В. Г. Журавлев

НАИЛУЧШИЕ ПРИБЛИЖЕНИЯ АЛГЕБРАИЧЕСКИХ ЧИСЕЛ МНОГОМЕРНЫМИ ЦЕПНЫМИ ДРОБЯМИ

Введение

0.1. Ядерно-модульный алгоритм. В настоящей статье предлагается *ядерно-модульный алгоритм* (*КМ-алгоритм*)

$$\mathcal{KM}: \frac{P_a}{Q_a} \longrightarrow \alpha$$
 при $a \to +\infty$ (0.1)

разложения алгебраических чисел $\alpha=(\alpha_1,\dots,\alpha_d)$ из \mathbb{R}^d в многомерные цепные дроби – последовательности рациональных чисел $\frac{P_a}{Q_a}=\left(\frac{P_1^a}{Q^a},\dots,\frac{P_d^a}{Q^a}\right)$ из \mathbb{Q}^d с числителями $P_1^a,\dots,P_d^a\in\mathbb{Z}$ и общим знаменателем $Q^a=1,2,3,\dots$ \mathcal{KM} -алгоритм (0.1) относится к классу настраиваемых алгоритмов. Он основывается на построении локализованных единиц Пизо $\zeta>1$, для которых модули всех сопряженных $\zeta^{(i)}\neq\zeta$ содержатся в некоторой окрестности

$$\zeta^{-1/d-\theta} \leqslant |\zeta^{(i)}| \leqslant \zeta^{-1/d+\theta},\tag{0.2}$$

где параметр $\theta > 0$ может принимать произвольное фиксированное значение. Алгоритм локализации единиц Пизо был ранее получен в [1].

В теореме 9.1 доказано, что если $\alpha=(\alpha_1,\ldots,\alpha_d)$ – вещественная полная точка степени $\deg(\alpha)=d+1$, то \mathcal{KM} -алгоритм позволяет получить следующую аппроксимацию

$$\left|\alpha - \frac{P_a}{Q_a}\right| \leqslant \frac{c}{Q_a^{1 + \frac{1}{d} - \theta}} \tag{0.3}$$

для всех $a\geqslant a_{\alpha,\theta}$, где константы $a_{\alpha,\theta}>0$ и $c=c_{\alpha,\theta}>0$ не зависят от a. Здесь |*| – какая-то метрика в \mathbb{R}^d и дроби $\frac{P_a}{Q_a}\in\mathbb{Q}^d$ вычисляются с помощью некоторого рекуррентного соотношения с постоянными коэффициентами, определяемые выбором локализованной единицы ζ .

Ключевые слова: многомерные цепные дроби, наилучшие приближения, локализованные единицы Пизо.

- **0.2.** Многомерные подходящие дроби и наилучшие приближения. Более того, в теореме 8.1 показано, что дроби $\frac{P_a}{Q_a}$ из (0.3) обладают свойством минимальности, означающим существование выпуклых d-мерных многогранников $\mathbf{T}^0, \mathbf{T}^1, \mathbf{T}^2, \dots$ таких, что для всех $a \geqslant c_{\alpha}$ выполняются следующие условия:
- 1) если $\frac{P}{Q}$ рациональная точка с числителями $P \in \mathbb{Z}^d$ и знаменателем $1 \leqslant Q < \mathbf{m}^a$, где $Q=1,2,3,\ldots$ и $\mathbf{m}^0 < \mathbf{m}^1 < \mathbf{m}^2 < \ldots$ некоторая возрастающая последовательность натуральных чисел, то

$$\mathbf{v} \notin \mathbf{T}^{a \text{ int}}, \text{ если } 1 \leqslant Q < \mathbf{m}^a,$$
 (0.4)

где $\mathbf{v}=P-Q\alpha$ и $\mathbf{T}^{a\,\mathrm{int}}$ обозначает внутреннюю часть многогранника $\mathbf{T}^a;$

2) единственной принадлежащей многограннику \mathbf{T}^a точкой

$$\mathbf{v}^a \in \mathbf{T}^{a \text{ int}}$$
 с коэффициентом $Q = \mathbf{m}^a$ (0.5)

является точка $\mathbf{v}^a = P_a - Q_a \alpha$.

Свойство минимальности (0.4), (0.5) и отмеченная выше рекуррентная порождаемость последовательности дробей в неравенствах (0.3) позволяют назвать $\frac{P_a}{Q_a}$ многомерными подходящими дробями для точки α или более точно – d-мерными подходящими дробями по аналогии с обычными подходящими дробями в теории цепных дробей (см., например, [2]). Заметим, что минимальность (0.4), (0.5) равносильна свойству дробей $\frac{P_a}{Q_a}$ быть наилучшими приближениями для алгебраической точки α относительно нормирующей последовательности многогранников \mathbf{T}^0 , \mathbf{T}^1 , \mathbf{T}^2 , . . . с объемами

$$\operatorname{vol} \mathbf{T}^0 > \operatorname{vol} \mathbf{T}^1 > \operatorname{vol} \mathbf{T}^2 > \dots, \tag{0.6}$$

экспоненциально стремящимися к 0. Важно отметить, что при любом выборе локализованной единицы Пизо ζ $\mathcal{K}\mathcal{M}$ -алгоритм (0.1) позволяет получить наилучшие рациональные приближения $\frac{P_a}{Q_a}$ для алгебраической точки α степени $\deg(\alpha)=d+1$ относительно стягивающейся (0.6) последовательности многогранников \mathbf{T}^a . Конкретный выбор единицы ζ определяет экспоненту θ и, следовательно, скорость приближения в (0.3). Если иррациональность α является вещественной квадратичной или комплексной кубической, т.е. имеющей комплексное сопряжение, то в неравнствах (0.3) можно положить $\theta=0$.

0.3. Точки Фарея и подходящие дроби. Многогранники ${\bf T}^a$ строятся по звездам ${\bf r}^a$, представляющим собой некоторые наборы из d+1

векторов. Сумма вершин многогранников \mathbf{T}^a , отвечающих звездам \mathbf{r}^a , – это и есть точки $\mathbf{v}^a = P_a - Q_a \alpha$ из (0.5), реализующие наилучшие приближения (0.3) для α . Аппроксимирующие многогранники \mathbf{T}^a являются ядрами (karyon) $\mathbf{T}^a = \operatorname{Kr} \mathcal{T}^a$ [4] делящихся разбиений \mathcal{T}^a_α тора $\mathbb{T}^d = \mathbb{R}^d/\mathbb{Z}^d$. Последнее означает, что \mathbf{T}^a представляют собою развертки тора \mathbb{T}^d и, следовательно, они будут параллелоэдрами – многогранниками, разбивающими пространство \mathbb{R}^d с помощью параллельных переносов. Сказанное объясняет первую часть в названии $\mathfrak{sdepho-modynbhoso}$ алгоритма (0.1). Вторая часть ассоциирована с алгебраческими модулями $\mathcal{M}_\zeta = \mathbb{Z}[1,\zeta,\ldots,\zeta^d]$ и $\mathcal{M}_\alpha = \mathbb{Z}[1,\alpha_1,\ldots,\alpha_d]$ над кольцом целых чисел \mathbb{Z} , входящими в конструкцию алгоритма.

Также имеется двойственный подход [5], на основе которого строится cumnnekc-яdephwй алгоритм, использующий вместо параллелоэдров \mathbf{T}^a симплексы \mathbf{s}^a с рациональными вершинами, суммы Фарея которых есть точки Фарея $\frac{P_a}{Q_a}$ — подходящие дроби в неравнствах (0.3). Сумма Фарея рациональных точек из \mathbb{Q}^d определяется так же, как сумма Фарея обычных рациональных дробей (см., например, [3]). В многомерном случае вместо разбиений Фарея отрезка появляются указанные выше разбиения \mathcal{T}^a_α тора \mathbb{T}^d . Симплекс-ядерный алгоритм применим к любым вещественным числам $\alpha=(\alpha_1,\dots,\alpha_d)$ из \mathbb{R}^d , не обязательно алгебраическим. Указанный метод был, в частности, протестирован на последовательности кубических точек $\alpha=(\sqrt[3]a,\sqrt[3]a^2)$, где $2\leqslant a\leqslant 10^3$ — натуральное число, отличное от полного куба. В этом случае среднее значение экспоненты θ в неравенствах (0.3) оказалось $\theta\approx 0.156$, что приводит к оценкам

$$\left|\sqrt[3]{a} - \frac{P_{a1}}{Q_a}\right| + \left|\sqrt[3]{a^2} - \frac{P_{a2}}{Q_a}\right| \leqslant \frac{c}{Q_a^{\Theta}} \tag{0.7}$$

с показателем $\Theta \approx 1.344$, где $P_{a1}, P_{a2} \in \mathbb{Z}$ и $Q_a = 1, 2, 3, \dots$ Предлагаемый в настоящей работе \mathcal{KM} -алгоритм (0.1) позволяет получить в неравенствах (0.7) наилучшее возможное значение показателя $\Theta = 1.5$ для всех чисел $\alpha = (\sqrt[3]{a}, \sqrt[3]{a^2})$ с отличным от полного куба a.

Необходимо отметить другие направления [6]–[12], также использующее симплексы. Важное отличие нашего подхода состоит в том, что в \mathcal{KM} -алгоритм составной частью входит возможность оценки скорости приближения (0.3) подходящими дробями $\frac{P_a}{Q_a}$ через настраивающийся параметр θ , содержащийся в условии локализации (0.2).

§1. Единицы алгебраических полей

1.1. Основные единицы. Рассмотрим вещественное алгебраическое поле

$$\mathbb{F} = \mathbb{Q}(\theta) \subset \mathbb{R} \tag{1.1}$$

— алгебраическое расширение степени d+1=r+2c поля рациональных чисел $\mathbb Q$, где $r\geqslant 1$ и 2c обозначают число вещественных и комплексных сопряжений соответственно (подробности см., например, [13]). Выберем в $\mathbb F$ некоторую полную систему основных единиц $\varepsilon_1,\ldots,\varepsilon_t$, где t=r+c-1. Они являются свободными образующими порождаемой ими группы единиц $\mathcal E$, имеющей максимально возможный ранг t. Заметим, что группа $\mathcal E$ не обязана совпадать с группой всех основных единиц $\mathcal E_{\max}$ поля $\mathbb F$. Требуется лишь конечность индекса $[\mathcal E_{\max}:\mathcal E]<\infty$.

