorem above.

Proposition 3. The direct Knuth equivalence relation (see [5]) on the
space I∞ is ergodic; this means that there is no nonconstant measurable
function that is constant on the classes of the dual Knuth equivalence.

Our numerical simulations have shown a very slow convergence in this
situation.

The approach of the papers [3, 4] is based on the analysis of the limit
shape of Young diagrams and the so-called Schützenbeger transformation
(“jeu de taquin”). More precisely, each infinite Young tableau is a path in
the Young graph; the Schützenbeger transformation is a shift, or, in our
terminology, a transfer of the path (see the next section). It is natural to
choose the maximal strictly monotone subset of the path, which is called
the “nerve” of the tableau. The main observation of the authors of [3,4] is
that this nerve, regarded as a piecewise linear line on the lattice Z

2
+, has

a limit at infinity, which can be identified (after a normalization) with a
point of the limit shape of the normalized Young diagram. This is the key
step of constructing the inverse isomorphism in [3, 4].

Our approach is different and based on another limit shape theorem.
We will give the details elsewhere. Namely, our proof uses a detailed analy-
sis of the behavior of P -tableaux. These P -tableaux are not semistandard,
because their entries are reals but not integers. In contrast to the case of Q-
tableaux, the P -tableaux have no strong limit (as n tends to infinity), and
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their weak limit is the zero tableau. Nevertheless, after a proper normaliza-
tion, they have a limit shape; and its existence can be extracted from old
results on the limit shape of standard Young tableaux (not diagrams). The
inversion formula from [3] is based on the behavior of Q-tableaux. Our ap-
proach to the inversion formula is based on the stabilization of P -tableaux
for a given Q-tableau after the normalization. Roughly speaking, there is
an isomorphism between the realizations of the Bernoulli scheme (I∞), the
infinite Young tableaux (Q-tableaux with the Plancherel measure), and the
normalized P -tableaux.

§5. Definition of transfer for a graded graph

Let us define the notion of “transfer,” an operation on the path space
of a graded graph (or multigraph). The main idea is to apply the theory
of graded graphs to ergodic problems under consideration.

Consider an arbitrary Bratteli diagram, i.e., an N-graded locally finite
graph (or even a multigraph) Γ. An infinite tree is an example of such
a graph. A path in Γ is an infinite maximal sequence of edges (not ver-
tices!) in which the beginning of each edge coincides with the end of the
previous edge. Denote the space of all paths by T (Γ); this is a Cantor-like
compactum in the inverse limit topology.

Definition 4. A transformation

Λ : T (Γ) → T (Γ), Λ({tn}n) = ({un}n),

is called a transfer of general type if it is a continuous map in the com-
pact topology of the path space, and it is defined by the following suc-
cessive local rules: for every n, the edge un of the image depends on a
fragment of the argument path and the previous edge of the path image:
un = fn({ti}

n+1
1 , un−1), where fn are arbitrary combinatorial functions,

n = 1, 2, . . . . This definition describes a very general class of transfers.
For trees regarded as graded graphs, it includes the definition from Sec. 1.

For stationary graphs, in which the sets of vertices of every level (ex-
cept the first one) are isomorphic and these isomorphisms are fixed, the
translation rule depends on nothing: an edge connecting vertices a and b
of levels n+1 and n+2 goes to the edge connecting the vertices a′ and b′

of levels n and n + 1 identified with the vertices a and b, respectively.
In this case, the transfer is an ordinary shift. We say that a transfer is
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Markov if the fragment {t1, . . . , tn+1} above reduces to the last pair of
edges {tn, tn+1}.

So, a transfer gives a nonstationary generalization of stationary models
of dynamics.

For graphs of a special type, the definition of transfer can be formu-
lated in a very simple way. Assume that a graded graph Γ has the follow-
ing property: for every 2-interval [v, w] of the graph, with grad(v) = n,
grad(w) = n+2, there is an involution φ(v, w) ≡ φ on the set of vertices of
the interval that have level n+ 1 (we omit the index of φ when it is clear
from the context). Then if v = (v1, v2, . . . ) is a path, then the transfer is
given by the following formula:

Λ(v) = (v1, φ(v2), φ(v3), . . . ).

In this case, the natural transfer is Markov, see Fig. 2 from which our
definition should be clear.

For all distributive lattices, the transfer is well defined, because all
2-intervals in this case have one or two intermediate vertices. In partic-
ular, this definition is valid for the Young graph.

Definition 5. A graded graph with a “transfer” operation is called a quasi-
stationary graph. The path space of a quasi-stationary graph, regarded as
a topological Markov compactum, is called a quasi-stationary Markov com-
pactum.

Thus, we have described a new type of realizations of automorphisms
and endomorphisms with infinite entropy as transfers on quasi-stationary
Markov compacta, i.e., in spaces that are locally finite.

According to our definition, a transfer is a shift of sequences of edges,
and not of sequences of vertices as in the stationary case. Thus, this notion
opens new possibilities for realizations of transformations.

Proposition 4. For a graph that is the Hasse diagram of the distributive
lattice of finite ideals of a locally finite countable partially ordered set with
a minimal element, there is a distinguished Markov transfer. In the case
of the lattice Z2 as a poset and the Young graph as a graded graph, the
transfer coincides with the well-known Schützenberger transformation (“jeu
de taquin,” see [5]), so our definition is a generalization of “jeu de taquin”
for distributive lattices.

The proof follows from a detailed analysis of the definition of transfer.
If a transfer is defined on the path space of a graded graph, then this space
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Figure 2. The dashed path is the transfer of the bold one.

should be regarded as a nonstationary (or quasi-stationary) Markov chain,
meaning that the transfer is an analog of the shift. If we have a central
measure on the path space that is invariant under the transfer, then we
obtain a quasi-stationary Markov chain with an invariant measure. Hence
the theory of transfer becomes part of ergodic theory, as a nonconventional
realization of measure-preserving transformations. We will return to all
these facts elsewhere.

The author is grateful to P. Nikitin for preparing the figures and for the
design of the manuscript.
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