В. Г. Журавлев

ЛОКАЛЬНЫЙ АЛГОРИТМ ПОСТРОЕНИЯ ПРОИЗВОДНЫХ РАЗБИЕНИЙ ДВУМЕРНОГО ТОРА

Введение

0.1. Производные торические разбиения. Пусть зададан сдвиг $S_{\alpha}(x) \equiv x + \alpha \mod \mathbb{Z}^2$ тора $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$ на вектор $\alpha \in \mathbb{R}^2$ и перекладывающаяся развертка $T = T_0 \sqcup T_1 \sqcup T_2$ тора $\mathbf{T} \subset \mathbb{T}^2$, состоящая из трех параллелограммов T_0, T_1, T_2 . Исходя из некоторой развертки тора T, в [16] были определены ее [ξ]_n-производные развертки

$$T^{[\xi]_n} = T_0^{[\xi]_n} \sqcup T_1^{[\xi]_n} \sqcup T_2^{[\xi]_n}$$
(0.1)

другого тора $\mathbf{T}^{[\xi]_n} \subset \mathbb{T}^2$, также состоящие из трех перекладывающаяся параллелограммов $T_0^{[\xi]_n}$, $T_1^{[\xi]_n}$, $T_2^{[\xi]_n}$. Одно из свойств разверток (0.1) состоит в том, что они порождают производные разбиения

$$\mathcal{T}^{[\xi]_n} = \mathcal{T}_0^{[\xi]_n} \sqcup \mathcal{T}_1^{[\xi]_n} \sqcup \mathcal{T}_2^{[\xi]_n} \tag{0.2}$$

объемлющего тора \mathbb{T}^2 , где каждое из множеств $\mathcal{T}_k^{[\xi]_n}$ образуется S_{α} трансляциями соответствующего параллелограмма $T_k^{[\xi]_n}$ из разбиения (0.1). По этой причине производные развертки тора $T^{[\xi]_n} = \operatorname{Kr}(\mathcal{T})$ называют ядрами разбиений тора $\mathcal{T}^{[\xi]_n}$.

0.2. Локальные правила. Настоящая цель – получить локальное описание производных разбиений $\mathcal{T} = \mathcal{T}^{[\xi]_n}$. Обозначим через $\operatorname{Orb}(0, \mathbf{m})$ орбиту начальной точки $x_0 = 0$ на торе \mathbb{T}^2 , порождаемую сдвигом S_α и образуемую из точек $x_i = S^i(0) \equiv i\alpha \mod \mathbb{Z}^2$ для $i = 0, 1, \ldots, \mathbf{m} - 1$, где \mathbf{m} – общее количество многоугольников разбиения (0.2). Локальное описание или локальные правила LR состоят в том, чтобы по порядку i точки $x_i \in \operatorname{Orb}(0, \mathbf{m})$ определить многоугольников P из производного разбиения \mathcal{T} , имеющих общую точку x_i . Звезду $\operatorname{St}(i)$ еще иначе называют локальным окружением точки x_i .

Ключевые слова: производные разбиения тора, классификация многоугольных звезд, локальные правила.

⁸⁵

Локальные правила LR позволяют строить глобальное разбиение \mathcal{T} тора \mathbb{T}^2 , начиная с любой точки орбиты $\operatorname{Orb}(0, \mathbf{m})$, например, с $x_0 = 0$ путем присоединения к ней всех инцидентных многоугольников $P \ni x_0$ из разбиения \mathcal{T} . Затем повторяем тот же процесс для вершин многоугольников P и т.д.

0.3. Классификация типов многоугольных звезд. В теореме 5.1 доказана следующая формула

$$\operatorname{St}(\mathcal{T}, i) = \operatorname{St}_{\mathcal{T}}(i), \tag{0.3}$$

где $\operatorname{St}(\mathcal{T},i)$ – многоугольная звезда производного разбиения \mathcal{T} с центром в точке x_i , а $\operatorname{St}_{\mathcal{T}}(i)$ – звезда из некоторого конечного явно определенного списка звезд. Для невырожденных разбиений \mathcal{T} указанный список содержит 7 различных типов звезд. Кроме того, в теореме 5.1 приведена формула для количества звезд $\operatorname{St}(\mathcal{T},i)$ в разбиении \mathcal{T} , принадлежащих данному типу. Две многоугольные звезды $\operatorname{St}(\mathcal{T},i)$ и $\operatorname{St}(\mathcal{T},i')$ из множества звезд $\operatorname{St}(\mathcal{T})$ разбиения \mathcal{T} считаются эквивалентными $\operatorname{St}(\mathcal{T},i) \sim \operatorname{St}(\mathcal{T},i')$, если одну из них можно перевести в другую некоторой трансляцией тора \mathbb{T}^2 .

Приведенная формула (0.3) содержит в себе локальные правила LR и позволяет классифицировать типы многоугольных звезд производных разбиений \mathcal{T} .

0.4. Короны и типы звезд. Обозначим через **Cr** множество, состоящее из ядра $Kr(\mathcal{T})$ производного разбиения (0.2) и соседних с ним многоугольников *P* из разбиения \mathcal{T} . При этом учитываются многоугольники *P* как с общей стороной, так и с общей вершиной с ядром $Kr(\mathcal{T})$. Множество **Cr** называется короной ядра $Kr(\mathcal{T})$.

В теореме 6.1 доказано, что среди звезд $St(\mathcal{T}, i)$ разбиения \mathcal{T} с внутренними вершинами короны **Cr** содержатся все типы многоугольных звезд из $St^{\sim}(\mathcal{T})$ – множества классов эквивалентных звезд; при этом имеет место следующая формула

$$t_{\rm St}(\mathcal{T}) = 7 - \tau$$

для количества различных типов $t_{St}(\mathcal{T}) = \sharp St^{\sim}(\mathcal{T})$ многоугольных звезд из $St^{\sim}(\mathcal{T})$. Здесь τ – степень вырождения производного разбиения \mathcal{T} .

Вырождение $\tau > 0$ возможно только при условии, когда разбиение \mathcal{T} содержит небольшое количество **m** многоугольников $P \subset \mathcal{T}$. В общем случае производное разбиение \mathcal{T} невырождено $\tau = 0$ и, следовательно, имеет максимально возможное число типов звезд $t_{St}(\mathcal{T}) = 7$.

0.5. Принцип максимума. Из теоремы 5.1 вытекает *принцип максимума*, который можно сформулировать следующим образом: в производном разбиении \mathcal{T} тора \mathbb{T}^2 из любой точки x_i орбиты $\operatorname{Orb}(0, \mathbf{m})$ выходит максимальное число допустимых в данной точке лучей \mathbf{w} из множества всех возможных лучей $\mathbf{V} = \{\pm \mathbf{v}_0, \pm \mathbf{v}_1, \pm \mathbf{v}_2\}$. Здесь через $\mathbf{v}_0, \mathbf{v}_1, \mathbf{v}_2$ обозначены векторы перекладывания ядра $\operatorname{Kr}(\mathcal{T})$ производного разбиения (0.2). Луч $\mathbf{w} \in \mathbf{V}$ считается допустимым в точке x_i , если сдвинутая точка $x_i + \mathbf{w}$ снова принадлежит орбите $\operatorname{Orb}(0, \mathbf{m})$. Выходящие из точки x_i лучи $\mathbf{w} \in \mathbf{V}$ – это направляющие сторон многоугольников P звезды $\operatorname{St}(\mathcal{T}, i)$. Знание лучей \mathbf{w} позволяет построить и искомую звезду $\operatorname{St}(\mathcal{T}, i)$.

На принципе максимума основан *LLG*-алгоритм (layer-by-layer growth), приведенный в п. 7.2, – это алгоритм послойного роста производного разбиения \mathcal{T} . Исходными данными *LLG*-алгоритма являются: 1) векторы перекладывания \mathbf{v}_0 , \mathbf{v}_1 , \mathbf{v}_2 ядра $\operatorname{Kr}(\mathcal{T})$; и 2) их порядки \mathbf{m}_0 , \mathbf{m}_1 , $\mathbf{m}_2 = 1, 2, 3, \ldots$, определяемые из сравнений $\mathbf{v}_k \equiv \mathbf{m}_k \alpha \mod \mathbb{Z}^2$ для k = 0, 1, 2.

0.6. История вопроса. Производные разбиения \mathcal{T} возникли [16], [18] при изучении множеств ограниченного остатка $X \subset \mathbb{T}^2$. Такие множества X выделяются тем, что в них хорошо распределяются точки орбит относительно сдвига S_{α} . Что касается разбиений \mathcal{T} , то любой параллелограмм X = P из \mathcal{T} будет множеством ограниченного остатка.

Другим приложением производных разбиений \mathcal{T} являются многомерные диофантовы приближения [17, 19]. В [17] доказано, что среди точек расширенной орбиты $\operatorname{Orb}(0, \mathbf{m} + 1)$ точка $x_{\mathbf{m}} = S^{\mathbf{m}}(0) \equiv \mathbf{m}\alpha \mod \mathbb{Z}^2$ является ближайшей к $0 \in \mathbb{T}^2$ относительно нормы, определяемой ядром $\operatorname{Kr}(\mathcal{T})$ разбиения \mathcal{T} . Развитие этой идеи приводит к многомерным цепным дробям [17–23]. Операцию дифференцирования торических разбиений \mathcal{T} можно связать через некоторое суперпространство с многомерными разбиениями Фарея [1–8].

Связь между коронами **Cr** и типами многоугольных звезд $St^{\sim}(\mathcal{T})$ была впервые обнаружена для одномерных разбиений Фибоначчи [13] и двумерных разбиений Рози [15]. Дальнейшее развитие показало, что указанная связь – общий феномен, наблюдаемый в кристаллографии квазипериодических структур [9], [14]; кроме того, эту связь удалось использовать [10] в теории сложности (complexity theory) квазипериодических разбиений.

§1. ПЕРЕКЛАДЫВАЮЩИЕСЯ РАЗВЕРТКИ ТОРА

1.1. Общая конструкция. Пусть $\mathbf{l} = (l_1, l_2)$ – произвольный базис квадратной решетки \mathbb{Z}^2 и

$$\Delta(\mathbf{l}) = \{ x = \lambda_1 l_1 + \lambda_2 l_2; \quad \lambda_1 > 0, \lambda_2 > 0, \lambda_1 + \lambda_1 < 1 \}$$
(1.1)

 открытый треугольник с вершиной в 0, образованный базисными векторами l₁, l₂. Кроме того, пусть

$$\mathbb{T}^2 \xrightarrow{S} \mathbb{T}^2: \quad x \mapsto S(x) \equiv x + \alpha \mod \mathbb{Z}^2 \tag{1.2}$$

– сдвиг $S=S_{\alpha}$ тора $\mathbb{T}^2=\mathbb{R}^2/\mathbb{Z}^2$ на вектор $\alpha\in\mathbb{R}^2$ с условием

$$\alpha \in \Delta(\mathbf{l}). \tag{1.3}$$

По базису l и вектору α из (1.3) зададим тройку векторов

$$v = v(\alpha, \mathbf{l}) = \{v_0, v_1, v_2\}$$
(1.4)

следующим образом:

$$v_0 = \alpha, \quad v_1 = \alpha - l_1, \quad v_2 = \alpha - l_2.$$
 (1.5)

Из принадлежности (1.3) вектора α области $\Delta(\mathbf{l})$ следует, что так заданная (1.5) тройка векторов $v = \{v_0, v_1, v_2\}$ будет согласованной. Согласно [16] это означает, что $0 \in \Delta^{int}(v)$, где $\Delta^{int}(v)$ – внутренняя часть треугольника $\Delta(v)$ с вершинами, расположенными в концах векторов v_0, v_1, v_2 . Любую согласованную тройку векторов $v = \{v_0, v_1, v_2\}$ будем для краткости называть звездой.

Звезды $v = \{v_0, v_1, v_2\}$ обладают тем свойством, что по ним можно построить перекладывающиеся развертки

$$T = T(v) = T(v_0, v_1, v_2) = T_0 \sqcup T_1 \sqcup T_2$$
(1.6)

тора \mathbb{T}^2 с векторами перекладывания v_0, v_1, v_2 из (1.4). Быть *разверт-кой* для T означает, что каноническое отображение

$$T \longrightarrow \mathbb{T}^2 : x \mapsto x \mod \mathbb{Z}^2$$

является биекцией. *Перекладывание* развертки (1.6) задается формулой

$$T \xrightarrow{S'} T: S'(x) = x + v_{\operatorname{col}(x)}.$$
 (1.7)

В формуле (1.7) использовано обозначение col(x) = k для цвета точек *x*, принадлежащих подмножеству T_k , где k = 0, 1, 2.