Зададим отображение

$$\varepsilon \mapsto x(\varepsilon) = \left(\ln|\varepsilon^{(1)}|, \dots, \ln|\varepsilon^{(r)}|, 2\ln|\varepsilon^{(r+1)}|\right), \dots, 2\ln|\varepsilon^{(r+c)}|\right)$$
 (1.2)

множества единиц $\mathcal E$ в пространство $\mathbb R^{t+1}$, где $\varepsilon^{(1)},\dots,\varepsilon^{(r)}$ — вещественные сопряженные значения для ε и $\varepsilon^{(r+1)},\dots,\varepsilon^{(r+c)}$ — комплексные, при этом полагаем $\varepsilon^{(1)}=\varepsilon$. Отображение (1.2) будет вложением $x:\mathcal E\hookrightarrow\mathbb R^{t+1}$ группы $\mathcal E$ в векторное пространство $\mathbb R^{t+1}$ с сохранением в них операций

$$x(\varepsilon \cdot \varepsilon') = x(\varepsilon) + x(\varepsilon'). \tag{1.3}$$

1.2. Единицы Пизо. Единицу $\zeta \in \mathcal{E}$ назовем *единицей Пизо*, если она удовлетворяет следующим условиям:

$$\zeta = \zeta^{(1)} > 1$$
 и $|\zeta^{(i)}| < 1$ для остальных сопряжений $i > 1$. (1.4)

Обозначим через $\mathcal{P} \subset \mathcal{E}$ подмножество всех единиц Пизо ζ из группы \mathcal{E} . Из определения (1.4) следует замкнутость множества \mathcal{P} относительно умножения $\zeta \cdot \zeta' \in \mathcal{P}$ для любых $\zeta, \zeta' \in \mathcal{P}$. Поэтому множество \mathcal{P} образует полугруппу без единицы, поскольку 1 не является единицей Пизо (1.4).

Предложение 1.1. 1. Если ранг $t \geqslant 1$, то группа единиц \mathcal{E} содержит единицу Пизо (1.4) и, значит, $\mathcal{P} \neq \emptyset$.

2. Любая единица Пизо $\zeta \in \mathcal{P}$ имеет степень

$$\deg(\zeta) = d + 1. \tag{1.5}$$

Здесь степень $\deg(\zeta)$ числа ζ определяется равенством

$$\deg(\zeta) = \deg \mathbb{Q}(\zeta),$$

где справа указана степень $\deg \mathbb{Q}(\zeta) = [\mathbb{Q}(\zeta):\mathbb{Q}]$ расширения $\mathbb{Q}(\zeta)$ над полем \mathbb{Q} .

Доказательство. См. [1].

1.3. Локализованные единицы Пизо. Из [14], п. 2.3 можно вывести следующее

Предложение 1.2. Пусть $\varepsilon = \{\varepsilon_1, \dots, \varepsilon_t\}$ – некоторая фундаментальная система единиц вещественного алгебраического поля $\mathbb F$ из (1.1) степени d+1,

$$\zeta = \varepsilon_1^{p_1} \cdots \varepsilon_t^{p_t} \tag{1.6}$$

- произвольная единица; и пусть $\zeta^{(i)}$ сопряженные единицы ζ . Тогда для любого фиксированного $\theta > 0$ найдутся такие целыми показателями p_1, \ldots, p_t в (1.6), что будут выполняться следующие свойства:
 - 1) число ζ является единицей Пизо (1.4);
- 2) модули всех ее сопряженных $\zeta^{(i)}$ содержатся в некоторой окрестности

$$\zeta^{-1/d-\theta} \leqslant |\zeta^{(i)}| \leqslant \zeta^{-1/d+\theta} \tag{1.7}$$

для $2 \leqslant i \leqslant t+1$.

3) если поле $\mathbb F$ является вещественным квадратичным или комплексным кубическим, т.е. имеющим комплексное сопряжение, то в неравнствах (1.7) можно положить $\theta=0$.

Единицы $\zeta > 1$, удовлетворяющие условию (1.7), будем называть локализованными единицами Пизо.

§2. Модульные матрицы Пизо

2.1. Модули. Пусть $\zeta \in \mathcal{P}$ – единица Пизо (1.4). По предложению 1.1 ее степени $1, \zeta, \dots, \zeta^d$ линейно независимы над \mathbb{Q} . Поэтому алгебраическое поле $\mathbb{Q}(\zeta)$ совпадает

$$\mathbb{Q}(\zeta) = \mathbb{F} \tag{2.1}$$

с полем (1.1) и модуль

$$\mathcal{M}_{\zeta} = \mathbb{Z}[1, \zeta, \dots, \zeta^d] \tag{2.2}$$

над кольцом $\mathbb Z$ будет nonhым, т.е. числа $1,\zeta,\dots,\zeta^d$ образуют базис поля $\mathbb F$ над $\mathbb Q$.

Рассмотрим линейное отображение

$$\mathcal{M}_{\zeta} \xrightarrow{\zeta} \mathcal{M}_{\zeta} : x \mapsto \zeta \cdot x.$$
 (2.3)

Из определения (2.2) вытекает, что отображение (2.3) задает автоморфизм модуля \mathcal{M}_{ζ} . Поскольку $1,\zeta,\ldots,\zeta^d$ — базис модуля \mathcal{M}_{ζ} , то найдется квадратная целочисленная матрица U_{ζ} размера d+1, удовлетворяющая условию

$$U_{\zeta}\widehat{\zeta} = \zeta \cdot \widehat{\zeta},\tag{2.4}$$

где слева записано произведение матрицы U_{ζ} и столбца

$$\widehat{\zeta} = \begin{pmatrix} \zeta^d \\ \vdots \\ \zeta \\ 1 \end{pmatrix} \tag{2.5}$$

высоты d+1. Матрица U_ζ называется матрицей предствления элемента ζ в базисе $1,\zeta,\ldots,\zeta^d$.

2.2. Матрица перехода Т. Пусть

$$\mathcal{M}_{\alpha} = \mathbb{Z}[1, \alpha_1, \dots, \alpha_d] \tag{2.6}$$

— произвольный полный модуль над кольцом $\mathbb Z$ в поле $\mathbb F$. Точку $\alpha=(\alpha_1,\dots,\alpha_d)$ и соответствующий набор чисел $\{\alpha_1,\dots,\alpha_d\}$, обладающие свойством (2.6), будем называть *полными*. Для полной точки α характерно выполнение соотношения

$$\mathbb{Q}[\alpha] = \mathbb{Q}(\alpha) \tag{2.7}$$

между $\mathbb{Q}[\alpha]$ – модулем (2.6) и $\mathbb{Q}(\alpha)$ – расширением поля рациональных чисел \mathbb{Q} добавлением к нему чисел α_1,\ldots,α_d .

Точку $\alpha = (\alpha_1, \dots, \alpha_d)$ назовем *иррациональной*, если выполняется условие:

числа
$$1, \alpha_1, \dots, \alpha_d$$
 линейно независимы над кольцом \mathbb{Z} . (2.8)

Из (2.1) и (2.6), в частности, следует иррациональность (2.8) точки α , а из (2.7) — равенство $\mathbb{Q}(\alpha)=\mathbb{F}.$ Определим для точки α ее cmenene

$$\deg \alpha = \deg \mathbb{Q}(\alpha)/\mathbb{Q} = [\mathbb{Q}(\alpha) : \mathbb{Q}] \tag{2.9}$$

над полем $\mathbb Q$. Если α – полная точка, то из (2.1) и (2.6) следует $\deg \alpha = d+1$.

Далее, пусть T – матрица перехода

$$\widehat{\alpha} = T\widehat{\zeta} \tag{2.10}$$

от базиса полного модуля \mathcal{M}_{ζ} к базису модуля \mathcal{M}_{α} . Здесь столбец $\widehat{\alpha}$ определяется по модулю \mathcal{M}_{α} добавлением единицы

$$\widehat{\alpha} = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_d \\ 1 \end{pmatrix}. \tag{2.11}$$

Матрица перехода T имеет рациональные коэффициенты. Кроме того, поскольку модуль \mathcal{M}_{α} также полный, то матрица T обратима и, значит, она принадлежит группе матриц $\mathrm{GL}_{d+1}(\mathbb{Q})$, состоящей из рациональных квадратных матриц U размерности d+1 с определителем $\det T \neq 0$.

2.3. Модульные матрицы. Воспользуемся (2.10) и подставим $\widehat{\zeta} = T^{-1}\widehat{\alpha}$ в равенство (2.4). Имеем

$$U_{\zeta}T^{-1}\widehat{\alpha} = \zeta \cdot T^{-1},$$

откуда для столбца $\widehat{\alpha}$ выводим равенство

$$M_{\alpha}\widehat{\alpha} = \zeta \cdot \widehat{\alpha} \tag{2.12}$$

с рациональной матрицей

$$M_{\alpha} = TU_{\zeta}T^{-1},\tag{2.13}$$

сопряженной унимодулярной матрице U_{ζ} . Для модуля \mathcal{M}_{α} из (2.6), матрицу, обладающую свойством (2.12), назовем модульной матрицей.

2.4. Унимодулярные модульные матрицы. Уровень

$$l(T) = t (2.14)$$

невырожденной рациональной матрицы T определяется как наименьшее натуральное число t с условием, что $T^* = t \cdot T^{-1}$ – целочисленная матрица.

Нам потребуется еще noказатель $\nu_a(U_\zeta)=\nu$ унимодулярной матрицы U_ζ по модулю t – это такое наименьшее натуральное число ν , для которого выполняется сравнение

$$U_{\zeta}^{\nu} \equiv E \bmod t, \tag{2.15}$$

где $E=E_{d+1}$ – единичная матрица размера d+1. Указанное число ν существует и не превышает порядка конечной группы $\mathrm{GL}_{d+1}(\mathbb{Z}/t\mathbb{Z})$ матриц над кольцом вычетов $\mathbb{Z}/t\mathbb{Z}$ с определителем $\det \equiv \pm 1 \bmod t$.

В [1] доказано следующее утверждение.

Предложение 2.1. 1. Пусть t – уровень (2.14) матрицы T и ν – показатель унимодулярной матрицы U_{ζ} по модулю t. Тогда матрица

$$P_{\alpha} = M_{\alpha}^{\nu} \tag{2.16}$$

является унимодулярной.

2. Пусть \mathcal{M}_{α} – произвольный полный модуль (2.6) из поля \mathbb{F} . Тогда имеет место равенство

$$P_{\alpha}\widehat{\alpha} = \lambda \cdot \widehat{\alpha},\tag{2.17}$$

 $\epsilon \partial e \ \widehat{\alpha} - cmoл \delta e u \ (2.11) \ u$

$$\lambda = \zeta^{\nu} > 1 \tag{2.18}$$

– единица Пизо (1.4).

Матрицу P_{α} из (2.16) назовем модульной матрицей Пизо или кратко – матрицей Пизо. Если ζ является локализованной единицей Пизо (1.7), то P_{α} будем также называть локализованной матрицей Пизо.

Чтобы избежать рассмотрения вырожденных случаев, далее будем предполагать, что $\alpha \in \mathbb{R}^d$ является полной точкой степени $\deg(\alpha) = d+1$.

§3. Симплексы

3.1. Линейные унимодулярные преобразования. Основной областью для нас будет замкнутый d-мерный $e\partial u$ ничный cимплекс $\triangle_{\varepsilon} = \triangle_{\varepsilon}^d$ с вершинами в точках

$$\varepsilon_0 = (0, \dots, 0), \ \varepsilon_1 = (1, \dots, 0), \dots, \ \varepsilon_d = (0, \dots, 1)$$
 (3.1)

из пространства \mathbb{R}^d .

Выделим в группе унимодулярных матриц $\mathrm{GL}_{d+1}(\mathbb{Z})$ с определителем ± 1 подгруппу $G_0 = \mathrm{GL}_{d+1,0}(\mathbb{Z})$ из матриц

$$U = \begin{pmatrix} V & L \\ 0 & 1 \end{pmatrix}, \tag{3.2}$$

где $V \in \mathrm{GL}_d(\mathbb{Z})$ и

$$L = \left(\begin{array}{c} l_1 \\ \vdots \\ l_d \end{array}\right)$$

— произвольный целочисленный столбец. Определим действие группа G_0 на точки $\alpha=(\alpha_1,\dots,\alpha_d)$ из \mathbb{R}^d по формуле

$$U\alpha = V\alpha + L, (3.3)$$

при этом α рассматривается как столбец

$$\alpha = \left(\begin{array}{c} \alpha_1 \\ \vdots \\ \alpha_d \end{array}\right).$$

Таким образом, группа G_0 , состоящая из матриц (3.2) и с представлением (3.3), соответствует целочисленным унимодулярным аффинным преобразованиям пространства \mathbb{R}^d .

3.2. Базисный симплекс и суперсимплекс.

Предложение 3.1. Если α – иррациональная точка, то существует такая матрица $U \in G_0$, что выполняется включение

$$\alpha \in \Delta,$$
 (3.4)

где через \triangle обозначен симплекс $U\triangle^d_{\varepsilon}$.

Доказательство. См. [1].

Симплекс \triangle из (3.4) назовем базисным. Его основное свойство состоит в том, что он является унимодулярным: векторы, выходящие из одной его вершины во все остальные вершины, образуют унимодулярный базис, т.е. некоторый базис d-мерной решетки \mathbb{Z}^d .

Условимся и далее под терминами унимодулярный базис, унимодулярная матрица и т.д. понимать базис решетки \mathbb{Z}^d , матрицу с целыми коэффициентами и определителем ± 1 .

Базисный симплекс \triangle имеет целочисленные вершины

$$v_i = Ue_i = \frac{P_i}{Q_i},\tag{3.5}$$

где полагаем $Q_i=1$ для всех $i=0,1,\ldots,d$. Векторы

$$v_i' = v_i - v_0 = V\varepsilon_i \tag{3.6}$$

для $i=1,\ldots,d$ с матрицей $V\in \mathrm{GL}_d(\mathbb{Z})$ образуют унимодулярный базис. Поэтому симплекс (3.4) имеет объем

$$\operatorname{vol} \triangle = \frac{1}{d!}.\tag{3.7}$$

Далее выходящие из начала координат векторы и их концы будем отождествлять.

Определим следующий суперсимплекс

$$\widehat{\triangle} \subset \mathbb{R}^{d+1}.\tag{3.8}$$

Он имеет d+2 вершины: d+1 целочисленную вершину

$$\widehat{v}_i = \widehat{U}e_i = \begin{pmatrix} v_i \\ 1 \end{pmatrix} \tag{3.9}$$

с индексами $i=0,1,\ldots,d$ и еще одну вершину в начале координат $0\in\mathbb{R}^{d+1}$. Из (3.6) и (3.9) следует, что векторы $\widehat{v}_i=\widehat{v}_i-0$ для $i=0,1,\ldots,d$ образуют унимодулярный базис и поэтому суперсимплекс (3.8) имеет объем

$$\operatorname{vol}\widehat{\triangle} = \frac{1}{(d+1)!}.$$
(3.10)

§4. Центрированные унимодулярные базисы и звезды

4.1. Центрированный унимодулярный базис. Как уже было сказано, множество ребер

$$\widehat{V} = \{\widehat{v}_0, \widehat{v}_1, \dots, \widehat{v}_d\} \tag{4.1}$$

суперсимплекса $\widehat{\triangle}$ из (3.8) образуют унимодулярный базис в пространстве \mathbb{R}^{d+1} . Базисный симплекс \triangle из (3.4) является гранью суперсимплекса $\widehat{\triangle}$ и этот симплекс \triangle содержит в качестве внутренней точку α

Такой $\widehat{\triangle}$ назовем *центрированным унимодулярным суперсимплексом* или кратко – CU-суперсимплексом. Ему отвечает *центрированный унимодулярный базис* \widehat{V} из (4.1) (CU-базис), центрированный лучом $\mathbb{R}_+\widehat{\alpha}$. Последнее означает, что внутренняя область конуса $\mathbb{R}_+\widehat{V}$ содержит луч $\mathbb{R}_+\widehat{\alpha}$.

4.2. Пространства. Введем следующие понятия:

$$\mathbf{S} = \mathbb{R}^{d+1}, \ \mathbf{K} = \mathbb{R}^d \tag{4.2}$$

- суперпространство и ядерное пространство (karyon space), вложенное

$$\mathbf{K} \hookrightarrow \mathbf{K}_0 \subset \mathbf{S}$$
 (4.3)

в S как гиперплоскость

$$\mathbf{K}_0 = \{(x,0): x \in \mathbf{K}\}\$$
 (4.4)

- ядерная гиперплоскость.

4.3. Проекции. Определим следующие проекции:

$$\mathbf{S} \stackrel{\mathrm{pr}_0}{\longrightarrow} \mathbf{K}_0 \stackrel{\kappa_0}{\longrightarrow} \mathbf{K},\tag{4.5}$$

где

$$\operatorname{pr}_0: (x_1, \dots, x_d, x_{d+1}) \mapsto (x_1 - \alpha_1 x_{d+1}, \dots, x_d - \alpha_d x_{d+1}, 0)$$
 (4.6)

— параллельная проекция вдоль вектора $\widehat{\alpha}$ из (2.11) и

$$\kappa_0: (x_1, \dots, x_d, 0) \mapsto (x_1, \dots, x_d)$$
(4.7)

- изоморфизм. Обозначим через

$$\kappa = \kappa_0 \circ \operatorname{pr}_0 \tag{4.8}$$

композицию отображений (4.6) и (4.7).

4.4. Звезды. Обозначим через Σ совокупность всех сочетаний σ из двух элементов $\{k_1,k_2\}$ из множества индексов $\{0,1,\ldots,d\}$. Пусть $r_0,$ r_1,\ldots,r_d — произвольные векторы из \mathbb{R}^d и $\sigma'=\{k'_1,\ldots,k'_{d-1}\}$ — дополнительное к σ сочетение в $\{0,1,\ldots,d\}$. Между $\sigma\in\Sigma$ и дополнительными к ним сочетаниями $\sigma'\in\Sigma$ существует взаимно однозначное соответствие $\sigma\Leftrightarrow\sigma'$. Далее мы будем рассматривать неупорядоченные множества векторов $\{r_0,r_1,\ldots,r_d\}$.

Определение 4.1. Пусть любые d-1 вектора из $\{r_0,r_1,\ldots,r_d\}$ линейно независимы. Обозначим через $H_{\sigma'}$ гиперплоскость, проходящую через начало координат и содержащую векторы $r_{k'_j}$ с индексами k'_j из σ' . Тогда такое множество векторов $\{r_0,r_1,\ldots,r_d\}$ назовем звездой, если для всех σ' , когда $\sigma=\{k_1,k_2\}$ пробегает Σ , векторы r_{k_1} , r_{k_2} из $\{r_0,r_1,\ldots,r_d\}$ не принадлежат гиперплоскости $H_{\sigma'}$ и лежат по отношению κ ней в разных полупространствах $H_{\sigma'}^+$ и $H_{\sigma'}^-$.

Непосредственно из определения звезды следует, что любые d вектора из $r=\{r_0,r_1,\ldots,r_d\}$ будут линейно независимы.

Объяснением названия звезды может служить следующий критерий.

Критерий 4.1. Обозначим через $\Delta(r)$ натянутый на векторы звезды r замкнутый симплекс, и пусть $\Delta^{\rm int}(r)$ – внутренняя часть симплекса. Тогда условие на множество векторов r быть звездой равносильно условию

$$0 \in \Delta^{\text{int}}(r). \tag{4.9}$$

Пусть \widehat{V} — центрированный унимодулярный базис (CU-базис), определенный в (4.1). Его проекция (4.8)

$$\kappa: \widehat{V} \to r$$
(4.10)

представляет собою множество $r = \{r_0, r_1, \dots, r_d\}$, состоящее из векторов

$$r_i = \kappa(\widehat{v}_i) = v_i - \alpha \tag{4.11}$$

для $i=0,1,\dots,d$ в ядерном пространстве **K** из (4.2), (4.3).

Предложение 4.1. Если α — иррациональная точка (2.8) и \widehat{V} — центрированный унимодулярный базис (4.1), то множество векторов r из (4.10) образует звезду.