Развертка T из (1.6) – это выпуклый шестиугольник, состоящий из трех параллелограммов T_0, T_1, T_0 . Обозначим $T_{k,l}$ замкнутый параллелограмм, натянутый на векторы v_k, v_l . Пусть, кроме того, T_m обозначают параллелограммы, имеющие те же внутренние части $T_m^{\text{int}} = T_{k,l}^{\text{int}}$, что и параллелограммы $T_{k,l}$, где m – дополнительный к $\{k,l\}$ индекс в $\{0, 1, 2\}$.

Определение 1.1. Стороны и вершины параллелограммов $T_{k,l}$ распределим между соответствующими параллелограммами T_m , так чтобы выполнялись следующие условия:

1) каждому T_m принадлежали две смежные стороны и соединяющая их вершина;

2) получающееся при этом объединение $T = T_0 \cup T_1 \cup T_2$ является разбиением множества T.

Для определенности зададим следующее распределение вершин:

$$0 \in T_0, \quad v_0 \in T_1, \quad v_0 + v_1 \in T_2.$$
 (1.8)

Так как по условию векторы $-l_1 = v_1 - v_0$, $-l_2 = v_2 - v_0$ образуют базис квадратной решетки \mathbb{Z}^2 , то *T* будет перекладывающейся разверткой тора \mathbb{T}^2 .

1.2. Пример 1. Пусть

$$T^{2} = \{ \alpha = (\alpha_{1}, \alpha_{2}); \quad 0 \leq \alpha_{1} < 1, \quad 0 \leq \alpha_{2} < 1 \}$$

– фундаментальная область тора \mathbb{T}^2 и α – вектор из $\mathrm{T}^{2 \; \mathrm{int}}$ с условием

$$s_{+}(\alpha) = \alpha_1 + \alpha_2 < 1.$$
 (1.9)

Если в качестве базиса l взять базис $\mathbf{e} = \{e_1, e_2\}$, состоящий из единичных векторов $e_1 = (1, 0)$ и $e_2 = (0, 1)$, и выбрать векторы

$$v_0 = \alpha, \quad v_1 = \alpha - e_1, \quad v_2 = \alpha - e_2,$$
 (1.10)

то получим по правилу (1.4) согласованную тройку векторов $v = v(\alpha, \mathbf{e}) = \{v_0, v_1, v_2\}$, так как из условия (1.9) следует принадлежность вектора α области $\Delta(\mathbf{e})$.

1.3. Пример 2. Пусть теперь вектор α из области $T^{2 \text{ int}}$ удовлетворяет другому условию

$$s_{-}(\alpha) = \alpha_1 - \alpha_2 > 0. \tag{1.11}$$

В качестве базиса **l** решетки \mathbb{Z}^2 выберем скошенный базис $\mathbf{e}_{-} = \{e_1, e_2 + e_1\}$. Тогда по условию (1.11) вектор α принадлежит треугольнику $\Delta(\mathbf{e}_{-})$ и, следовательно, по правилу (1.5), (1.10) получим согласованную тройку векторов $v = v(\alpha, \mathbf{e}_{-})$.

Если же для вектора $\alpha \in T^{2 \text{ int}}$ будет выполняться обратное условие

$$s_{-}(\alpha) = \alpha_1 - \alpha_2 < 0,$$

то выберем другой скошенный базис $\mathbf{e}_+ = \{e_1 + e_2, e_2\}$ и придем к согласованной тройке векторов $v = v(\alpha, \mathbf{e}_+)$.

1.4. Пример 3. содержит несколько иной ход рассуждения. Предположим, что вектор $\alpha \in T^{2 \text{ int}}$ не удовлетворяет требованию (1.9). Тогда для него будет выполняться неравенство

$$s_{+}(\alpha) = \alpha_1 + \alpha_2 > 1.$$
 (1.12)

Вместо α рассмотрим вектор

$$\alpha_{-} = \alpha - e_1 - e_2 \equiv \alpha \mod \mathbb{Z}^2, \tag{1.13}$$

а единичный базис $\mathbf{e} = \{e_1, e_2\}$ заменим центрально симметричным ему базисом $-\mathbf{e} = \{-e_1, -e_2\}$. Снова получили, что вектор α_- принадлежит треугольнику $\Delta(-\mathbf{e})$ и, тем самым, по правилу (1.5), (1.10) образуем согласованную тройку векторов $v_- = v(\alpha_-, -\mathbf{e})$.

Новое при таком подходе состоит в замене (1.13) вектора α сравнимым с ним вектором α_{-} по модулю решетки \mathbb{Z}^2 . В результате получаем перекладывающуюся развертку

$$T_{-} = T(v_{-})$$

тора \mathbb{T}^2 , перекладывание (1.7) которой эквивалентно сдвигу тора $S_{\alpha_-} = S_{\alpha}$ из (1.2), на исходный вектор α .

1.5. Построение базиса в общем случае. Не уменьшая общности, будем предполагать, что вектор сдвига $\alpha = (\alpha_1, \alpha_2)$ принадлежит положительному квадранту \mathbb{R}^2_+ , т.е. $\alpha_1 > 0$, $\alpha_2 > 0$. Предложенный в примерах 1,2,3 подбор базиса $\mathbf{l} = (l_1, l_2)$ квадратной решетки \mathbb{Z}^2 с условием $\alpha \in \Delta(\mathbf{l})$ становится все боле затруднительным с ростом длины вектора α . В этом случае будем использовать разложение числа $\xi = \frac{\alpha_2}{\alpha_1}$ в цепную дробь. Выберем две соседние подходящие дроб
и $\frac{P_n}{Q_n}$ и $\frac{P_{n+1}}{Q_{n+1}}$ с условием

$$\frac{P_n}{Q_n} < \xi < \frac{P_{n+1}}{Q_{n+1}},$$
(1.14)

при этом предполагая отношение $\xi=\frac{\alpha_2}{\alpha_1}$ иррациональным. Рассмотрим целочисленные векторы

$$l_{n1} = (P_n, Q_n), \quad l_{n2} = (P_{n+1}, Q_{n+1}).$$
 (1.15)

Из неравенств (1.14) следует, что вектор α принадлежит углу l_{n1}, l_{n2} от вектора l_{n1} к вектору l_{n2} . Известно [24], что соседние подходящие дроби связаны соотношением

$$\frac{P_{n+1}}{Q_{n+1}} - \frac{P_n}{Q_n} = \frac{1}{Q_n Q_{n+1}}$$

или иначе –

$$P_{n+1}Q_n - P_nQ_{n+1} = 1. (1.16)$$

Равенство (1.16) равносильно тому, что векторы $\mathbf{l}_n = (l_{n1}, l_{n2})$ из (1.15) образуют базис квадратной решетки \mathbb{Z}^2 .

После этого остается добиться выполнения условия попадания вектора α в треугольник $\Delta(\mathbf{l}_n)$. Так как длины векторов из (1.15) бесконечно растут, то найдется наименьшее n_{\min} с условием

$$\alpha \in \Delta(\mathbf{l}_n)$$
 для всех $n \ge n_{\min}$.

Итак, для фиксированного вектор сдвига $\alpha = (\alpha_1, \alpha_2)$ с иррациональным отношением координат, принадлежащего положительному квадранту \mathbb{R}^2_+ , мы получаем по правилу (1.10) бесконечную последовательность

$$v_n = v(\alpha, \mathbf{l}_n) = \{v_{n0}, v_{n1}, v_{n2}\}$$
 для всех $n \ge n_{\min}$ (1.17)

согласованных троек векторов.

Замечание 1.1. Метод цепных дробей порождает согласованные тройки векторов $v_n = v(\alpha, \mathbf{l}_n)$ из (1.1), для которых один из углов $\widehat{l_{n1}, l_{n2}}$ треугольника $\Delta(\mathbf{l}_n)$ быстро стремится к нулю. Наоборот, метод прямого перебора, изложенный в примерах 1,2,3, хорошо находит тройки векторов $v_n = v(\alpha, \mathbf{l}_n)$ с большим углом $\widehat{l_{n1}, l_{n2}}$, которые может пропускать предыдущий метод.

§2. Производные звезды

2.1. Звезды. Обозначим через Σ совокупность всех сочетаний σ из двух элементов $\{0,1\}$, $\{0,2\}$, $\{1,2\}$ из множества индексов $\{0,1,2\}$. Пусть тройка векторов $v = \{v_0, v_1, v_2\}$ образует звезду (см. п. 1.1).

Определение 2.1. Будем говорить, что звезда $\{v_0, v_1, v_2\}$ нерывождена, если для всех $\sigma = \{k, l\}$ из Σ только одна из троек

$$\{v_m, v_k, v_k + v_l\}, \{v_m, v_k + v_l, v_l\}$$
(2.1)

является согласованной. Здесь m – дополнительный индекс для $\{k, l\}$ в множестве $\{0, 1, 2\}$.

В этом случае *\sigma-производная* тройка или звезда $v^{\sigma} = \{v_0^{\sigma}, v_1^{\sigma}, v_2^{\sigma}\}$ полагается равной согласованной тройке из (2.1). Рассмотрим

$$\Xi = \Sigma^{\mathbb{N}} \tag{2.2}$$

- множество всех последовательностей

$$\xi = \{\xi_1, \xi_2, \ldots\},\tag{2.3}$$

состоящих из произвольных сочетаний $\xi_i = \{\xi_{i1}, \xi_{i2}\}$ из Σ . Обозначим через

$$[\xi]_n = \{\xi_1, \xi_2, \dots, \xi_n\}$$
(2.4)

первые n членов последовательности (2.3), при этом считаем, что $[\xi]_0 = \emptyset$. Для $n = 0, 1, 2, \ldots$ определим последовательность $[\xi]_n$ -*производных*, полагая

$$v^{[\xi]_n} = (v^{[\xi]_{n-1}})^{\xi_n}, \tag{2.5}$$

где

$$v^{[\xi]_0} = v. (2.6)$$

И более обще -

$$v^{\xi} = \{ v^{[\xi]_0}, v^{[\xi]_1}, v^{[\xi]_2}, \ldots \}.$$
(2.7)

Скажем, что звезда $v = \{v_0, v_1, v_2\}$ будет $[\xi]_n$ -дифференцируемой (соответственно ξ -дифференцируемой), если существует ее производная (2.5) для n (соответственно – существуют производные из (2.7) для всех n = 0, 1, 2, ...) Если существуют производные v^{ξ} для всех $\xi \in \Xi$, то будем говорить, что такая звезда $v = \{v_0, v_1, v_2\}$ тотально дифференцируема.

2.2. Тотальная дифференцируемость звезд. Вектор $\alpha = (\alpha_1, \alpha_2)$ называется *иррациональным*, если числа

числа
$$1, \alpha_1, \alpha_2$$
 линейно независимы над кольцом \mathbb{Z} . (2.8)

Чтобы избежать случаев вырождения, сосредоточимся исключительно на иррациональных (2.8) векторах сдвига α тора $\mathbb{T}^2 = \mathbb{T}^2/\mathbb{Z}^2$. Для произвольных торов \mathbb{T}^2_L определение (2.8) сохраняется. Нужно лишь α_1 и α_2 рассматривать как координаты вектора α в произвольном базисе решетки L.

Для формулировки следующего результата нам потребуется еще одно понятие.