§5. Проекция унимодулярного базиса

5.1. Произвольный центрированный унимодулярный базис. Π_{VCTb}

$$\widehat{\mathbf{V}} = \{\widehat{\mathbf{v}}_0, \widehat{\mathbf{v}}_1, \dots, \widehat{\mathbf{v}}_d\} \tag{5.1}$$

— произвольный центрированный лучом $\mathbb{R}_+ \widehat{\alpha}_-$ унимодулярный базис (CU-базис). Базис (5.1) образован векторами $\widehat{\mathbf{v}}_i$ с целыми координатами

$$\widehat{\mathbf{v}}_{0} = \begin{pmatrix} P_{01} \\ \vdots \\ P_{0d} \\ Q_{0} \end{pmatrix}, \ \widehat{\mathbf{v}}_{1} = \begin{pmatrix} P_{11} \\ \vdots \\ P_{1d} \\ Q_{1} \end{pmatrix}, \dots, \ \widehat{\mathbf{v}}_{d} = \begin{pmatrix} P_{d1} \\ \vdots \\ P_{dd} \\ Q_{d} \end{pmatrix}. \tag{5.2}$$

Далее будем предполагать выполненным условие

$$Q_0 \geqslant 1, \quad Q_1 \geqslant 1, \dots, \quad Q_d \geqslant 1.$$
 (5.3)

По определению CU-базиса, составленная из координат векторов (5.2) квадратная матрица

$$S = \begin{pmatrix} P_{01} & P_{11} & \dots & P_{d1} \\ & & \dots & \\ P_{0d} & P_{1d} & \dots & P_{dd} \\ Q_0 & Q_1 & \dots & Q_d \end{pmatrix}$$
 (5.4)

размера d+1 унимодулярна. Назовем S матрицей базиса $\hat{\mathbf{V}}$ из (5.1).

5.2. Звезда как проекция унимодулярного базиса. Рассмотрим проекцию

$$\operatorname{pr}_0: \widehat{\mathbf{V}} \to \mathbf{r}$$
 (5.5)

 $\mathbf{pr}_0: \mathbf{v} \to \mathbf{r}$ (5.3) относительно отображения (4.6). Множество $\mathbf{r} = \{\mathbf{r}_0, \mathbf{r}_1, \dots, \mathbf{r}_d\}$ состоит из векторов

$$\mathbf{r}_i = \operatorname{pr}_0(\widehat{\mathbf{v}}_i) = (P_i - Q_i \alpha, 0) \tag{5.6}$$

для $i=0,1,\dots,d$, расположенных в ядерной гиперплоскости \mathbf{K}_0 из (4.4), где

$$P_0 = \begin{pmatrix} P_{01} \\ \vdots \\ P_{0d} \end{pmatrix}, P_1 = \begin{pmatrix} P_{11} \\ \vdots \\ P_{1d} \end{pmatrix}, \dots, P_d = \begin{pmatrix} P_{d1} \\ \vdots \\ P_{dd} \end{pmatrix}.$$
 (5.7)

По предложению 4.1 множество \mathbf{r} представляет собою звезду. Звезду \mathbf{r} , состоящую из лучей вида (5.6), будем называть унимодулярной.

5.3. Перекладывающиеся параллелоэдры. Определим для $m=0,1,\ldots,d$ замкнутые d-мерные параллелепипеды

$$\mathbf{T}_m = \{ \lambda_{k_1} \mathbf{r}_{k_1} + \ldots + \lambda_{k_d} \mathbf{r}_{k_d}; \quad 0 \leqslant \lambda_{k_i} \leqslant 1 \}, \tag{5.8}$$

где k_1,\ldots,k_d – дополнительные к m индексы в $\{0,1,\ldots,d\}$. Если множество векторов ${\bf r}$ является звездой (см. определение 4.1), то объединение

$$\mathbf{T} = T(\mathbf{r}) = \mathbf{T}_0 \cup \mathbf{T}_1 \cup \ldots \cup \mathbf{T}_d \tag{5.9}$$

параллелепипедов (5.8) образует $napannenoə \partial p$ [15] — многогранник, разбивающий пространство

$$\mathbb{R}^d = \bigcup_{l \in L} \mathbf{T}[l] \tag{5.10}$$

с помощью параллельных переносов $\mathbf{T}[l] = \mathbf{T} + l$ на векторы l некоторой полной решетки L. Причем различные многогранники $\mathbf{T}[l]$ из

(5.10) не имеют общих внутренних точек. Поэтому параллелоэдр **Т** является разверткой некоторого d-мерного тора.

Для d=2 параллелоэдр **T** из (5.9) является выпуклым шестиугольником с попарно равными и параллельными сторонами, для d=3 – ромбододекаэдром Федорова [16], а для d=4 – параллелоэдром Вороного [17].

Поскольку многогранник ${f T}=T({f r})$ порождается звездой ${f r}$, то будем называть его r-параллелоэдром.

Параллелоэдр **T** является *перекладывающимся* многогранником с векторами перекладывания $\mathbf{r}_0, \mathbf{r}_1, \dots, \mathbf{r}_d$. Это означает, что выполняются следующие свойства:

$$\mathbf{T} = (\mathbf{T}_0 + \mathbf{r}_0) \cup (\mathbf{T}_1 + \mathbf{r}_1) \cup \ldots \cup (\mathbf{T}_d + \mathbf{r}_d), \tag{5.11}$$

при этом

$$(\mathbf{T}_i + \mathbf{r}_i)^{\mathrm{int}} \cap (\mathbf{T}_j + \mathbf{r}_j)^{\mathrm{int}} = \emptyset$$
 для любых $i \neq j$. (5.12)

Векторы $\mathbf{r}_0, \mathbf{r}_1, \dots, \mathbf{r}_d$ имеют $nopя \partial \kappa u$

$$\mathbf{m}_0 = Q_0, \ \mathbf{m}_1 = Q_1, \dots, \ \mathbf{m}_d = Q_d,$$
 (5.13)

определяемые коэффициентами Q_i в представлении (5.6), а сумма

$$\mathbf{m} = \mathbf{m}_0 + \mathbf{m}_1 + \ldots + \mathbf{m}_d \tag{5.14}$$

будет *порядком г*-параллелоэдра **T** из (5.9). Как и звезду **r** из (5.6), параллелоэдр **T** = $T(\mathbf{r})$ также будем называть *унимодулярным*.

В [18] доказано следующее свойство параллелоэдров Т.

Предложение 5.1. Пусть \mathbf{T}^{int} – внутренняя часть парамелоэдра $\mathbf{T} = T(\mathbf{r})$ из (5.9),

$$\widehat{\mathbf{v}} = \begin{pmatrix} * \\ \vdots \\ Q \end{pmatrix} \tag{5.15}$$

– произвольный (d+1)-мерный вектор c целыми координатами $*,\ldots,$ $Q\in\mathbb{Z};$ и пусть

$$\widehat{\mathbf{v}}_{\mathbf{m}} = \widehat{\mathbf{v}}_0 + \widehat{\mathbf{v}}_1 + \ldots + \widehat{\mathbf{v}}_d = \begin{pmatrix} P_1 \\ \vdots \\ P_d \\ \mathbf{m} \end{pmatrix}$$
 (5.16)

– сумма всех векторов CU-базиса $\hat{\mathbf{V}} = \{\hat{\mathbf{v}}_0, \hat{\mathbf{v}}_1, \dots, \hat{\mathbf{v}}_d\}$ из (5.1), удовлетворяющего условию (5.3). Тогда параллелоэдр \mathbf{T} обладает следующим свойством:

$$\mathbf{v} \notin \mathbf{T}^{\text{int}}, \ ecnu \ 1 \leqslant Q < \mathbf{m},$$
 (5.17)

где $\mathbf{v} = \operatorname{pr}_0 \widehat{\mathbf{v}}$ – проекция (5.5) вектора $\widehat{\mathbf{v}}$ на ядерную гиперплоскость \mathbf{K}_0 и \mathbf{m} – порядок (5.14) развертки тора \mathbf{T} ; единственным вектором $\mathbf{v} = \operatorname{pr}_0 \widehat{\mathbf{v}}$ с условием

$$\mathbf{v} \in \mathbf{T}^{\text{int}} \quad u \quad Q = \mathbf{m}$$
 (5.18)

является вектор $\mathbf{v} = \mathbf{v_m} = \operatorname{pr}_0 \widehat{\mathbf{v}}_{\mathbf{m}}.$

Назовем $\widehat{\mathbf{v}}_{\mathbf{m}}$ из (5.16) вектором Фарея базиса $\widehat{\mathbf{V}} = \{\widehat{\mathbf{v}}_0, \widehat{\mathbf{v}}_1, \dots, \widehat{\mathbf{v}}_d\}$. По определению, вектор $\widehat{\mathbf{v}}_{\mathbf{m}}$ имеет порядок \mathbf{m} .

Поставим звезде ${\bf r}$ из (5.5) в соответствие квадратную матрицу

$$s: \mathbf{r} \mapsto S = s(\mathbf{r}) = \begin{pmatrix} P_{01} & P_{11} & \dots & P_{d1} \\ & & \dots & \\ P_{0d} & P_{1d} & \dots & P_{dd} \\ Q_0 & Q_1 & \dots & Q_d \end{pmatrix}$$
(5.19)

размера d+1 и назовем $S=s(\mathbf{r})$ матрицей звезды \mathbf{r} . Она совпадает с матрицей (5.4) базиса $\hat{\mathbf{V}}$. Согласно (5.4) матрица (5.19) унимодулярна $S=s(\mathbf{r})\in \mathrm{GL}_{d+1}(\mathbb{Z})$.

Таким образом, в результате проекции (5.5) центрированного унимодулярного базиса $\hat{\mathbf{V}}$ на ядерную гиперплоскость \mathbf{K}_0 из (4.4) получается унимодулярный r-параллелоэдр $\mathbf{T} = T(\mathbf{r})$. Как показано в [18], именно унимодулярность и обеспечивает выполнимость свойства минимальности (5.17), (5.18) параллелоэдра \mathbf{T} .

§6. Собственные подпространства

6.1. Разложение модульной матрицы Пизо. Для столбцов $\widehat{\alpha}$ из (2.11) и $\widehat{\zeta}$ из (2.5) определим квадратные матрицы

$$A = (\widehat{\alpha}^{(1)} \dots \widehat{\alpha}^{(d+1)}), \quad Z = (\widehat{\zeta}^{(1)} \dots \widehat{\zeta}^{(d+1)}) \tag{6.1}$$

порядка d+1. Матрица Z невырождена и, в силу равенства (2.10), имеем A=TZ. Поэтому матрица A также невырождена и, следовательно, ее столбцы образуют базис (A-базис) в пространстве \mathbb{R}^{d+1} .