Определение 2.2. Звезда $v = \{v_0, v_1, v_2\}$ вкладывается

$$v \stackrel{\text{em}}{\hookrightarrow} \mathbb{T}^2$$
 (2.9)

в тор \mathbb{T}^2 относительно сдвига $S = S_{\alpha}$, если множество

$$\mathcal{T} = \mathcal{T}_0 \sqcup \mathcal{T}_1 \sqcup \mathcal{T}_2$$

является разбиением тора \mathbb{T}^2 . Здесь $\mathcal{T}_k = T_k \sqcup S^1(T_k) \sqcup \ldots \sqcup S^{m_k-1}(T_k)$ – орбитное разбиение, составленное из S-сдвигов параллелограмма T_k из развертки T = T(v), для которой векторы перекладывания v_k имеют вид

$$v_k \equiv m_k \alpha \mod \mathbb{Z}^2 \tag{2.10}$$

для k = 0, 1, 2 с некоторыми коэффициентами $m_k = 1, 2, 3, ...$

Теорема 2.1. Пусть звезда $v = \{v_0, v_1, v_2\}$ вкладывается (2.9) в тор $v \stackrel{\text{em}}{\hookrightarrow} \mathbb{T}^2$ относительно сдвига $S = S_{\alpha}$ тора \mathbb{T}^2 на иррациональный (2.8) вектор α . Тогда справедливы следующие утверждения:

1. звезда v будет тотально дифференцируема;

2. любая σ -производная $v^{\sigma}=\{v_0^{\sigma},v_1^{\sigma},v_2^{\sigma}\}$ для $\sigma\in\Sigma$ также вкладывается

$$v^{\sigma} \stackrel{\text{em}}{\hookrightarrow} \mathbb{T}^2$$
 (2.11)

в тот же тор \mathbb{T}^2 относительно сдвига S.

Доказательство. Приведено в [16] и [17].

2.3. Производное разбиение $\mathcal{T}^{[\xi]_n}$ тора \mathbb{T}^2 . Далее будем предполагать вектор α иррациональным (2.8). Фиксируем бесконечно дифференцируемую звезду $v = \{v_0, v_1, v_2\}$, последовательность $\xi \in \Xi$ и $n = 1, 2, 3, \ldots$ Обозначим

$$\mathbf{v} = \{\mathbf{v}_0, \mathbf{v}_1, \mathbf{v}_2\} = v^{[\xi]_n} = \{v_0^{[\xi]_n}, v_1^{[\xi]_n}, v_2^{[\xi]_n}\}$$
(2.12)

— $[\xi]_n$ -производную звезду для
 v.По теореме 2.1 производная звезда
 ${\bf v}$ снова вкладывается

$$\mathbf{v} \stackrel{\text{em}}{\hookrightarrow} \mathbb{T}^2$$
 (2.13)

в тор \mathbb{T}^2 относительно сдвига $S = S_{\alpha}$. Данная звезда **v** имеет векторы

$$\mathbf{v}_k \equiv \mathbf{m}_k \alpha \bmod \mathbb{Z}^2 \tag{2.14}$$

для k = 0, 1, 2 с коэффициентами $\mathbf{m}_k = m_k^{[\xi]_n}$, вычисляемыми по правилу (2.1). Обозначим общую сумму коэффициентов через

$$\mathbf{m} = \mathbf{m}_0 + \mathbf{m}_1 + \mathbf{m}_2. \tag{2.15}$$

Звезде (2.12) соответствует перекладывающаяся развертка

e

$$\mathbf{T} = T^{\lfloor \xi \rfloor_n} = T(\mathbf{v}) = \mathbf{T}_0 \sqcup \mathbf{T}_1 \sqcup \mathbf{T}_2 \tag{2.16}$$

некоторого малого тора $\mathbf{T} \subset \mathbb{T}^2$ с векторами перекладывания \mathbf{v}_0 , \mathbf{v}_1 , \mathbf{v}_2 из (2.12). Напомним, что параллелограмм \mathbf{T}_m имеет своими сторонами векторы $\mathbf{v}_k \mathbf{v}_l$ с индексами $k \neq m, l \neq m$. Рассмотрим $[\xi]_n$ -производное разбиение

$$\mathcal{T}(\mathbf{v}) = \mathcal{T}_0(\mathbf{v}) \sqcup \mathcal{T}_1(\mathbf{v}) \sqcup \mathcal{T}_2(\mathbf{v}) = \mathcal{T}^{[\xi]_n}$$
(2.17)

тора \mathbb{T}^2 . Здесь

$$\mathcal{T}_k(\mathbf{v}) = \mathbf{T}_k \sqcup S^1(\mathbf{T}_k) \sqcup \ldots \sqcup S^{\mathbf{m}_k - 1}(\mathbf{T}_k)$$
(2.18)

– орбитное разбиение, составленное из S-сдвигов параллелограмма \mathbf{T}_k из развертки (2.16). Производная развертка (2.16) является ядром (karyon)

$$\mathbf{T} = \mathbf{K}\mathbf{r} = \mathrm{Kr}(\mathcal{T}(\mathbf{v})) \tag{2.19}$$

 $[\xi]_n$ -производного разбиения тора (2.17).

Наконец, определим еще конечную орбиту

$$Orb(0, \mathbf{m}) = \{ x_j = S^j(0) \equiv j\alpha \mod \mathbb{Z}^2; \ j = 0, 1, \dots, \mathbf{m} - 1 \}$$
(2.20)

начальной точки $x_0 = 0$ на торе \mathbb{T}^2 .

2.4. Пример: производное разбиение $\mathcal{T}^{[\xi]_6}$ тора \mathbb{T}^2 . Выберем иррациональный (2.8) вектор $\alpha = (\alpha_1, \alpha_1)$ с координатами $\alpha_1 \approx 0.3613$ и $\alpha_2 \approx 0.4067$. Такой выбор обусловлен желанием получать в дальнейшем не слишком вытянутые производные разбиения тора \mathbb{T}^2 . Вектор α принадлежит $\alpha \in \Delta(\mathbf{e})$ треугольнику $\Delta(\mathbf{e})$ из (1.1), если в качестве базиса квадратной решетки \mathbb{Z}^2 взять единичный базис $\mathbf{e} = (e_1, e_2)$, где $e_1 = (1, 0)$ и $e_2 = (0, 1)$. Согласно (1.4), (1.5) начальная звезда $v = \{v_0, v_1, v_2\}$ состоит из векторов

$$v_0 = \alpha, \quad v_1 = \alpha - e_1, \quad v_2 = \alpha - e_2.$$
 (2.21)

Пусть

$$[\xi]_6 = \{\xi_1, \xi_2, \dots, \xi_6\}$$
(2.22)

- последовательность из следующих сочетаний $\xi_1 = \xi_2 = \xi_5 = \{1, 2\},$ $\xi_3 = \{0, 2\}$ и $\xi_4 = \xi_6 = \{0, 1\} \in \Sigma$. Рассмотрим

$$\mathbf{v} = \{\mathbf{v}_0, \mathbf{v}_1, \mathbf{v}_2\} = v^{[\xi]_6} = \{v_0^{[\xi]_6}, v_1^{[\xi]_6}, v_2^{[\xi]_6}\}$$
(2.23)

– [ξ]₆-производную звезду для звезды v, определяемую последовательностью (2.22). По теореме 2.1 производная звезда \mathbf{v} вкладывается $\mathbf{v} \stackrel{\text{em}}{\hookrightarrow} \mathbb{T}^2$ в тор \mathbb{T}^2 относительно сдвига $S = S_{\alpha}$. Применяя к звезде \mathbf{v} правило (2.1), находим ее векторы $\mathbf{v}_k \equiv \mathbf{m}_k \alpha \mod \mathbb{Z}^2$ для k = 0, 1, 2 с коэффициентами

$$\mathbf{m}_0 = 3, \quad \mathbf{m}_1 = 5, \quad \mathbf{m}_2 = 6.$$
 (2.24)

Таким образом, общая сумма коэффициентов (2.15) равна

$$\mathbf{m} = \mathbf{m}_0 + \mathbf{m}_1 + \mathbf{m}_2 = 14.$$
 (2.25)

Звезде $\mathbf{v} = v^{[\xi]_6}$ соответствует (2.16) перекладывающаяся развертка

$$\mathbf{T} = T^{[\xi]_6} = T(\mathbf{v}) = \mathbf{T}_0 \sqcup \mathbf{T}_1 \sqcup \mathbf{T}_2 \tag{2.26}$$

малого тора $\mathbf{T} \subset \mathbb{T}^2$ с векторами перекладывания \mathbf{v}_0 , \mathbf{v}_1 , \mathbf{v}_2 из (2.23). Развертка $\mathbf{T} = T^{[\xi]_6}$ разбита на параллелограммы

$$\mathbf{T}_0 = \mathbf{P}(\mathbf{v}_1, \mathbf{v}_2), \quad \mathbf{T}_1 = \mathbf{P}(\mathbf{v}_0, \mathbf{v}_2), \quad \mathbf{T}_2 = \mathbf{P}(\mathbf{v}_0, \mathbf{v}_1)$$
(2.27)

со сторонами, указанными в скобках. На рис. 1 изображена развертка [ξ]₆-производного разбиения

$$\mathcal{T}^{[\xi]_6} = \mathcal{T}(\mathbf{v}) = \mathcal{T}_0(\mathbf{v}) \sqcup \mathcal{T}_1(\mathbf{v}) \sqcup \mathcal{T}_2(\mathbf{v})$$
(2.28)

тора \mathbb{T}^2 , где \mathcal{T}_k – орбита (2.18) параллелограмма \mathbf{T}_k по действием *S*сдвигов. В силу (2.24) и (2.25) орбита \mathcal{T}_k состоит из 3, 5 и 6 параллелограммов \mathbf{T}_k для k = 0, 1 и 2 соответственно; при этом вершины

Рис. 1. Развертка производного разбиения $\mathcal{T}^{[\xi]_6}$ тора \mathbb{T}^2 .

параллелограммов \mathbf{T}_k отмечены номерами $j = 0, 1, \ldots, 13$ точек x_j орбиты $\mathrm{Orb}(0, 14)$ из (2.20). Ядро $\mathbf{T} = \mathbf{Kr} = \mathrm{Kr}(\mathcal{T}^{[\xi]_6})$ производного разбиения (2.28) выделено на рис. 1 жирными линиями.

§3. Лучевые и многоугольные звезды: основная серия

3.1. Лучевые и многоугольные звезды. Лучевые звезды

$$st_{3} = \{\mathbf{v}_{0}, \mathbf{v}_{1}, \mathbf{v}_{2}\},\$$

$$st_{4} = \{\pm \mathbf{v}_{0}, \mathbf{v}_{1}, \mathbf{v}_{2}\},\$$

$$st_{5} = \{\pm \mathbf{v}_{0}, \pm \mathbf{v}_{1}, \mathbf{v}_{2}\},\$$

$$-st_{3} = \{-\mathbf{v}_{0}, -\mathbf{v}_{1}, -\mathbf{v}_{2}\},\$$

$$-st_{4} = \{\pm \mathbf{v}_{0}, -\mathbf{v}_{1}, -\mathbf{v}_{2}\},\$$

$$-st_{5} = \{\pm \mathbf{v}_{0}, \pm \mathbf{v}_{1}, -\mathbf{v}_{2}\},\$$

$$(3.1)$$

И

$$\operatorname{st}_6 = \{\pm \mathbf{v}_0, \pm \mathbf{v}_1, \pm \mathbf{v}_2\}$$
(3.2)

имеют центр в точке 0 и лучи $\pm \mathbf{v}_k$ из симметризованной звезды

$$\mathbf{v}^{\pm} = \{\pm \mathbf{v}_0, \pm \mathbf{v}_1, \pm \mathbf{v}_2\},\tag{3.3}$$

получающейся из исходной звезды **v**, определенной в (2.12). Индексы a = 3, 4, 5, 6 означают количество лучей соответствующих звезд $\pm st_a$. Звездам (3.1) и (3.2) отвечают *многоугольные звезды*

$$\pm \mathrm{St}_3, \quad \pm \mathrm{St}_4, \quad \pm \mathrm{St}_5, \quad \mathrm{St}_6, \tag{3.4}$$

состоящие из параллелограммов

$$P(\mathbf{w}_1, \mathbf{w}_2) = \{\lambda_1 \mathbf{w}_1 + \lambda_2 \mathbf{w}_2; \ 0 \le \lambda_i \le 1\},\tag{3.5}$$

где лучи \mathbf{w}_1 и \mathbf{w}_2 звезд $\pm st_a$ выбираются так, чтобы порождаемые ими параллелограммы $P(\mathbf{w}_1, \mathbf{w}_2)$ не пересекались по внутренним точкам со всеми лучами $\mathbf{w} \neq \mathbf{w}_1, \mathbf{w}_2$ указанной звезды $\pm st_a$. В обозначениях (3.4) и (3.5) имеем

$$\mathbf{T}_0 = P(\mathbf{v}_1, \mathbf{v}_2), \quad \mathbf{T}_1 = P(\mathbf{v}_0, \mathbf{v}_2), \quad \mathbf{T}_2 = P(\mathbf{v}_0, \mathbf{v}_1),$$
 (3.6)

где \mathbf{T}_k – параллелограммы из развертки (2.16). В общем случае под *многоугольной звездой* St будем понимать звезду, составленную из параллелограммов вида (3.5), при этом $x_0 = 0$ является внутренней точкой звезды St.

Отметим, что все звезды \pm st_a и \pm St_a имеют центр в точке 0. Параллельными сдвигами из них получаются звезды

$$\pm \operatorname{st}_a(i) = \pm \operatorname{st}_a + x_i, \quad \pm \operatorname{St}_a(i) = \pm \operatorname{St}_a + x_i \tag{3.7}$$

с центрами в точках x_i орбиты $Orb(0, \mathbf{m})$ из (2.20). Кроме явно определенных звезд (3.7), нам потребуются еще абстрактные звезды

$$\operatorname{st}(i) = \operatorname{st} + x_i, \quad \operatorname{St}(i) = \operatorname{St} + x_i \tag{3.8}$$

также с центрами в точках x_i . Здесь st обозначает произвольную лучевую звезду с лучами $\mathbf{w} = \pm \mathbf{v}_k$ из симметризованной звезды \mathbf{v}^{\pm} и с центром в точке 0; а St – соответствующую многоугольную звезду.

Далее мы будем сравнивать конкретные (3.7) и абстрактные звезды (3.8) с *реальными звездами*

$$\operatorname{st}(\mathcal{T}, i), \quad \operatorname{St}(\mathcal{T}, i) \subset \mathcal{T},$$

$$(3.9)$$

содержащимися в многоугольном производном разбиении $\mathcal{T} = \mathcal{T}(\mathbf{v})$ тора \mathbb{T}^2 на параллелограммы (2.17) с центрами в тех же самых точках x_i . **3.2. Типы лучевых звезд.** Векторы \mathbf{v}_k звезды \mathbf{v} из (2.12) всегда можно упорядочить так, чтобы их *веса* \mathbf{m}_k удовлетворяли неравенствам

$$1 \leqslant \mathbf{m}_0 \leqslant \mathbf{m}_1 \leqslant \mathbf{m}_2. \tag{3.10}$$

Здесь первое неравенство $\mathbf{m}_0 \ge 1$ выполняется всегда в силу определения (2.12) производных звезд **v**. В условиях (3.10) определим следующие основные типы звезд

$$st_3(i) \quad для \quad i \in I_3 = [0, \mathbf{m}_0 - 1], \\
 st_4(i) \quad для \quad i \in I_4 = [\mathbf{m}_0, \mathbf{m}_1 - 1], \\
 st_5(i) \quad для \quad i \in I_5 = [\mathbf{m}_1, \mathbf{m}_2 - 1];
 \end{cases}$$
(3.11)

а также двойственные к (3.11) типы звезд

$$-\mathrm{st}_{3}(i')$$
 для $i \in I_{3},$
 $-\mathrm{st}_{4}(i')$ для $i \in I_{4},$ (3.12)
 $-\mathrm{st}_{5}(i')$ для $i \in I_{5},$

где

$$i' = \mathbf{m} - 1 - i.$$
 (3.13)

Эти звезды можно записать в более явном однообразном с (3.11) виде

$$\begin{aligned} -\mathrm{st}_{3}(i) & \text{для} \quad i \in \quad I'_{3} = [\mathbf{m} - \mathbf{m}_{0}, \mathbf{m} - 1], \\ -\mathrm{st}_{4}(i) & \text{для} \quad i \in \quad I'_{4} = [\mathbf{m} - \mathbf{m}_{1}, \mathbf{m} - \mathbf{m}_{0} - 1], \\ -\mathrm{st}_{5}(i) & \text{для} \quad i \in \quad I'_{5} = [\mathbf{m} - \mathbf{m}_{2}, \mathbf{m} - \mathbf{m}_{1} - 1]. \end{aligned}$$

$$(3.14)$$

Заметим, что если в (3.10) имеются равенства, то соответствующие интервалы I_i , I'_i в определениях (3.11)-(3.14) будут пустыми.

Далее нам придется разделять лучевые $\pm \operatorname{st}_a(i)$ и многоугольные звезды $\pm \operatorname{St}_a(i)$ основной серии, когда выполняется неравенство

$$\mathbf{m}_2 \leqslant \mathbf{m}_0 + \mathbf{m}_1, \tag{3.15}$$

и дополнительной серии, когда –

$$m_0 + m_1 < m_2.$$
 (3.16)

Если выполнено условие (3.15), то в дополнение к звездам (3.11)-(3.14) определим еще симметричный тип звезд

$$st_6(i)$$
 для $i \in I_6 = [\mathbf{m}_2, \mathbf{m}_0 + \mathbf{m}_1 - 1].$ (3.17)

Из (3.2) следует, что это единственный тип, обладающий свойством центральной симметрии

$$st_6 = -st_6.$$
 (3.18)

3.3. Многоугольные звезды производного разбиения $\mathcal{T}^{[\xi]_6}$. Рассмотрим звезды $\pm \operatorname{St}_a(i)$ производного разбиения $\mathcal{T}^{[\xi]_6}$ из (2.28). Согласно (2.24) имеем $\mathbf{m}_0 = 3$, $\mathbf{m}_1 = 5$, $\mathbf{m}_2 = 6$, поэтому выполняется неравенство (3.15) и, следовательно, мы имеем дело со звездами $\pm \operatorname{St}_a(i)$ основной серии. На рис. 2 представлено замощение $\mathcal{T}^{[\xi]_6} + \mathbb{Z}^2$ части плоскости \mathbb{R}^2 разверткой производного разбиения $\mathcal{T}^{[\xi]_6}$ пора \mathbb{T}^2 . Заметим, что изображенная на рис. 1 развертка – это развертка тора \mathbb{T}^2 . Такими развертками можно разбить всю плоскости \mathbb{R}^2 трансляциями на векторы решетки \mathbb{Z}^2 . Переход к замощению $\mathcal{T}^{[\xi]_6} + \mathbb{Z}^2$ объясняется тем, что на замощении можно напосредственно видеть многоугольные звезды $\pm \operatorname{St}_a(i)$ без дополнительной операции склейки по mod \mathbb{Z}^2 .

3.4. Симметрии лучевых звезд. На множестве абстрактных лучевых звезд (3.8) определим *отображение двойственности*

$$\iota: \operatorname{st}(i) \longrightarrow -\operatorname{st}(i'), \qquad (3.19)$$

где значение i' было определено в (3.13). Отображение (3.19) определено корректно, т.к. симметризованная звезда (3.3) обладает свойством $-\mathbf{v}^{\pm} = \mathbf{v}^{\pm}$. На подмножестве конкретных звезд (3.7) отображение двойственности ι принимает вид

$$\iota: \begin{cases} \operatorname{st}_{a}(i) \longrightarrow -\operatorname{st}_{a}(i'), & \operatorname{rge} \quad i \in I_{a}, \\ -\operatorname{st}_{a}(i) \longrightarrow & \operatorname{st}_{a}(i'), & \operatorname{rge} \quad i \in I'_{a}. \end{cases}$$
(3.20)

Здесь для каждого a = 3, 4, 5, 6 интервалы I_a и I'_a изменений *i* взяты из правых частей определений звезд (3.11), (3.14) и (3.17). Отображение ι является инволюцией

$$\iota \circ \iota = \mathrm{id.} \tag{3.21}$$

Заметим, что из (3.20) и (3.18) вытекает свойство симметрии

$$\iota \operatorname{st}_6(i) = \operatorname{st}_6(i')$$
 для $i \in I_6 = I'_6$ (3.22)

для звезд симметричного типа LR_6 .

На рис. З многоугольные звезды $\pm \operatorname{St}_{a}(i)$ производного разбиения $\mathcal{T}^{[\xi]_{6}}$ разбиты на симметричные семейства относительно отображения ι из (3.19) и (3.20). В центре звезд $\pm \operatorname{St}_{a}(i)$ указаны интервалы номеров i звезд данного типа.

Рис. 2. Замощение плоскости разверткой производного разбиения $\mathcal{T}^{[\xi]_6}$.

3.5. Допустимость и жесткость звезд. Вектор $\mathbf{w} = \pm \mathbf{v}_k$ назовем *допустимым* в точке $x_i \in \operatorname{Orb}(0, \mathbf{m})$, если выполнено условие

$$\mathbf{w} + x_i \in \operatorname{Orb}(0, \mathbf{m}), \tag{3.23}$$

где $Orb(0, \mathbf{m})$ – орбита (2.20). Аналогично пару неколлинеарных векторов $\mathbf{w}_1 = \pm \mathbf{v}_k$, $\mathbf{w}_2 = \pm \mathbf{v}_l$ назовем *допустимой* в точке x_i , если

$$\mathbf{w}_1 + x_i, \ \mathbf{w}_2 + x_i, \ \mathbf{w}_1 + \mathbf{w}_2 + x_i \in \operatorname{Orb}(0, \mathbf{m}).$$
 (3.24)

Переходя к более общему случаю, назовем лучевую звезду st(i) *допустимой* в точке x_i , если выполняется включение

$$\operatorname{St}^{v}(i) \subset \operatorname{Orb}(0, \mathbf{m}),$$
 (3.25)

Рис. 3. Симметрии многоугольных звезд производного разбиения $\mathcal{T}^{[\xi]_6}$.

где $\mathrm{St}^{v}(i)$ – множество вершин всех многоугольников звезды $\mathrm{St}(i)$, включая ее центр x_i . Укажем, что включения (3.23)-(3.25) подразумеваются по mod \mathbb{Z}^2 .

Естественно, в допустимой звезде st(i) каждый ее отдельный луч и любая пара смежных лучей будут допустимыми. Поскольку индекс i в обозначении звезды st(i) однозначно указывает на ее центр – точку x_i , то далее отмечая какое-либо свойство звезды st(i) будем опускать упоминание самой точки x_i .

Будем говорить, что st(i) – максимальная звезда, если она содержит все допустимые в точке x_i векторы **w** из симметризованной звезды (3.3). Напротив, минимальность звезды st(i) будет означать выполнимость условий:

1) звезда st(i) допустима в точке x_i ;

2) если удалить хотя бы один луч звезды st(i), то она становится запрещенной, т.е. недопустимой в точке x_i .

Скажем, что лучевая звезда st(i) жесткая, если st(i) является единственной допустимой звездой с центром в точке x_i . Поскольку согласно (3.4) между звездами st(i) и St(i) существует биекция

$$st(i) \Leftrightarrow St(i),$$
 (3.26)

то приведенные выше определения можем перенести с лучевых звезд st(i) также и на отвечающие им многоугольные звезды St(i).

Непосредственно из приведенных выше определений свойств абстрактных лучевых звезд st(i) и определения отображения двойственности (3.19) вытекает следующее утверждение.

Лемма 3.1. 1. Если лучевая звезда st(i) обладает одновременно свойствами максимальности и минимальности в точке x_i , то она обязана быть жесткой звездой.

2. Лучевая звезда st(i) является жесткой тогда и только тогда, когда таковой является ее двойственная звезда $-st(i') = \iota st(i)$, где ι – отображение (3.19).

Обозначим через st_a множество всех лучевых звезд \pm st_a $(i) = \pm$ st_a+ x_i из (3.7), где \pm st_a – звезды из списков (3.1), (3.2) и (3.4), и St_a – множество соответствующих многоугольных звезд \pm St_a $(i) = \pm$ St_a $+x_i$.

Лемма 3.2. Пусть St_a – множество всех многоугольных звезд $\pm St_a(i)$ основной серии, т.е. выполняются неравенства (3.10) и (3.15). Тогда все звезды $\pm St_a(i)$ из множества St_a являются жесткими.

Доказательство. Из выполненимости условий (3.10) и (3.15) следуют неравенства

$$0 < \mathbf{m}_0 \leqslant \mathbf{m}_1 \leqslant \mathbf{m}_2 \leqslant \mathbf{m}_0 + \mathbf{m}_1 \leqslant \mathbf{m}_0 + \mathbf{m}_2 \leqslant \mathbf{m}_1 + \mathbf{m}_2 \leqslant \mathbf{m} - 1.$$
(3.27)

Учитывая эти неравенства, доказательство сначала проведем для звезд $St_a(i)$ из множества St_a , постепенно увеличивая *i* от 0 до $[\frac{\mathbf{m}-1}{2}]$, где [*] – целая часть.