Пусть P_{α} – модульная матрица Пизо (1.6). Из (2.16) получаем

$$P_{\alpha}A = (\lambda^{(1)}\widehat{\alpha}^{(1)} \dots \lambda^{(d+1)}\widehat{\alpha}^{(d+1)}) = A\Lambda, \tag{6.2}$$

где

$$\Lambda = \begin{pmatrix} \lambda^{(1)} & \dots & 0 \\ & \dots & \\ 0 & \dots & \lambda^{(d+1)} \end{pmatrix}.$$
(6.3)

Отсюда для матрицы P_{α} выводим разложение

$$P_{\alpha} = A\Lambda A^{-1}. (6.4)$$

6.2. Собственные подпространства E_{\pm} . Столбцы матрицы A из (6.1) упорядочим следующим образом

$$A = (\widehat{\alpha}^{(1)} \dots \widehat{\alpha}^{(i)} \dots \widehat{\alpha}^{(j)} \overline{\widehat{\alpha}}^{(j)} \dots), \tag{6.5}$$

где (i) — вещественные сопряжения, а (j) — комплексно сопряженные пары. Производя линейное преобразование

$$\widehat{\alpha}_{+}^{(j)} = \frac{1}{2} (\widehat{\alpha}^{(j)} + \overline{\widehat{\alpha}}^{(j)}), \ \widehat{\alpha}_{-}^{(j)} = \frac{1}{2i} (\widehat{\alpha}^{(j)} - \overline{\widehat{\alpha}}^{(j)}), \tag{6.6}$$

перейдем к вещественной матрице

$$A_{\mathbb{R}} = (\widehat{\alpha}^{(1)} \dots \widehat{\alpha}^{(i)} \dots \widehat{\alpha}_{+}^{(j)} \widehat{\alpha}_{-}^{(j)} \dots), \tag{6.7}$$

столбцы которой образуют базис вещественного суперпространства $\mathbf{S} = \mathbb{R}^{d+1}$. Разложим его в прямую сумму

$$\mathbf{S} = \mathbf{E}_{+} \oplus \mathbf{E}_{-} \tag{6.8}$$

двух подпространств:

$$\mathbf{E}_{+} = \mathbb{R} \,\widehat{\alpha}_{-}^{(1)} = \mathbb{R} \,\widehat{\alpha}_{-} \tag{6.9}$$

– растягивающего и

$$\mathbf{E}_{-} = \bigoplus_{i \neq 1} \mathbb{R}\widehat{\alpha}^{(i)} \oplus \bigoplus_{j} (\mathbb{R}\widehat{\alpha}_{1}^{(j)} \oplus \mathbb{R}\widehat{\alpha}_{2}^{(j)})$$
 (6.10)

- сжимающего (сжимающей гиперплоскости) с базисом из столбцов урезанной вещественной матрицы

$$A_{\mathbb{R},\geqslant 2} = (\dots \widehat{\alpha}^{(i)} \dots \widehat{\alpha}_1^{(j)} \widehat{\alpha}_2^{(j)} \dots). \tag{6.11}$$

6.3. Проекция на сжимающее подпространство. Разложим

$$\widehat{v} = A_{\mathbb{R}} \, \widehat{x} \tag{6.12}$$

произвольный вектор \hat{v} из суперпространства **S** по базису (6.7), где

$$\widehat{x}=\left(egin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_{d+1} \end{array}
ight)$$
 — координаты вектора \widehat{v} , записанные в виде столбца.

Используя разложение $\mathbf{S} = \mathbf{E}_+ \oplus \mathbf{E}_-$ и представление (6.12), определим проекцию

$$\operatorname{pr}_{\mathbf{E}} : \mathbf{S} \longrightarrow \mathbf{E}_{-}$$
 (6.13)

вдоль растягивающего подпространства ${\bf E}_+$ из (6.9) на пространство ${\bf E}_-$ из (6.10), полагая

$$\operatorname{pr}_{\mathbf{E}_{-}}(\widehat{v}) = \widehat{v}_{-}, \tag{6.14}$$

где $\widehat{v}_- = A_{\mathbb{R}} \, \widehat{x}_{\geqslant 2} = A_{\mathbb{R}, \geqslant 2} \, x_{\geqslant 2}$, при этом

$$\widehat{x}_{\geqslant 2} = \begin{pmatrix} 0 \\ x_2 \\ \vdots \\ x_{d+1} \end{pmatrix}, \quad x_{\geqslant 2} = \begin{pmatrix} x_2 \\ \vdots \\ x_{d+1} \end{pmatrix}. \tag{6.15}$$

Лемма 6.1. Определенная в (6.13) проекция $\operatorname{pr}_{\mathbf{E}_{-}}$ является линейным сюъективным отображением.

Доказательство. Данная проекция в координатах (6.15) имеет вид $\mathrm{pr}_{\mathbf{E}_{-}}(\widehat{x})=\widehat{x}_{\geqslant 2},$ из которого вытекает утверждение леммы.

6.4. Отображение $P_{\alpha}|_{\mathbf{E}_{-}}$. Рассмотрим диаграмму

$$\begin{array}{cccc}
\mathbf{S} & \xrightarrow{\mathbf{P}_{\alpha}} & \mathbf{S} \\
\operatorname{pr}_{\mathbf{E}_{-}} & \downarrow & \downarrow & \operatorname{pr}_{\mathbf{E}_{-}} \\
\mathbf{E}_{-} & \xrightarrow{\mathbf{P}_{\alpha}|_{\mathbf{E}_{-}}} & \mathbf{E}_{-}
\end{array} (6.16)$$

в которой верхнее отображение задается унимодулярной матрицей P_{α} из (2.16), вертикальные стрелки обозначают сюръективную проекцию $\mathrm{pr}_{\mathbf{E}_{-}}$ из (6.13), а нижнее отображение $P_{\alpha}|_{\mathbf{E}_{-}}$ определим формулой

$$P_{\alpha}|_{\mathbf{E}_{-}}\widehat{v}_{-} = P_{\alpha}\widehat{v}_{-},\tag{6.17}$$

где вектор \hat{v}_{-} принадлежит сжимающему пространству \mathbf{E}_{-} из (6.10).

Пемма 6.2. 1. Отображение (6.17) определено корректно.

- 2. $P_{\alpha}|_{\mathbf{E}_{-}}$ является линейным изоморфизмом пространства \mathbf{E}_{-} .
- 3. Диаграмма (6.16) коммутативна, т.е. выполняется коммутационное соотношение

$$\operatorname{pr}_{\mathbf{E}_{-}}(P_{\alpha}\widehat{v}) = P_{\alpha}|_{\mathbf{E}_{-}}(\operatorname{pr}_{\mathbf{E}_{-}}\widehat{v}) \tag{6.18}$$

для всех векторов \widehat{v} из суперпространства ${\bf S}.$

Доказательство. Утверждения 1, 2. Используя разложение прямую сумму $\mathbf{S} = \mathbf{E}_+ \oplus \mathbf{E}_-$ из (6.8), любой вектор \widehat{v} из \mathbf{S} можно представить в виде $\widehat{v} = \widehat{v}_+ + \widehat{v}_-$, где $\widehat{v}_+ \in \mathbf{E}_+$, $\widehat{v}_- \in \mathbf{E}_-$. Согласно (6.2) подпространства \mathbf{E}_+ , $\mathbf{E}_- \subset \mathbf{S}$ инвариантны

$$P_{\alpha}\mathbf{E}_{+} = \mathbf{E}_{+}, \quad P_{\alpha}\mathbf{E}_{-} = \mathbf{E}_{-} \tag{6.19}$$

относительно линейного отображения P_{α} из диаграммы (6.16). Поэтому можем записать

$$P_{\alpha}\widehat{v} = P_{\alpha}\widehat{v}_{+} + P_{\alpha}\widehat{v}_{-}, \tag{6.20}$$

где $P_{\alpha}\widehat{v}_{+} \in \mathbf{E}_{+}$, $P_{\alpha}\widehat{v}_{-} \in \mathbf{E}_{-}$. Отсюда следует корректность определения (6.17) отображения $P_{\alpha}|_{\mathbf{E}_{-}}$ и линейность данного отображения. Утверждение о том, что $P_{\alpha}|_{\mathbf{E}_{-}}$ является линейным изоморфизмом пространства \mathbf{E}_{-} , вытекает из простоты матрицы (6.3), т.е. различия ее собственных значений $\lambda^{(i)} \neq \lambda^{(j)}$, если $i \neq j$.

Утверждение 3. Согласно (6.20), (6.14) и (6.19) имеем

$$\operatorname{pr}_{\mathbf{E}} (P_{\alpha}\widehat{v}) = \operatorname{pr}_{\mathbf{E}} (P_{\alpha}\widehat{v}_{+} + P_{\alpha}\widehat{v}_{-}) = \operatorname{pr}_{\mathbf{E}} (P_{\alpha}\widehat{v}_{-}) = P_{\alpha}\widehat{v}_{-}. \tag{6.21}$$

С другой стороны, по определениям (6.14) и (6.17) получаем

$$P_{\alpha}|_{\mathbf{E}_{-}}(\operatorname{pr}_{\mathbf{E}} \widehat{v}) = P_{\alpha}|_{\mathbf{E}_{-}}(\operatorname{pr}_{\mathbf{E}} \widehat{v}_{-}) = P_{\alpha}|_{\mathbf{E}_{-}} \widehat{v}_{-} = P_{\alpha} \widehat{v}_{-}. \tag{6.22}$$

Согласно лемме 6.2 можем записать

$$P_{\alpha}|_{\mathbf{E}_{-}}\mathbf{a} = \mathbf{a}M_{\mathbf{a}},\tag{6.23}$$

где $P_{\alpha}|_{\mathbf{E}_{-}}$ – ограничение на подпространство $\mathbf{E}_{-} \subset \mathbf{S}$ линейного отображения P_{α} из диаграммы (6.16), $\mathbf{a} = A_{\mathbb{R},\geqslant 2}$ – матрица размера $(d+1)\times d$, составленная из векторов матрицы (6.11), и $M_{\mathbf{a}}$ – матрица отображения $P_{\alpha}|_{\mathbf{E}_{-}}$ в базисе \mathbf{a} . Заметим, что $M_{\mathbf{a}}$ является квадратной матрице размера d.