Случай $St_3(i)$ для $i \in I_3 = [0, \mathbf{m}_0 - 1]$. Точка $x_0 = 0$ допускает только векторы **w** из лучевой звезды $st_3 = \{\mathbf{v}_0, \mathbf{v}_1, \mathbf{v}_2\}$ и, следовательно, звезда $St_3(0)$ максимальная. Кроме того, любые два соседних вектора $\mathbf{w}_1, \mathbf{w}_2$ звезды $St_3(0)$ образуют допустимую пару. Так как $x_0 = 0$ – внутренняя точка звезды $St_3(0)$, то данная звезда допустимая. Далее заметим, что звезда $St_3(0)$ минимальная, а поскольку она еще и максимальная, то по первой части леммы 3.1 звезда $St_3(i)$ является жесткой. То же рассуждение сохраняется для всех звезд $St_3(i)$ с номерами $i \in I_3$.

Случай $St_4(i)$ для $i \in I_4 = [\mathbf{m}_0, \mathbf{m}_1 - 1]$. При переходе к точке $x_{\mathbf{m}_0}$ количество допустимых векторов **w** увеличивается на единицу. Все такие векторы составляют лучевую звезду $st_4 = \{\pm \mathbf{v}_0, \mathbf{v}_1, \mathbf{v}_2\}$ и любые два вектора $\mathbf{w}_1, \mathbf{w}_2 \in st_4$ образуют допустимую пару. Новый вектор $-\mathbf{v}_0$ разделяет пару $\mathbf{v}_1, \mathbf{v}_2$. В точке $x_{\mathbf{m}_0}$ она становится запрещенной парой. Вместо нее возникают две допустимые пары $\mathbf{v}_1, -\mathbf{v}_0$ и $-\mathbf{v}_0, \mathbf{v}_2$. Следовательно, $St_4(\mathbf{m}_0)$ – максимальная допустимая звезда. Перебором всех комбинаций убеждаемся в минимальности системы векторов st_4 и выводим жесткость звезды $St_4(\mathbf{m}_0)$. Схема рассуждений сохраняется для всех звезд $St_4(i)$, где $i \in I_4$.

Случаи $\operatorname{St}_5(i)$ для $i \in I_5 = [\mathbf{m}_1, \mathbf{m}_2 - 1]$ и $\operatorname{st}_6(i)$ для $i \in I_6^- = [\mathbf{m}_2, [\frac{\mathbf{m}-1}{2}]]$ рассматриваются аналогично; увеличивается лишь количество перебираемых комбинаций пар векторов $\mathbf{w}_1, \mathbf{w}_2 \in \operatorname{st}_a$.

Оставшиеся збезды $-St_a(i)$ для $i \in [[\frac{m-1}{2}] + 1, m - 1]$ двойственны рассмотренным выше относительно отображения ι из (3.20), при этом в силу неравенств (3.27) звезды $-St_a(i)$ соответствуют рассмотренным выше звездам $St_a(i')$. Поэтому в силу леммы 3.1 звезды $-St_a(i)$ также будут жесткими. Замечание 3.1. 1. Отметим, что из первого неравенств в (3.27) вытекает $I_3 \neq \emptyset$, и, значит, звезда St₃(0) всегда существует. Это же свойство непосредственно следует из определения $[\xi]_n$ -производных разбиений (2.17).

2. Напротив, в случае вырождения, когда среди неравенств (3.27) присутствуют равенства, соответствующий тип звезд $\operatorname{St}_a(i)$ отсутствует.

§4. Лучевые и многоугольные звезды: дополнительная серия

4.1. Звезды дополнительной серии. Переходим к рассмотрению многоугольных звезд St_a дополнительной серии, когда имеют место неравенства (3.10) и (3.16). Лучевые звезды \pm st₃, \pm st₄ и \pm st₅ определим также, как в (3.1). Симметричную же звезду st₆ в (3.2) заменим на новую *симметричную лучевую звезду*

$$st_4^s = \{\pm \mathbf{v}_0, \pm \mathbf{v}_1\}.$$
 (4.1)

Индексы a = 3, 4, 5 по-прежнему означают количество лучей соответствующих звезд $\pm st_a$. Аналогично (3.7), звездам (3.1) и (4.1) отвечают лучевые звезды

$$\pm \operatorname{st}_3(i), \quad \pm \operatorname{st}_4(i), \quad \pm \operatorname{st}_5(i), \quad \operatorname{st}_4^s(i) \tag{4.2}$$

с центрами в точках x_i орбиты $Orb(0, \mathbf{m})$ из (2.20). Неравенства (3.27) в случае дополнительной серии заменяются неравенствами

$$0 < \mathbf{m}_0 \leq \mathbf{m}_1 \leq \mathbf{m}_0 + \mathbf{m}_1 < \mathbf{m}_2 \leq \mathbf{m}_0 + \mathbf{m}_2 \leq \mathbf{m}_1 + \mathbf{m}_2 \leq \mathbf{m}_1 - 1.$$
 (4.3)

Поэтому симметричный тип звезд $\mathrm{st}_4^s(i)$ имеет вид

$$st_4^s(i)$$
 для $i \in I_4^s = [\mathbf{m}_0 + \mathbf{m}_1, \mathbf{m}_2 - 1].$ (4.4)

Среди звезд (4.2) это единственный тип, обладающий свойством центральной симметрии

$$\mathrm{st}_4^s = -\mathrm{st}_4^s. \tag{4.5}$$

Лемма 4.1. Пусть выполняются неравенства (3.10), (3.16), и пусть St_a – множество всех многоугольных звезд $\pm St_a(i)$, отвечающих лучевым звездам дополнительной серии (4.2). Тогда все звезды $\pm St_a(i)$, $St_4^s(i)$ из множества St_a являются жесткими.

Доказательство. Сравнивая неравенства (3.27) и (4.3) видим, что доказательство леммы 3.2 сохраняется для звезд дополнительной серии $\pm St_3(i)$, $\pm St_4(i)$ и $\pm St_5(i)$. Поэтому нужно проверить лишь жесткость симметричных звезд $St_4^s(i)$ с центрами в точках x_i для $i \in I_4^s = [\mathbf{m}_0 + \mathbf{m}_1, \mathbf{m}_2 - 1]$.

В силу неравенства $\mathbf{m}_0 + \mathbf{m}_1 < \mathbf{m}_2$ из (4.3) векторы $\pm \mathbf{v}_2 \in \mathbf{st}_6$ становятся запрещенными в точке $x_{\mathbf{m}_0+\mathbf{m}_1}$. Данная точка допускает только векторы \mathbf{w} из симметричной лучевой звезды $\mathbf{st}_4^s = \{\pm \mathbf{v}_0, \pm \mathbf{v}_1\}$ и, следовательно, звезда $\mathbf{St}_4^s(\mathbf{m}_0 + \mathbf{m}_1)$ максимальная. Любые два соседних вектора $\mathbf{w}_1, \mathbf{w}_2$ звезды $\mathbf{St}_4^s(\mathbf{m}_0 + \mathbf{m}_1)$ образуют допустимую пару, поэтому звезда допустимая. А так как свойство минимальности данной звезды очевидно, то снова применяя первую часть леммы 3.1 убеждаемся, что звезда $\mathbf{St}_4^s(\mathbf{m}_0 + \mathbf{m}_1)$ является жесткой. То же рассуждение справедливо для всех звезд $\mathbf{St}_4^s(i)$ с остальными номерами $i \in I_4^s$.

4.2. Производное разбиение $\mathcal{T}^{[\xi]_3}$ тора \mathbb{T}^2 . Выберем иррациональный вектор $\alpha = (\alpha_1, \alpha_1) \approx (0.3613, 0.4067)$ такой же, как в п. 2.4. Пусть

$$[\xi]_3 = \{\xi_1, \xi_2, \xi_3\} \tag{4.6}$$

– последовательность из следующих сочетаний $\xi_1 = \xi_2 = \{0, 2\}$ и $\xi_3 = \{1, 2\} \in \Sigma$. Рассмотрим

$$\mathbf{v} = \{\mathbf{v}_0, \mathbf{v}_1, \mathbf{v}_2\} = v^{[\xi]_3} = \{v_0^{[\xi]_3}, v_1^{[\xi]_3}, v_2^{[\xi]_3}\}$$
(4.7)

– [ξ]₃-производную звезду для звезды v из (2.21), определяемую последовательностью (4.6). Снова по теореме 2.1 производная звезда **v** вкладывается $\mathbf{v} \stackrel{\text{em}}{\hookrightarrow} \mathbb{T}^2$ в тор \mathbb{T}^2 относительно сдвига $S = S_{\alpha}$. По правилу (2.1) для звезды **v** вычисляем ее векторы $\mathbf{v}_k \equiv \mathbf{m}_k \alpha \mod \mathbb{Z}^2$, где k = 0, 1, 2, имеющие коэффициенты

$$\mathbf{m}_0 = 1, \quad \mathbf{m}_1 = 2, \quad \mathbf{m}_2 = 4.$$
 (4.8)

Теперь общая сумма коэффициентов (2.15) равна

$$\mathbf{m} = \mathbf{m}_0 + \mathbf{m}_1 + \mathbf{m}_2 = 7.$$
 (4.9)

Аналогично (2.26) для звезды $\mathbf{v} = v^{[\xi]_3}$ строим перекладывающуюся развертку

$$\mathbf{T} = T^{\lfloor \xi \rfloor_3} = T(\mathbf{v}) = \mathbf{T}_0 \sqcup \mathbf{T}_1 \sqcup \mathbf{T}_2 \tag{4.10}$$

малого тора $\mathbf{T} \subset \mathbb{T}^2$ с векторами перекладывания \mathbf{v}_0 , \mathbf{v}_1 , \mathbf{v}_2 из (4.7). На рис. 4 изображена развертка $[\xi]_3$ -производного разбиения

$$\mathcal{T}^{[\xi]_3} = \mathcal{T}(\mathbf{v}) = \mathcal{T}_0(\mathbf{v}) \sqcup \mathcal{T}_1(\mathbf{v}) \sqcup \mathcal{T}_2(\mathbf{v}). \tag{4.11}$$

Рис. 4. Развертка производного разбиения $\mathcal{T}^{[\xi]_3}$ тора \mathbb{T}^2 .

В силу (4.8) и (4.9) орбита \mathcal{T}_k состоит из 1, 2 и 4 параллелограммов \mathbf{T}_k для k = 0, 1 и 2 соответственно; при этом вершины параллелограммов \mathbf{T}_k отмечены номерами $j = 0, 1, \ldots, 6$ точек x_j орбиты $\mathrm{Orb}(0, 7)$. Ядро $\mathbf{T} = \mathbf{Kr} = \mathrm{Kr}(\mathcal{T}^{[\xi]_3})$ производного разбиения (4.11) выделено на рис. 4 жирными линиями.

Рассмотрим звезды $\pm \operatorname{St}_a(i)$ производного разбиения $\mathcal{T}^{[\xi]_3}$. Согласно (4.8) выполняется неравенство (3.16), поэтому в данном случае мы имеем дело со звездами $\pm \operatorname{St}_a(i)$ дополнительной серии. На рис. 5 представлено замощение $\mathcal{T}^{[\xi]_3} + \mathbb{Z}^2$ плоскости \mathbb{R}^2 разверткой производного разбиения $\mathcal{T}^{[\xi]_3}$.

На рис. 6 многоугольные звезды $\pm \operatorname{St}_{a}(i)$ производного разбиения $\mathcal{T}^{[\xi]_{3}}$ разбиты на симметричные семейства относительно отображения ι из (3.19) и (3.20). В центре звезд $\pm \operatorname{St}_{a}(i)$ указаны интервалы номеров i звезд данного типа.

§5. Абстрактные и реальные звезды

5.1. Отрезки I_a , I'_a и типы многоугольных звезд. Цель настоящего раздела – сравнить конкретные лучевые $\pm \operatorname{st}_a(i) \in \operatorname{st}_a$ и многоугольные звезды $\pm \operatorname{St}_a(i) \in \operatorname{St}_a$ с реальными звездами st (\mathcal{T}, i) и St (\mathcal{T}, i) из (3.9), содержащимися в многоугольном разбиении $\mathcal{T} = \mathcal{T}(\mathbf{v})$ тора \mathbb{T}^2 на параллелограммы (2.17).

Рис. 5. Замощение плоскости разверткой производного разбиения $\mathcal{T}^{[\xi]_3}$.

Пусть I_a , I'_a для a = 3, 4, 5, 6 – интервалы, определенные в (3.11), (3.14), (3.17) и (4.5). Из определений следут, что отрезок I = [0, m - 1]имеет два *типа разбиений*

$$I = I_3 \sqcup I_4 \sqcup I_5 \sqcup I_6 \sqcup I'_5 \sqcup I'_4 \sqcup I'_3 \tag{5.1}$$

И

$$I = I_3 \sqcup I_4 \sqcup I_5 \sqcup I_4^s \sqcup I_5' \sqcup I_4' \sqcup I_3'$$

$$(5.2)$$

соответственно в случае основной серии (3.10), (3.15) и дополнительной серии (3.10), (3.16). Отрезки в разбиениях (5.1) и (5.2) записаны последовательно друг за другом.

Таблица 1. Отрезки I_a, I'_a и типы $\pm \mathrm{St}_a$ многоугольных звезд $\pm \mathrm{St}_a(i)$ основной серии.

I_3	I_4	I_5	I_6	I_5'	I'_4	I'_3
St_3	St_4	St_5	St_6	$-St_3$	$-St_4$	$-St_5$
\mathbf{m}_0	$\mathbf{m}_1 - \mathbf{m}_0$	$\mathbf{m}_2 - \mathbf{m}_1$	$\mathbf{m}_0 + \mathbf{m}_1 - \mathbf{m}_2$	$\mathbf{m}_2 - \mathbf{m}_1$	$\mathbf{m}_1 - \mathbf{m}_0$	\mathbf{m}_0

Рис. 6. Симметрии многоугольных звезд производного разбиения $\mathcal{T}^{[\xi]_3}.$

Таблица 2. Отрезки $I_a,\,I_a',\,I_4^s$ и типы $\pm {\rm St}_a,\,{\rm St}_4^s$ многоугольных звезд $\pm {\rm St}_a(i),\,{\rm St}_4^s(i)$ дополнительной серии.

I_3	I_4	I_5	I_4^s	I_5'	I'_4	I'_3
St_3	St_4	St_5	St_4^s	$-St_3$	$-St_4$	$-St_5$
\mathbf{m}_0	$\mathbf{m}_1 - \mathbf{m}_0$	\mathbf{m}_0	$\mathbf{m}_2 - \mathbf{m}_0 - \mathbf{m}_1$	\mathbf{m}_0	$\mathbf{m}_1 - \mathbf{m}_0$	\mathbf{m}_0

В таблицах 1 и 2 в верхней строке записаны отрезки I_a , I'_a из разбиений (5.1), (5.2); во второй строке – типы $\pm \text{St}_a$ звезд $\pm \text{St}_a(i)$ с центрами в точках x_i для номера i из соответствующего отрезка I_a , I'_a ; в нижней строке – количество номеров i из указанных отрезков. Отрезок $I = [0, \mathbf{m} - 1]$ содержит \mathbf{m} номеров i, что совпадает с суммами всех чисел в нижних строках таблиц 1 и 2.

Используя таблицы 1 и 2, для любого *i* из отрезка *I* зададим два отображения

$$\operatorname{St}_{\mathcal{T}}: i \mapsto \operatorname{St}_{\mathcal{T}}(i)$$
 (5.3)

И

$$\mathbf{m}: i \mapsto \mathbf{m}(i) \tag{5.4}$$

следующим образом:

1) определяем основную или дополнительную серию разбиения \mathcal{T} , а затем по соответствующей таблице 1 или 2, какому из отрезков I_a , I'_a , I'_a принадлежит номер i;

2) тогда $\operatorname{St}_{\mathcal{T}}(i)$ в (5.3) – это звезда $\pm \operatorname{St}_{a}(i)$, $\operatorname{St}_{4}^{s}(i)$, расположенная ниже найденного отрезка I_{a} , I'_{a} , I^{s}_{4} , а $\mathbf{m}(i)$ в (5.4) – количество звезд данного типа.

Таким образом, по номеру $i \in I$ отображения (5.3) и (5.4) однозначно определяют тип звезды $\pm St_a$, St_4^s , ее центр x_i и количество таких звезд $\mathbf{m}(i)$.

5.2. Основная теорема.

Теорема 5.1. 1. Любое производное разбиение $\mathcal{T} = \mathcal{T}(\mathbf{v})$ тора \mathbb{T}^2 из (2.17) обладает свойством максимальности, т.е. в разбиении \mathcal{T} все звезды $St(\mathcal{T}, i)$, где $i \in I$, максимальны.

2. Если $\operatorname{St}(\mathcal{T},i)$ – какая-то многоугольная звезда из разбиения \mathcal{T} , то в разбиении \mathcal{T} существует симметричная ей звезда

$$St(\mathcal{T}, i') = -St(\mathcal{T}, i) \tag{5.5}$$

с центром $x_{i'}$ с номером i' = m - 1 - i.

3. По формуле

$$\operatorname{St}(\mathcal{T}, i) = \operatorname{St}_{\mathcal{T}}(i),$$
(5.6)

где $St_{\mathcal{T}}$ – отображение (5.3), определяется тип $\pm St_a$, St_4^s звезды $St(\mathcal{T}, i) \in \mathcal{T}$.

4. Количество звезд $St(\mathcal{T}, i)$ в разбиении \mathcal{T} данного типа (5.6) равно $\mathbf{m}(i)$, определенному в (5.4).

Доказательство. Удобно начать доказательство с утверждений 3 и 4. Начальная звезда **v** из (2.12) имеет лучи **v**₀, **v**₁ и **v**₂ порядков **m**₀, **m**₁ и **m**₂, определяемых из сравнений (2.14). Предполагается, что лучи упорядочены таким образом, что выполняются неравенства (3.10). В зависимости от того, какое из неравенств (3.15) или (3.16) имеет место, множество всех многоугольных звезд St_a состоит из звезд основной \pm St_a(*i*) или дополнительной \pm St_a(*i*), St^s₄(*i*) серии. Согласно леммам 3.2 и 4.1 все эти звезды для всех номеров $i \in I$ являются жесткими. По теореме 2.1 любая производная звезда $\mathbf{v} = v^{[\xi]_n}$ вкладывается $\mathbf{v} \stackrel{\text{еm}}{\leftrightarrow} \mathbb{T}^2$ в тор \mathbb{T}^2 относительно сдвига $S = S_\alpha$ и, значит, по определению существует производное разбиение $\mathcal{T} = \mathcal{T}(\mathbf{v})$ тора \mathbb{T}^2 . Многоугольники разбиения \mathcal{T} имеют вершины в точках x_i с номерами $i \in I$. По указанным выше леммам в точках x_i возможны единственные звезды из списка St_a. Отсюда и определения отображения (5.3) вытекает формула (5.6) и утверждение 4.

В доказательствах лемм 3.2 и 4.1 была установлена максимальность всех звезд из списка St_a , что в совокупности с формулой (5.6) доказывает утверждение 1. Формула (5.5) получается из явной формулы (3.20) для отображения двойственности ι и определений типов звезд (3.1), (3.2) и (4.1).

§6. Короны и типы звезд

6.1. Корона. Из теоремы 5.1, формула (5.6), следует, что определенное в (2.19) ядро $\mathbf{Kr} = \mathrm{Kr}(\mathcal{T})$ производного разбиения $\mathcal{T} = \mathcal{T}(\mathbf{v})$ тора \mathbb{T}^2 совпадает

$$\mathbf{Kr} = \mathrm{St}_3(0) = \mathbf{T}_0 \sqcup \mathbf{T}_1 \sqcup \mathbf{T}_2 \tag{6.1}$$

с многоугольной звездой из списка (3.7) с центром в точке $x_0 = 0$. В правой части (6.1) записаны параллелограммы \mathbf{T}_k из (3.6). Чтобы не вводить дополнительного обозначения, будем считать ядро в (6.1) замкнутым $\mathbf{Kr} = \overline{\mathbf{Kr}}$.

Обозначим через **Cr** множество, состоящее из самого ядра **Kr** и соседних с ним многоугольников *P* из производного разбиения $\mathcal{T} = \mathcal{T}(\mathbf{v})$ тора \mathbb{T}^2 из (2.17). При этом учитываются многоугольники *P* как с общей стороной, так и с общей вершиной с ядром **Kr**. Множество **Cr** назовем *короной* ядра **Kr**.

По определению корона **Cr** содержит три многоугольника \mathbf{T}_0 , \mathbf{T}_1 , \mathbf{T}_2 ядра **Kr** и еще окружающие его многоугольники $P \in \mathcal{T}$. Кроме

того, корона **Cr** содержит семь внутренних вершин указанных многоугольников. Опишем это *множество вершин* \mathbf{Cr}^{v} . По определению (3.6) параллелограммы \mathbf{T}_{k} в разбиении (6.1) имеют вершины

$$\begin{aligned}
 T_0^v &= \{0, \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_1 + \mathbf{v}_2\}, \\
 T_1^v &= \{0, \mathbf{v}_0, \mathbf{v}_2, \mathbf{v}_0 + \mathbf{v}_2\}, \\
 T_2^v &= \{0, \mathbf{v}_0, \mathbf{v}_1, \mathbf{v}_0 + \mathbf{v}_1\}.
 \end{aligned}$$
(6.2)

Используя (2.14) можем представить вершины из (6.2) в виде их номеров

$$\begin{aligned}
 T_0^v &= \{0, \mathbf{m}_1, \mathbf{m}_2, \mathbf{m}_1 + \mathbf{m}_2\}, \\
 T_1^v &= \{0, \mathbf{m}_0, \mathbf{m}_2, \mathbf{m}_0 + \mathbf{m}_2\}, \\
 T_2^v &= \{0, \mathbf{m}_0, \mathbf{m}_1, \mathbf{m}_0 + \mathbf{m}_1\}.
 \end{aligned}$$
(6.3)

Формулы (6.3) позволяют явным образом записать множество внутренних вершин \mathbf{Cr}^{v} короны \mathbf{Cr} :

$$\mathbf{Kr}_{1}^{v} = \{0, \mathbf{m}_{0}, \mathbf{m}_{1}, \mathbf{m}_{2}, \mathbf{m}_{0} + \mathbf{m}_{1}, \mathbf{m}_{0} + \mathbf{m}_{2}, \mathbf{m}_{1} + \mathbf{m}_{2}\}.$$
 (6.4)

6.2. Классификация типов многоугольных звезд. Обозначим множество всех многоугольных звезд $\operatorname{St}(\mathcal{T},i)$ разбиения \mathcal{T} через $\operatorname{St}(\mathcal{T})$. Две многоугольные звезды $\operatorname{St}(\mathcal{T},i)$ и $\operatorname{St}(\mathcal{T},i')$ из множества $\operatorname{St}(\mathcal{T})$ считаем эквивалентными $\operatorname{St}(\mathcal{T},i) \sim \operatorname{St}(\mathcal{T},i')$, если одну из них можно перевести в другую некоторой трансляцией тора \mathbb{T}^2 . Пусть $\operatorname{St}^{\sim}(\mathcal{T})$ – множество всех классов эквивалентных звезд в множестве $\operatorname{St}(\mathcal{T})$ и

$$t_{\rm St}(\mathcal{T}) = \sharp \operatorname{St}^{\sim}(\mathcal{T}) \tag{6.5}$$

- число классов или типов звезд.

Теорема 6.1. 1. Среди звезд

$$\operatorname{St}(\mathcal{T},0), \quad \operatorname{St}(\mathcal{T},\mathbf{m}_0), \quad \operatorname{St}(\mathcal{T},\mathbf{m}_1), \quad \operatorname{St}(\mathcal{T},\mathbf{m}_2),$$
(6.6)

 $\operatorname{St}(\mathcal{T}, \mathbf{m}_0 + \mathbf{m}_1), \ \operatorname{St}(\mathcal{T}, \mathbf{m}_0 + \mathbf{m}_2), \ \operatorname{St}(\mathcal{T}, \mathbf{m}_1 + \mathbf{m}_2)$

с внутренними вершинами (6.4) короны Cr содержатся все типы многоугольных звезд из $St^{\sim}(\mathcal{T})$.