Если $\lambda^{(j)} = r_j(\cos\varphi_j + i\sin\varphi_j)$, то по (6.2) находим вещественную матрицу

 $c (2 \times 2)$ -блоками

$$\Lambda^{(j)} = r_j \begin{pmatrix} \cos(a\varphi_j) & -\sin(a\varphi_j) \\ \sin(a\varphi_j) & \cos(a\varphi_j) \end{pmatrix}. \tag{6.25}$$

§7. ПРОЕКЦИЯ НА ЯДЕРНОЕ ПРОСТРАНСТВО

7.1. Проекция на ядерную гиперплоскость. Теперь определим проекцию

$$\operatorname{pr}_{\mathbf{K}_0}^{\mathbf{E}_-} : \mathbf{E}_- \longrightarrow \mathbf{K}_0$$
 (7.1)

вдоль вектора $\widehat{\alpha}$ на ядерную гиперплоскость \mathbf{K}_0 из (4.4). Если воспользоваться координатами относительно единичного базиса

$$e_1 = (1, 0, \dots, 0), e_2 = (0, 1, \dots, 0), \dots, e_{d+1} = (0, 0, \dots, 1)$$
 (7.2)

пространства \mathbb{R}^{d+1} , то по аналогии с (4.6) проекция $\mathrm{pr}_{\mathbf{K}_0}^{\mathbf{E}_-}$ примет вид

$$\operatorname{pr}_{\mathbf{K}_0}^{\mathbf{E}_-} : (x_1, \dots, x_d, x_{d+1}) \mapsto (x_1 - \alpha_1 x_{d+1}, \dots, x_d - \alpha_d x_{d+1}, 0). (7.3)$$

Поскольку вектор $\widehat{\alpha}$ не принадлежит гиперплоскостям \mathbf{E}_- и $\mathbf{K}_0,$ то справедлива следующая

Пемма 7.1. Проекция $\operatorname{pr}_{\mathbf{K}_0}^{\mathbf{E}_-}$ из (7.1) задает линейный изоморфизм между сжимающей \mathbf{E}_- и ядерной \mathbf{K}_0 гиперплоскостями.

Замечание 7.1. Из определения (6.13) следует, что отображение $\operatorname{pr}_{\mathbf{E}_{-}}$ также, как и отображение $\operatorname{pr}_{\mathbf{K}_{0}}^{\mathbf{E}_{-}}$, можно считать проекцией вдоль вектора $\widehat{\alpha}$.

7.2. Проекция на ядерное пространство. Зададим еще одно отображение

$$\operatorname{pr}_{\mathbf{K}_0} : \mathbf{S} \stackrel{\operatorname{pr}_{\mathbf{E}_-}}{\longrightarrow} \mathbf{E}_- \stackrel{\operatorname{pr}_{\mathbf{K}_0}}{\longrightarrow} \mathbf{K}_0$$
 (7.4)

на ядерную гиперплоскость \mathbf{K}_0 как композицию

$$\operatorname{pr}_{\mathbf{K}_0} = \operatorname{pr}_{\mathbf{K}_0}^{\mathbf{E}_-} \circ \operatorname{pr}_{\mathbf{E}_-}. \tag{7.5}$$

Учитывая замечание 7.1 и определение (7.1), видим, что новое отображение $\operatorname{pr}_{\mathbf{K}_0}$ также является проекцией вдоль вектора $\widehat{\alpha}$.

Наконец, определим основное отображение

$$\operatorname{pr}_{\mathbf{K}}: \quad \mathbf{S} \stackrel{\operatorname{pr}_{\mathbf{K}_0}}{\longrightarrow} \mathbf{K}_0 \stackrel{\kappa_0}{\longrightarrow} \mathbf{K}$$
 (7.6)

на ядерное пространство К из (4.2) или кратко –

$$\operatorname{pr}_{\mathbf{K}} = \kappa_0 \circ \operatorname{pr}_{\mathbf{K}_0}, \tag{7.7}$$

где κ_0 – линейный изоморфизм (4.7).

7.3. Отображение Ро. Отобразим базисные векторы

$$\mathbf{a} = A_{\mathbb{R}, \geq 2} = (\dots \widehat{\alpha}^{(i)} \dots \widehat{\alpha}_{+}^{(j)} \widehat{\alpha}_{-}^{(j)} \dots)$$

пространства ${\bf E}_-$ на ядерную гиперплоскость ${\bf K}_0$ с помощью отображения (7.1). По лемме 7.1 получим базис

$$\pi \mathbf{a} = (\dots \, \pi \widehat{\alpha}^{(i)} \, \dots \, \pi \widehat{\alpha}_{+}^{(j)} \, \pi \widehat{\alpha}_{-}^{(j)} \, \dots) \tag{7.8}$$

пространства \mathbf{K}_0 , где воспользовались сокращением $\pi = \mathrm{pr}_{\mathbf{K}_0}^{\mathbf{E}_-}$ для отображения (7.1). Снова применяя лемму 7.1 можем определить линейное отображение P_0 с помощью коммутативной диаграммы

$$\begin{array}{cccc}
\mathbf{E}_{-} & \stackrel{\mathbf{P}_{\alpha}|_{\mathbf{E}_{-}}}{\longrightarrow} & \mathbf{E}_{-} \\
\pi & \downarrow & & \downarrow & \pi \\
\mathbf{K}_{0} & \stackrel{\mathbf{P}_{0}}{\longrightarrow} & \mathbf{K}_{0}
\end{array} (7.9)$$

Найдем матрицу $M_{\mathbf{e}_0}$ линейного отображения P_0 :

$$P_0 \mathbf{e}_0 = \mathbf{e}_0 M_{\mathbf{e}_0} \tag{7.10}$$

в базисе $\mathbf{e}_0=(e_1\dots e_d)$, составленном из первых d векторов базиса (7.2) пространства \mathbb{R}^{d+1} .

Пемма 7.2. 1. Отображение $P_0: \mathbf{K}_0 \longrightarrow \mathbf{K}_0$ из диаграммы (7.9) является линейным изоморфизмом ядерной гиперплоскости \mathbf{K}_0 , удовлетворяющим формуле коммутирования

$$\pi(\mathbf{P}_{\alpha}|_{\mathbf{E}_{-}}x) = \mathbf{P}_{0}(\pi x) \tag{7.11}$$

для всех векторов x из пространства \mathbf{E}_{-} .

2. Для матрицы $M_{\mathbf{e}_0}$ из (7.10) имеет место формула

$$M_{\mathbf{e}_0} = A_{\pi \mathbf{a}} M_{\mathbf{a}} A_{\pi \mathbf{a}}^{-1},$$
 (7.12)

при этом $M_{\bf a}$ – диагональная матрица (6.24) и $A_{\pi {\bf a}}$ – матрица перехода от базиса $\pi {\bf a}$ из (7.8) к единичному базису ${\bf e}_0$ из (7.10), определяемая равенством

$$\pi \mathbf{a} = \mathbf{e}_0 \, A_{\pi \mathbf{a}}.\tag{7.13}$$

Доказательство. 1. Отображение P_0 – линейный изоморфизм в силу леммы 7.1 и второго свойства леммы 6.2, а формула коммутирования (7.11) вытекает из коммутативности диаграммы (7.9).

- 2. Линейное отображение P_0 в базисе $\pi \mathbf{a}$ из (7.8) имеет такую же матрицу $M_{\mathbf{a}}$ из (6.23), что и отображение $P_{\alpha}|_{\mathbf{E}_{-}}$ в базисе $\mathbf{a} = A_{\mathbb{R}, \geq 2}$. Отсюда и из (7.13) получаем формулу (7.12).
- **7.4.** Преобразование Пизо ядерного пространства. Рассмотрим композицию коммутативных диаграмм (6.16) и (7.9). Получим коммутативную диаграмму

$$\operatorname{pr}_{\mathbf{K}_{0}}^{\mathbf{S}} \quad \begin{array}{ccc} \mathbf{S} & \xrightarrow{\mathbf{P}_{\alpha}} & \mathbf{S} \\ \downarrow & \downarrow & \downarrow & \operatorname{pr}_{\mathbf{K}_{0}}^{\mathbf{S}} \\ \mathbf{K}_{0} & \xrightarrow{\mathbf{P}_{0}} & \mathbf{K}_{0} \end{array}$$
 (7.14)

где $\operatorname{pr}_{\mathbf{K}_0}^{\mathbf{S}} = \pi \circ \operatorname{pr}_{\mathbf{E}_-}.$

Предложение 7.1. Определим расширение

$$\begin{array}{cccc}
\mathbf{S} & \xrightarrow{\mathbf{P}_{\alpha}} & \mathbf{S} \\
\mathbf{pr}_{\mathbf{K}}^{\mathbf{S}} & \downarrow & \downarrow & \mathbf{pr}_{\mathbf{K}}^{\mathbf{S}} \\
\mathbf{K} & \xrightarrow{\mathbf{P}} & \mathbf{K}
\end{array} (7.15)$$

диаграммы (7.14) с помощью изоморфизма $\kappa_0: \mathbf{K}_0 \longrightarrow \mathbf{K}$ из (4.7), где

$$\operatorname{pr}_{\mathbf{K}}^{\mathbf{S}} = \kappa_0 \, \circ \, \operatorname{pr}_{\mathbf{K}_0}^{\mathbf{S}}. \tag{7.16}$$

Тогда справедливы следующие утверждения.

1. Отображение P является линейным изоморфизмом ядерного пространства \mathbf{K} , определенного в (4.2), а отображение (7.16) совпадает

$$\operatorname{pr}_{\mathbf{K}}^{\mathbf{S}} = \kappa \tag{7.17}$$

c проекцией $\kappa: \mathbf{S} \longrightarrow \mathbf{K}$ вдоль вектора $\widehat{\alpha}$ из (4.8).

2. Выполняется формула коммутирования

$$\operatorname{pr}_{\mathbf{K}}(P_{\alpha}x) = P(\operatorname{pr}_{\mathbf{K}}x) \tag{7.18}$$

для всех векторов x из суперпространства S.

3. Матрица $M_{\bf e}$ линейного отображения ${\bf P}$:

$$P \mathbf{e} = \mathbf{e} M_{\mathbf{e}} \tag{7.19}$$

в единичном базисе $\mathbf{e}=(e_1\ \dots\ e_d)$ пространства $\mathbf{K}=\mathbb{R}^d$ вычисляется по формуле

$$M_{\mathbf{e}} = A_{\pi \mathbf{a}} M_{\mathbf{a}} A_{\pi \mathbf{a}}^{-1}, \tag{7.20}$$

где $M_{\bf a}$ – диагональная матрица (6.24) и $A_{\pi {\bf a}}$ – матрица из (7.13).

Доказательство. Равенство (7.17) непосредственно вытекает из определений (6.13) и (7.1) проекций $\operatorname{pr}_{\mathbf{E}_{-}}$ и $\operatorname{pr}_{\mathbf{K}_{0}}^{\mathbf{E}_{-}}$, а свойство отображению Р быть линейным изоморфизмом пространства \mathbf{K} и формула коммутирования (7.18) следуют из лемм 6.2 и 7.2.

Формула (7.20) для матрицы $M_{\bf e}$ есть ничто иное, как формула (7.12), сохраняющаяся при изоморфизме $\kappa_0: {\bf K}_0 \longrightarrow {\bf K}$.

Отображение P из диаграммы (7.15) назовем *преобразованием Пизо* ядерного пространства \mathbf{K} .

§8. Проекции базисов Пизо

8.1. Унимодулярные базисы Пизо \widehat{V}_{α}^{a} . В качестве базиса $\widehat{\mathbf{V}}$ из (5.1) выберем базис $\widehat{V}=\{\widehat{v}_{0},\widehat{v}_{1},\ldots,\widehat{v}_{d}\}$ в пространстве \mathbb{R}^{d+1} , определенный в (4.1). Множество (4.1) является унимодулярным базисом, центрированным лучом $\mathbb{R}_{+}\widehat{\alpha}$ и состоящим из векторов с целыми координатами

$$\widehat{v}_{0} = \begin{pmatrix} P_{01} \\ \vdots \\ P_{0d} \\ Q_{0} \end{pmatrix}, \ \widehat{v}_{1} = \begin{pmatrix} P_{11} \\ \vdots \\ P_{1d} \\ Q_{1} \end{pmatrix}, \dots, \ \widehat{v}_{d} = \begin{pmatrix} P_{d1} \\ \vdots \\ P_{dd} \\ Q_{d} \end{pmatrix}.$$
(8.1)

По определению составленная из координат квадратная матрица

$$S = \begin{pmatrix} P_{01} & P_{11} & \dots & P_{d1} \\ & & \dots & \\ P_{0d} & P_{1d} & \dots & P_{dd} \\ Q_0 & Q_1 & \dots & Q_d \end{pmatrix}$$
(8.2)

размера d+1 унимодулярна. На базис (4.1) подействуем

$$\widehat{V}_{\alpha}^{a} = P_{\alpha}^{a} \widehat{V} = \{\widehat{v}_{0}^{a}, \widehat{v}_{1}^{a}, \dots, \widehat{v}_{d}^{a}\}$$

$$(8.3)$$

матрицей Пизо P_{α} из (2.16) со степенями $a=0,1,2,\ldots$, где

$$\widehat{v}_i^a = \mathbf{P}_\alpha^a \widehat{v}_i$$
 для $i = 0, 1, \dots, d$. (8.4)

Поскольку матрица P_{α} невырождена, то \widehat{V}_{α}^{a} снова будут образовывать базисы в пространстве \mathbb{R}^{d+1} . Назовем их базисами Пизо порядка a. Данные базисы имеют унимодулярные матрицы

$$S^{a} = \begin{pmatrix} P_{01}^{a} & P_{11}^{a} & \dots & P_{d1}^{a} \\ & & \dots & & \\ P_{0d}^{a} & P_{1d}^{a} & \dots & P_{dd}^{a} \\ Q_{0}^{a} & Q_{1}^{a} & \dots & Q_{d}^{a} \end{pmatrix}.$$
(8.5)

8.2. Звезды Пизо г^a. Для каждого базиса \widehat{V}^a_{α} из (8.3) рассмотрим его проекцию

$$\kappa: \hat{V}^a_{\alpha} \to \mathbf{r}^a$$
(8.6)

относительно отображения (4.8). Множество $\mathbf{r}^a = \{\mathbf{r}^a_0, \mathbf{r}^a_1, \dots, \mathbf{r}^a_d\}$ состоит из векторов

$$\mathbf{r}_{i}^{a} = \kappa \widehat{v}_{i}^{a} = P_{i}^{a} - Q_{i}^{a} \alpha \tag{8.7}$$

для $i=0,1,\ldots,d$, расположенных в ядерном пространстве **K** из (4.2), гле

$$P_0^a = \begin{pmatrix} P_{01}^a \\ \vdots \\ P_{0d}^a \end{pmatrix}, \quad P_1^a = \begin{pmatrix} P_{11}^a \\ \vdots \\ P_{1d}^a \end{pmatrix}, \dots, \quad P_d^a = \begin{pmatrix} P_{d1}^a \\ \vdots \\ P_{dd}^a \end{pmatrix}$$
(8.8)

— столбцы из (8.5). Как будет показано в предложении 8.1, множество \mathbf{r}^a представляет собою звезду, а в силу унимодулярности матрицы (8.5) такая звезда \mathbf{r}^a будет унимодулярной.

Предложение 8.1. 1. При всех $a=0,1,2,\ldots$ множество векторов \widehat{V}^a_{α} из (8.3) образует унимодулярный базис, центрированный лучом $\mathbb{R}_+\widehat{\alpha}$.

2. Если степени а удовлетворяют неравенству

$$a \geqslant l_{\alpha}(\triangle),$$
 (8.9)

где граница $l_{\alpha}(\triangle) \geqslant 0$ зависит от точки α и выбора базисного симплекса \triangle ϵ (3.4), то проекции

$$\mathbf{r}^a = \kappa \widehat{V}_\alpha^a \tag{8.10}$$

образуют звезды.

Доказательство. 1. По определению (2.16) матрица Пизо P_{α} унимодулярна. А поскольку исходный базис $\widehat{V}_{\alpha}^{0} = \widehat{V}$ также является унимодулярным, то отсюда вытекает унимодулярность всех аффинных образов \widehat{V}_{α}^{a} базиса \widehat{V} .

Условие центрированности базиса \widehat{V} лучом $\mathbb{R}_+\widehat{\alpha}$ эквивалентно положительности $\nu_i>0$ всех координат в разложении

$$\alpha = \nu_0 \widehat{v}_0 + \nu_1 \widehat{v}_1 + \ldots + \nu_d \widehat{v}_d. \tag{8.11}$$

Из разложения (8.11) и равенства (2.17) получаем

$$P^{a}_{\alpha}\widehat{\alpha} = \lambda^{a} \cdot \widehat{\alpha} = \nu_{0} P^{a}_{\alpha} \widehat{v}_{0} + \nu_{1} P^{a}_{\alpha} \widehat{v}_{1} + \dots + \nu_{d} P^{a}_{\alpha} \widehat{v}_{d}$$
$$= \nu_{0} \widehat{v}^{a}_{0} + \nu_{1} \widehat{v}^{a}_{1} + \dots + \nu_{d} \widehat{v}^{a}_{d},$$

откуда для вектора $\widehat{\alpha}$ следует еще одно разложение

$$\widehat{\alpha} = \frac{\nu_0}{\lambda^a} \widehat{v}_0^a + \frac{\nu_1}{\lambda^a} \widehat{v}_1^a + \ldots + \frac{\nu_d}{\lambda^a} \widehat{v}_d^a$$
(8.12)

относительно базиса \widehat{V}^a_α из (8.3) с координатами $\frac{\nu_i}{\lambda^a}>0$ для $i=0,1,\ldots,d$, так как $\lambda>1$ согласно (2.18). Из положительности координат в (8.12) вытекает центрированность лучом $\mathbb{R}_+\widehat{\alpha}$ базиса \widehat{V}^a_α , что вместе с его унимодулярностью доказывет предложение 8.1.

2. Согласно [1] при соблюдении условия (8.9) будут выполняться неравенства

$$Q_0^a \geqslant 1, \ Q_1^a \geqslant 1, \dots, \ Q_d^a \geqslant 1$$
 (8.13)

для координат Q_i^a из (8.5). Далее, учитывая (8.13), доказательство второго утверждения предложения проводится по схеме, приведенной в [5], предложение 3.1.

Назовем степени a, для которых выполняется условие (8.9), dony-cmu.

8.3. \mathbf{r}^a -параллелоэдры. Поскольку матрица S^a из (8.5) унимодулярна, то для всех $a=0,1,2,\ldots$ звезда \mathbf{r}^a из (8.6) также будет унимодулярной. Ей соответствует r-параллелоэдр

$$\mathbf{T}^a = T(\mathbf{r}^a) = \mathbf{T}_0^a \sqcup \mathbf{T}_1^a \sqcup \ldots \sqcup \mathbf{T}_D^a \tag{8.14}$$

— перекладывающаяся развертка тора с векторами перекладывания $\mathbf{r}_0^a, \mathbf{r}_1^a, \dots, \mathbf{r}_D^a$ в (8.7). Согласно (8.7) данные векторы имеют порядки

$$\mathbf{m}_0^a = Q_0^a, \ \mathbf{m}_1^a = Q_1^a, \dots, \ \mathbf{m}_d^a = Q_d^a$$
 (8.15)

и их сумма

$$\mathbf{m}^a = \mathbf{m}_0^a + \mathbf{m}_1^a + \ldots + \mathbf{m}_d^a \tag{8.16}$$

будет nopядком r-параллелоэдра \mathbf{T}^a из (8.14).

Теорема 8.1. Пусть $\mathbf{T}^{a \text{ int}}$ – внутренняя часть \mathbf{r}^{a} -параллелоэдра \mathbf{T}^{a} из (8.14), α – вещественная полная точка степени $\deg(\alpha)=d+1;$ и пусть $\mathbf{v}=P-Q\alpha$ – точка из ядерного пространства \mathbf{K} с произвольными $P\in\mathbb{Z}^d$ и $Q=1,2,3,\ldots$ Тогда справедливы следующие утверждения.