2. Число типов звезд (6.5) вычисляется по формуле

$$t_{\rm St}(\mathcal{T}) = 7 - \tau. \tag{6.7}$$

Здесь au – количество равенств в последовательности

$$\mathbf{m}_0 \leqslant \mathbf{m}_1 \leqslant \mathbf{m}_2 \leqslant \mathbf{m}_0 + \mathbf{m}_1 \leqslant \mathbf{m}_0 + \mathbf{m}_2 \leqslant \mathbf{m}_1 + \mathbf{m}_2 \tag{6.8}$$

в случае основной серии (3.10), (3.15) и –

$$\mathbf{m}_0 \leqslant \mathbf{m}_1 \leqslant \mathbf{m}_0 + \mathbf{m}_1 < \mathbf{m}_2 \leqslant \mathbf{m}_0 + \mathbf{m}_2 \leqslant \mathbf{m}_1 + \mathbf{m}_2 \qquad (6.9)$$

в случае дополнительной серии (3.10), (3.16). Таким образом, если $\tau = 0$, то имеет место взаимно однозначное соответствие

$$\operatorname{St}^{\sim}(\mathcal{T}) \Leftrightarrow \mathbf{Cr}^{v}$$
 (6.10)

между типами звезд $St^{\sim}(\mathcal{T})$ и внутренними вершинами (6.4) короны **Cr**.

Доказательство. 1. С помощью формулы (5.6) из теоремы 5.1 устанавливается соответствие между многоугольными звездами $\operatorname{St}(\mathcal{T}, i)$ в разбиении \mathcal{T} и звездами $\operatorname{St}_{\mathcal{T}}(i)$, где $i \in I$, из таблиц 1 или 2 в случае основной или дополнительной серии соответственно. По этой же формуле определяется тип $\pm \operatorname{St}_a$, St_4^s звезды $\operatorname{St}(\mathcal{T}, i) \in \mathcal{T}$, при этом типы звезд в таблицах 1, 2 находятся во взаимно однозначном соответствии с отрезками I_a, I'_a, I^s_4 из (5.1), (5.2). В списке (6.6) представлены все звезды $\operatorname{St}(\mathcal{T}, i)$ с начальными номерами i из указанных отрезков. Поэтому звезды (6.6) содержат все возможные типы звезд $\operatorname{St}(\mathcal{T}, i)$ производного разбиения $\mathcal{T} = \mathcal{T}(\mathbf{v})$ тора \mathbb{T}^2 .

2. Все представленные в таблицах 1, 2 типы звезд \pm St_a, St^s₄ различны и, кроме того, данные типы нумеруются отрезками I_a, I'_a, I^s_4 из (5.1), (5.2). Следовательно, если какой-то отрезок пустой, то отвечающий ему тип звезд отсутствует в производном разбиении \mathcal{T} . Отсюда и из утверждения 4 теоремы 5.1 выводим формулу (6.7).

Определенную в теореме 6.1 величину τ назовем *степенью вырож*дения производного разбиения $\mathcal{T} = \mathcal{T}(\mathbf{v})$. Если $\tau = 0$, то будем говорить, что разбиение \mathcal{T} невырождено. По формуле (6.7) в этом случае выполняется равенство $t_{\text{St}}(\mathcal{T}) = 7$, т.е. невырожденное разбиение имеет максимально возможное число типов звезд (6.5).

На рис. 7 изображена корона $\mathbf{Cr}^{[\xi]_6}$ производного разбиения $\mathcal{T}^{[\xi]_6}$ основной серии, определенного в п. 2.4.

Числа j у внутренних верпин $x_j \in \mathbf{Cr}^v$ короны \mathbf{Cr} указывают на их порядки относительно сдвига $S = S_\alpha$ тора \mathbb{T}^2 . Согласно (2.24) производное разбиение $\mathcal{T}^{[\xi]_6}$ невырождено, так как для него $\tau = 0$. Поэтому по формуле (6.7) теоремы 6.1 разбиение $\mathcal{T}^{[\xi]_6}$ содержит $t_{\mathrm{St}}(\mathcal{T}^{[\xi]_6}) = 7$ различных типов $\mathrm{St}^\sim(\mathcal{T})$ многоугольных звезд $\mathrm{St}(\mathcal{T}, i) \in \mathcal{T}^{[\xi]_6}$. По формуле (6.10) каждому типу звезд из $\mathrm{St}^\sim(\mathcal{T})$ соответствует внутренняя вершина короны \mathbf{Cr} . По рис. 7 легко проверить, что многоугольные звезды $\mathrm{St}(\mathcal{T}, i)$ с центрами $x_i \in \mathbf{Cr}^v$ в 7 внутренних вершинах короны \mathbf{Cr} принадлежат различным типам. Поскольку, как уже указывалось

Рис. 7. Корона $\mathbf{Cr}^{[\xi]_6}$ производного разбиения $\mathcal{T}^{[\xi]_6}$ основной серии.

различных типов 7, то тем самым получаем подтверждение теоремы 6.1 в случае производного разбиения $\mathcal{T}^{[\xi]_6}$ из основной серии.

Корона $\mathbf{Cr}^{[\xi]_3}$ невырожденного производного разбиения $\mathcal{T}^{[\xi]_3}$ дополнительной серии, определенного в п. 4.2, представлена на рис. 8.

6.3. Корона и симметрии типов многоугольных звезд. Как уже указывалось в (3.20), (3.22) и (4.5) между многоугольными звездами $\pm \operatorname{St}_a(i)$ существует симметрия. Теперь, воспользовавшись доказанной теоремой 6.1 с описанием типов звезд в производном разбиении \mathcal{T} , мы можем разбить данные типы на попарно симметричные.

Например, отображение (3.13) переводит отрезок I_3 в I'_3 . Первому отрезку соответствует звезда $St(\mathcal{T}, 0)$, а второму – звезда $St(\mathcal{T}, \mathbf{m}_1 + \mathbf{m}_2)$. Поэтому в силу (3.20) вторая звезда с точностью до транляции получается из первой поворотом на 180° градусов, что обозначим $St(\mathcal{T}, 0) \leftrightarrow St(\mathcal{T}, \mathbf{m}_1 + \mathbf{m}_2)$. Средний отрезок I_6 отображается сам в себя и ему соответствует звезда $St(\mathcal{T}, \mathbf{m}_2)$ в случае основной серии. Отсюда и формулы (3.22) следует, что указанная звезда центрально

Рис. 8. Корона $\mathbf{Cr}^{[\xi]_3}$ производного разбиения $\mathcal{T}^{[\xi]_3}$ до-полнительной серии.

симметрична. Продолжая аналогичные рассуждения, приходим к следующему утверждению.

Предложение 6.1. Между звезд (6.6) имеют место симметрии

$$\begin{array}{rcl}
\operatorname{St}(\mathcal{T},0) & \leftrightarrow & \operatorname{St}(\mathcal{T},\mathbf{m}_{1}+\mathbf{m}_{2}), \\
\operatorname{St}(\mathcal{T},\mathbf{m}_{0}) & \leftrightarrow & \operatorname{St}(\mathcal{T},\mathbf{m}_{0}+\mathbf{m}_{2}), \\
\operatorname{St}(\mathcal{T},\mathbf{m}_{1}) & \leftrightarrow & \operatorname{St}(\mathcal{T},\mathbf{m}_{0}+\mathbf{m}_{1}) \\
& \operatorname{St}(\mathcal{T},\mathbf{m}_{2})
\end{array} (6.11)$$

в случае основной серии (3.10), (3.15) и –

$$\begin{array}{cccccc}
\operatorname{St}(\mathcal{T},0) & \leftrightarrow & \operatorname{St}(\mathcal{T},\mathbf{m}_{1}+\mathbf{m}_{2}), \\
\operatorname{St}(\mathcal{T},\mathbf{m}_{0}) & \leftrightarrow & \operatorname{St}(\mathcal{T},\mathbf{m}_{0}+\mathbf{m}_{2}), \\
\operatorname{St}(\mathcal{T},\mathbf{m}_{1}) & \leftrightarrow & \operatorname{St}(\mathcal{T},\mathbf{m}_{2}) \\
& \operatorname{St}(\mathcal{T},\mathbf{m}_{0}+\mathbf{m}_{1})
\end{array}$$
(6.12)

в случае дополнительной серии (3.10), (3.16). Здесь звезды $St(\mathcal{T}, \mathbf{m}_2)$ и $St(\mathcal{T}, \mathbf{m}_0 + \mathbf{m}_1)$ центрально симметричны.

Связь между типами многоугольных звезд или локальными окружениями была впервые открыта в [10], [14].

§7. Построение производных разбиений тора

7.1. Принцип максимума. Из теоремы 5.1 вытекает принцип максимума, который можно сформулировать следующим образом: в производном разбиении $\mathcal{T} = \mathcal{T}(\mathbf{v})$ тора \mathbb{T}^2 из любой точки x_i с номером $i \in I$ выходит максимальное число допустимых в данной точке лучей \mathbf{w} из множества всех возможных лучей $\mathbf{V} = \{\pm \mathbf{v}_0, \pm \mathbf{v}_1, \pm \mathbf{v}_2\}$.

По определению (3.23) это означает, что если, скажем, луч $\mathbf{w} = \mathbf{v}_k$ (или $\mathbf{w} = -\mathbf{v}_k$) и $i + \mathbf{m}_k \in I$ (или соответственно $i - \mathbf{m}_k \in I$), то разбиении \mathcal{T} из точки x_i выходит луч \mathbf{w} и все такие лучи образуют лучевую звезду st(*i*). При этом новая точка $x_i + \mathbf{w}$ имеет порядок $i + \mathbf{m}_k$ (или соответственно $i - \mathbf{m}_k$). Используя принцип максимума мы можем в любой точке x_i только по ее номеру *i* построить все выходящие из нее лучи $\mathbf{w} \in \mathbf{V}$, не зная явного описанния лучевых звезд st(*i*) из п.п. 3.1, 3.2 и 4.1.

Начнем с точки $x_0 = 0$. Она является центром исходной $[\xi]_n$ -производной звезды **v** из (2.12) или в других обозначениях – центром лучевой звезды $st_3 = \{\mathbf{v}_0, \mathbf{v}_1, \mathbf{v}_2\}$ из (3.1). Концами лучей \mathbf{v}_i являются точки x_i порядков $i = \mathbf{m}_0, \mathbf{m}_1, \mathbf{m}_2$. Назовем x_0 и x_i центрами 0-слоя eq(0,0) и 1-слоя eq(0,1) соответственно. Нуль в обозначении слоя eq(0,n) указывает начальную точку роста $x_0 = 0$. Поскольку в дальнейшем мы будем выбирать только нулевую точку, то для слоев введем сокращенное обозначение eq(n) = eq(0,n). Слой eq(1) содержит три центра x_i ($i = \mathbf{m}_0, \mathbf{m}_1, \mathbf{m}_2$) и из каждого из них по принципу максимума можно построить выходящие лучи $\mathbf{w} \in \mathbf{V}$. Процесс роста организуем *послойно*

$$eq(0) \Rightarrow eq(1) \Rightarrow \dots \Rightarrow eq(n) \Rightarrow \dots,$$
 (7.1)

где eq(n) обозначает *n*-ый слой или *n*-ое координационное окружение точки $x_0 = 0$. Объяснением обозначения eq(n) служит связь *n*-ого слоя с эквидистантой точки 0, где расстояние между точками определяется соединяющими их геодезическими, составленными из лучей $\mathbf{w} \in \mathbf{V}$, точнее – минимальным количеством таких лучей. В [11] было доказано, что предельной формой роста

$$eq(\infty) = \lim_{n \to +\infty} \frac{1}{n} eq(n)$$
(7.2)

является многоугольник $eq(\infty)$.

В результате послойного роста (7.1) получаем бесконечное дискретное множество точек

$$eq_{\infty} = \bigcup_{m=0,1,2,\dots} eq(m).$$
 (7.3)

Из (7.3) и теоремы 5.1 следует, что множество eq_{∞} периодично относительно трансляций на векторы квадратной решетки \mathbb{Z}^2 . Расширим eq_{∞} до множества eq_{∞}^r , состоящего из пар (x, \mathbf{w}) , где $x \in eq_{\infty}$ и \mathbf{w} – лучи из V, допустимые точкой x. Множество eq_{∞}^r однозначно задает многоугольное разбиение Eq_{∞} плоскости \mathbb{R}^2 на параллелограммы, получающимися параллельными переносами параллелограммов \mathbf{T}_0 , \mathbf{T}_1 и \mathbf{T}_2 из (3.6). Также, как и множество точек (7.3), разбиение Eq_{∞} периодично по модулю решетки \mathbb{Z}^2 .

Поставим себе цель – построить производное разбиение $\mathcal{T}(\mathbf{v})$ тора \mathbb{T}^2 , определенное в (2.17), (2.18). Данная задача сводится к выделению фундаментальной области \mathcal{F} в разбиении плоскости Eq_{∞} . По теореме 5.1 (1) фундаментальную область \mathcal{F} можно составить из многоугольников P разбиения Eq_{∞} . Два многоугольника $P, P' \in Eq_{\infty}$ назовем эквивалентными $P \sim P'$, если

$$P \equiv P' \mod \mathbb{Z}^2. \tag{7.4}$$

Пусть i(P) – множество номеров *i* всех вершин x_i многоугольника *P*. Тогда сравнение (7.4) выполняется тогда и только тогда, когда имеет место совпадение множеств

$$i(P) = i(P').$$
 (7.5)

Заметим, что построенное по принципу максимума множество точек eq_{∞} из (7.3) есть не что иное, как множество вершин многоугольников P разбиения Eq_{∞} . У каждой точки $x_i \in eq_{\infty}$ мы знает только ее номер i. Номера i, j у двух точек $x_i, y_j \in eq_{\infty}$ совпадают i = j, только при условии

$$x_i \equiv y_j \mod \mathbb{Z}^2. \tag{7.6}$$

Поэтому при построении фундаментальной области $\mathcal{F} \subset Eq_{\infty}$ удобно воспользоваться номерным критерием (7.5), а не метрическим (7.4). Фундаментальная область $\mathcal{F} \subset Eq_{\infty}$ состоит из максимально возможного числа попарно неэквивалентных многоугольников P разбиения Eq_{∞} . Каждый такой многоугольник P сравним

$$P \equiv \mathbf{T}_k \bmod \mathbb{Z}^2 \tag{7.7}$$

с одним из параллелограммов \mathbf{T}_0 , \mathbf{T}_1 или \mathbf{T}_2 из (3.6). Причем для каждого k = 0, 1, 2 многоугольников вида (7.7), содержащихся в фундаментальной области \mathcal{F} , ровно \mathbf{m}_k . Обычно \mathcal{F} выбирают связным множеством и оно должно разбивать плоскость

$$\mathbb{R}^2 = \coprod_{l \in \mathbb{Z}^2} \mathcal{F}_l, \tag{7.8}$$

где $\mathcal{F}_l = \mathcal{F} + l$ и любые две области \mathcal{F}_l , $\mathcal{F}_{l'}$ в (7.8) с разными $l \neq l'$ не пересекаются по внутренним точкам. Разбиение (7.8) означает, что фундаментальная область \mathcal{F} является разверткой тора $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$.

После того, как построена фундаментальная область \mathcal{F} , можно перейти к искомому производному разбиению $\mathcal{T} = \mathcal{T}(\mathbf{v})$ тора \mathbb{T}^2 . Для этого в силу (7.8) достаточно, соблюдаяя правило (7.6), у фундаментальной области \mathcal{F} склеить граничные вершины $x_i, y_j \in \partial \mathcal{F}$ с совпадающими номерами i = j. Здесь через $\partial \mathcal{F}$ обозначена граница фундаментальной области \mathcal{F} .

7.2. Алгоритм построения производных разбиений тора. Используя приведенную выше конструкцию, сформулируем алгоритм построения производного разбиения $\mathcal{T} = \mathcal{T}(\mathbf{v})$ тора \mathbb{T}^2 . Поскольку он основывается на схеме послойного роста (7.1), то назовем его *LLG-алгоритм* (layer-by-layer growth).

LLG-алгоритм.

Шаг 1. По принципу максимума последовательно создаем (7.1) слои точек eq(0), $eq(1), \ldots, eq(n)$ и запоминаем вместе с точками выходящие из них допустимые лучи $eq^r(0)$, $eq^r(1), \ldots, eq^r(n)$. Номер последнего слоя n выбирается так, чтобы выполнялось условие

$$\sharp eq_n > \mathbf{m},\tag{7.9}$$

где

$$eq_n = eq(0) \cup eq(1) \cup \ldots \cup eq(n)$$

– множество точек в n слоях и $\mathbf{m} = \mathbf{m}_0 + \mathbf{m}_1 + \mathbf{m}_2$.

Шаг 2. Пусть eq_n^r – множество пар (x, \mathbf{w}) , где $x \in eq_n$ и \mathbf{w} – лучи, допустимые точкой x. Далее множество eq_n^r перестраиваем в другое множество Eq_n^r , состоящее из многоугольников P и свободных лучей по его границе. Отметим, что переход $eq_n^r \Rightarrow Eq_n^r$ аналогичен описанному в п. 7.1 переходу $eq_{\infty}^r \Rightarrow Eq_{\infty}$, только в последнем случае отсутствуют свободные лучи. Шаг 3. Используя номерной критерий (7.5), из множества Eq_n^r выделяем подмножество \mathcal{F}' из максимально возможного числа попарно неэквивалентных многоугольников P. Затем для каждого k = 0, 1, 2вычисляем количество \mathbf{m}'_k содержащихся в \mathcal{F}' многоугольников P вида (7.7). В любом случае будут выполняться неравенства

$$\mathbf{m}_0' \leqslant \mathbf{m}_0, \quad \mathbf{m}_1' \leqslant \mathbf{m}_1, \quad \mathbf{m}_2' \leqslant \mathbf{m}_2.$$
 (7.10)

Если в (7.10) имеют место три равенства, то \mathcal{F}' будет фундаментальной областью $\mathcal{F}' = \mathcal{F}$; и на этом шаге процесс построения фундаментальной области \mathcal{F} заканчивается. В противном случае возвращаемся к шагу 1 и добавляем еще один слой точек $eq(0), eq(1), \ldots, eq(n), eq(n+1)$. После этого повторяем последовательность шагов 1, 2, 3.

Замечание 7.1. В *LLG*-алгоритме мы остановились на построении фундаментальной области \mathcal{F} , хотя целью было построение производного разбиения \mathcal{T} из (2.17), (2.18). Как уже отмечалось, фундаментальная область \mathcal{F} является разверткой тора \mathbb{T}^2 . Поэтому разбиение \mathcal{T} получается склейкой фундаментальной области \mathcal{F} . Поскольку работать со склейкой всё-таки неудобно (ее приходится рисовать в трехмерном пространстве), то поступают следующим образом:

1) фундаментальную область $\mathcal{F} = \mathcal{F}_0$ окружают соседними с ней областями $\mathcal{F}_{l_1}, \ldots, \mathcal{F}_{l_s}$ из разбиения плоскости (7.8);

2) область \mathcal{F}_0 расширяют до множества

$$\overline{\mathcal{F}} = \mathcal{F}_0 \sqcup \mathcal{F}_{l_1} \sqcup \ldots \sqcup \mathcal{F}_{l_s}. \tag{7.11}$$

3) затем в множестве (7.11) выделяют границу $\partial \mathcal{F}$ фундаментальной области \mathcal{F}_0 .

В расширенном множестве $\widehat{\mathcal{F}}$ легко видеть все вершины x_i , лучевые $\operatorname{st}(\mathcal{T}, i)$ и многоугольные звезды $\operatorname{St}(\mathcal{T}, i)$, где $i \in I$, содержащиеся в искомом разбиении \mathcal{T} тора \mathbb{T}^2 .

Список литературы

- 1. P. Arnoux, S. Labbe, On some symmetric multidimensional continued fraction algorithms. arXiv:1508.07814, August 2015.
- V. Berthe, S. Labbe, Factor complexity of S-adic words generated by the arnouxrauzy-poincare algorithm. – Advances in Applied Mathematics 63 (2015), 90–130.
- V. Brun, Algorithmes euclidiens pour trois et quatre nombres. In: Treizieme congres des mathematiciens scandinaves, tenu a Helsinki 18–23 aout (1957), 45–64. Mercators Tryckeri, Helsinki, 1958.

- J. Cassaigne, Un algorithme de fractions continues de complexite lineaire. October 2015. DynA3S meeting, LIAFA, Paris, October 12th (2015).
- A. Nogueira, The three-dimensional Poincare continued fraction algorithm. Israel J. Math. 90, no. 1–3 (1995), 373–401.
- G. Rauzy, Ensembles à restes bornés. Séminaire de théorie des nombres de Bordeaux. 1984, exposé 24.
- E. S. Selmer, Continued fractions in several dimensions. Nordisk Nat. Tidskr. 9 (1961), 37–43.
- F. Schweiger, Multidimensional Continued Fraction. Oxford Univ. Press, New York (2000).
- A. V. Shutov, A. V. Maleev, V. G. Zhuravlev, Complex quasiperiodic self-similar tilings: their parameterization, boundaries, complexity, growth and symmetry. — Acta Crystallogr. A66 (2010), 427–437.
- V. G. Zhuravlev, On additive property of a complexity function related to Rauzy tiling. — Anal. Probab. Methods Number Theory, E. Manstavicius et al. (Eds), TEV, Vilnius, 2007, pp. 240–254.
- В. Г. Журавлев, Самоподобный рост периодических разбиений и графов. Алгебра и анализ 13 (2001), No. 2, 69–92.
- 12. В. Г. Журавлев, *Разбиения Рози и множества ограниченного остатка.* Зап. научн. семин. ПОМИ **322** (2005), 83–106.
- В. Г. Журавлев, Одномерные разбиения Фибоначчи. Изв. РАН. Сер. мат. 71, No. 2, (2007), 287–321.
- 14. В. Г. Журавлев, А. В. Малеев, Функция сложности и форсинг в двумерном квазипериодическом разбиении Рози. — Кристаллография 52 (2007), No. 4, 610– 616.
- В. Г. Журавлев, Параметризация двумерного квазипериодического разбиения Рози. — Алгебра и анализ 22 (2010), No. 4, 21–56.
- 16. В. Г. Журавлев, Делящиеся разбиения тора и множества ограниченного остатка. — Зап. науч. семин. ПОМИ 440 (2015), 99–122.
- В. Г. Журавлев, Двумерные приближения методом делящихся торических разбиений. — Зап. научн. семин. ПОМИ 440 (2015), 81–98.
- В. Г. Журавлев, Множества ограниченного остатка. Зап. научн. семин. ПОМИ 445 (2016), 93–174.
- В. Г. Журавлев, Дифференцирование индуцированных разбиений тора и многомерные приближения алгебраических чисел. — Зап. научн. семин. ПОМИ 445 (2016), 33–92.
- В. Г. Журавлев, Симплекс-модульный алгоритм разложения алгебраических чисел в многомерные цепные дроби. — Зап. научн. семин. ПОМИ 449 (2016), 168–195.
- В. Г. Журавлев, Периодические ядерные разложения кубических иррациональностей в цепные дроби. — Математика и информатика, К 80-летию со дня рождения А. А. Карацубы, Соврем. пробл. мат., Вып. 23, МИАН, М., 2016, с. 41–66.
- В. Г. Журавлев, Периодические ядерные разложения единиц алгебраических полей в цепные дроби. — Зап. научн. семин. ПОМИ 449 (2016), 84–129.
- В. Г. Журавлев, Ядерные разложения чисел Пизо в многомерные цепные дроби. — Зап. научн. семин. ПОМИ 449 (2016), 130–167.

24. А. Я. Хинчин, Цепные дроби. — 4-е изд. М., Наука 1978.

Zhuravlev V. G. Local algorithm for constructing the derived tilings of two-dimensional torus.

The local structure of the derived tilings \mathcal{T} of two-dimensional torus \mathbb{T}^2 is investigated. Polygonal types of the stars in these tilings are classified. It is proved that in the nondegenerate case the tilings \mathcal{T} contain 7 different types of stars and all types are representable by the stars with inner vertices from the crown **Cr** of the tiling \mathcal{T} . There sets the maximum principle being the basis of the *LLG* algorithm for layer-by-layer growth of the derived tilings \mathcal{T} .

Владимирский государственный университет Поступило 09 июля 2019 г. *E-mail*: vzhuravlev@mail.ru