1. Для всех a=0,1,2,... \mathbf{r}^a -параллелоэдры \mathbf{T}^a удовлетворяют следующему свойству:

$$\mathbf{v} \notin \mathbf{T}^{a \text{ int}}, \ ecnu \ 1 \leqslant Q < \mathbf{m}^a,$$
 (8.17)

где а удовлетворяет неравенству $a \geqslant l_{\alpha}(\triangle)$ из (8.9) и \mathbf{m}^a – порядок (8.16) параллелоэдра \mathbf{T}^a ; единственной принадлежащей параллелоэдру \mathbf{T}^a точкой

$$\mathbf{v}^a \in \mathbf{T}^{a \text{ int}}$$
 с коэффициентом $Q = \mathbf{m}^a$ (8.18)

является точка

$$\mathbf{v}^a = \mathbf{r}_0^a + \mathbf{r}_1^a + \ldots + \mathbf{r}_d^a = P_a - Q_a \alpha, \tag{8.19}$$

 $e \partial e$

$$Q_a = Q_0^a + Q_1^a + \ldots + Q_d^a = \mathbf{m}^a, \quad P_a = P_0^a + P_1^a + \ldots + P_d^a, \quad (8.20)$$

npu этом Q_i^a – коэффициенты из (8.7) и P_i^a – столбцы (8.8).

2. Параллелоэдры \mathbf{T}^a связаны c начальным параллелоэдром $\mathbf{T}^0=\mathbf{T}$ формулой

$$\mathbf{T}^a = \mathbf{P}^a \mathbf{T}^0 = M_{\mathbf{e}}^a \mathbf{T}^0 \tag{8.21}$$

для всех $a=0,1,2,\ldots$, где P – линейное отображение из диаграммы (7.15), а $M_{\mathbf{e}}$ – его матрица (7.20).

Доказательство. 1. Для всех $a \geqslant l_{\alpha}(\triangle)$ будут выполняться неравенства (8.13) и, следовательно, для таких a будет выполняться условие (5.3), что позволяет применить предложение 7.1. Теперь свойства (8.17) и (8.18) будут следовать из предложения 5.1, если вопользоваться равенством (7.17) из предложения 7.1.

2. Первое равенство из (8.21) вытекает из коммутативной диаграммы (7.15) и формулы коммутирования (7.18). Второе равенство из (8.21) получается из равенства (7.19).

Будем говорить, что r-параллелоэдр \mathbf{T}^a обладает свойством munu-мальности, если он удовлетворяет условиям (8.17) и (8.18).

§9. Наилучшие привлижения многомерными подходящими дробями

9.1. Оценка радиуса r**-параллелоэдров.** Определим paduyc r-параллелоэдра \mathbf{T}^a , полагая

$$\varrho_a = \varrho(\mathbf{T}^a) = \max_{v \in \text{ver } \mathbf{T}^a} |v|. \tag{9.1}$$

Здесь ver \mathbf{T}^a — множество вершин \mathbf{T}^a и $|\cdot|$ обозначает *октаэдральную* метрику

$$|v| = |v_1| + \ldots + |v_d| \tag{9.2}$$

в пространстве \mathbb{R}^d , где $v=(v_1,\ldots,v_d)$. Укажем, что в обычных обозначениях метрика (9.2) есть ничто иное, как метрика $|v|_1$. Таким образом, по определению $\varrho_a=\varrho(\mathbf{T}^a)$ – это радиус минимального шара с центром в 0, содержащего параллелоэдр \mathbf{T}^a . Радиус шара измеряется в метрике (9.2).

Лемма 9.1. Для всех $a \geqslant l_{\alpha}(\triangle)$ радиус (9.1) параллелоэдра \mathbf{T}^a удовлетворяет неравенству

$$\varrho_a = \varrho(\mathbf{T}^a) \leqslant c \,\lambda_{2\,\text{max}}^a,\tag{9.3}$$

в котором константа $c=c_{\alpha}>0$ не зависит от $a=0,1,2,\ldots u$ $0<\lambda_{2,\max}<1$ определено равенством

$$\lambda_{2,\max} = \max_{2 \le j \le d+1} |\lambda_j| = \max_{2 \le j \le d+1} |\lambda^{(j)}|. \tag{9.4}$$

Доказательство. Согласно (8.21) и (7.20) для $a \ge l_{\alpha}(\Delta)$ имеем $\mathbf{T}^a = M_{\mathbf{e}}^a \mathbf{T}^0$ с матрицей $M_{\mathbf{e}} = A_{\pi \mathbf{a}} M_{\mathbf{a}} A_{\pi \mathbf{a}}^{-1}$, подобной диагональной матрице $M_{\mathbf{a}}$ из (6.24). Поскольку собственные значения $\lambda^{(i)}$ матрицы $M_{\mathbf{a}}$ удовлетворяют неравенству $|\lambda^{(i)}| \le \lambda_{2,\text{max}}$, то отсюда получаем требуемое неравенство (9.3).

9.2. Рекуррентные последовательности. Пусть ${\bf v}_a$ – один из векторов унимодулярного базиса $\widehat V_\alpha^a.$ Запишем его в виде целочисленного столбца

$$\mathbf{v}_{a} = \begin{pmatrix} P_{a1} \\ \vdots \\ P_{ad} \\ Q_{a} \end{pmatrix}. \tag{9.5}$$

Из определения (8.3) следует равенство

$$\mathbf{v}_a = \mathbf{P}_\alpha^a \mathbf{v}_0 \tag{9.6}$$

для $a=0,1,2,\ldots$, где ${\bf v}_0$ — соответствующий ${\bf v}_a$ вектор начального базиса $\widehat V=\widehat V_\alpha^0$ из (4.1). В [1] доказано, что столбцы ${\bf v}_a$ удовлетворяют рекуррентному соотношению.

Предложение 9.1. Пусть матрица Пизо P_{α} имеет характеристический многочлен

$$ch_{P_{\alpha}}(x) = \det(xE - P_{\alpha}) = x^{d+1} - b_d x^d - \dots - b_1 x - b_0.$$
 (9.7)

Тогда столбцы \mathbf{v}_a из (9.6) удовлетворяют рекуррентному соотношению

$$\mathbf{v}_{a+d+1} = b_d \mathbf{v}_{a+d} + \dots + b_1 \mathbf{v}_{a+1} + b_0 \mathbf{v}_a \tag{9.8}$$

для $a = 0, 1, 2, \dots$ Начальные условия

$$\mathbf{v}_d = \mathbf{P}_{\alpha}^d \mathbf{v}_0, \dots, \quad \mathbf{v}_1 = \mathbf{P}_{\alpha} \mathbf{v}_0, \quad \mathbf{v}_0 \tag{9.9}$$

задаются матрицей Пизо P_{α} из (2.16) и столбцом \mathbf{v}_0 из (9.5).

9.3. Рекуррентное соотношение для векторов Фарея. Для унимодулярного базиса $\widehat{V} = \{\widehat{v}_0, \widehat{v}_1, \dots, \widehat{v}_d\}$ из (4.1) определим его *вектор Фарея* $\mathbf{v} = \mathbf{v}_0$ как сумму

$$\mathbf{v}_{0} = \begin{pmatrix} P_{1}^{0} \\ \vdots \\ P_{d}^{0} \\ Q^{0} \end{pmatrix} = \begin{pmatrix} P_{01} \\ \vdots \\ P_{0d} \\ Q_{0} \end{pmatrix} + \begin{pmatrix} P_{11} \\ \vdots \\ P_{1d} \\ Q_{1} \end{pmatrix} + \ldots + \begin{pmatrix} P_{d1} \\ \vdots \\ P_{dd} \\ Q_{d} \end{pmatrix}$$
(9.10)

всех векторов \widehat{v}_i из \widehat{V} , где Q=d+1, так как по определению $Q_0=Q_1=\ldots=Q_d=1.$ Тогда соответствующий вектор Фарея

$$\mathbf{v}_{a} = \begin{pmatrix} P_{a} \\ Q_{a} \end{pmatrix} = \begin{pmatrix} P_{1}^{a} \\ \vdots \\ P_{d}^{a} \\ Q^{a} \end{pmatrix} = \widehat{v}_{0}^{a} + \widehat{v}_{1}^{a} + \dots + \widehat{v}_{d}^{a}$$
(9.11)

базиса $\widehat{V}_{\alpha}^{a}=\mathrm{P}_{\alpha}^{a}\widehat{V}=\{\widehat{v}_{0}^{a},\widehat{v}_{1}^{a},\ldots,\widehat{v}_{d}^{a}\}$ из (8.3) будет получаться из вектора Фарея \mathbf{v}_{0} базиса \widehat{V}_{α}^{0} с помощью матрицы Пизо P_{α} из (2.16):

$$\mathbf{v}_a = \mathbf{P}_\alpha^a \mathbf{v}_0 \tag{9.12}$$

согласно формуле (8.3). Следовательно, можем записать

$$\mathbf{v}_{a} = \begin{pmatrix} P_{a} \\ Q_{a} \end{pmatrix} = \mathbf{P}_{\alpha}^{a} \begin{pmatrix} P_{0} \\ Q_{0} \end{pmatrix} \tag{9.13}$$

для всех $a = 0, 1, 2, \dots$ Здесь в правой части равенства

$$P_0 = \begin{pmatrix} P_{01} \\ \vdots \\ P_{0d} \end{pmatrix} + \begin{pmatrix} P_{11} \\ \vdots \\ P_{1d} \end{pmatrix} + \dots + \begin{pmatrix} P_{d1} \\ \vdots \\ P_{dd} \end{pmatrix}$$
(9.14)

— сумма всех вершин начального унимодулярного базисного симплекса \triangle из (3.4) и

$$Q_0 = d + 1 (9.15)$$

Предложение 9.2. Пусть матрица Пизо P_{α} , определенная в (2.16), имеет характеристический многочлен $ch_{P_{\alpha}}(x)$ из (9.7). Тогда справедливы следующие утверждения.

- 1. Для всех $a=0,1,2,\dots$ столбцы $\left(\begin{array}{c}P_a\\Q_a\end{array}\right)$ из (9.13) имеют целые рациональные коэффициенты.
 - 2. Данные столбцы удовлетворяют рекуррентному соотношению

$$\begin{pmatrix} P_{a+d+1} \\ Q_{a+d+1} \end{pmatrix} = b_d \begin{pmatrix} P_{a+d} \\ Q_{a+d} \end{pmatrix} + \dots + b_1 \begin{pmatrix} P_{a+1} \\ Q_{a+1} \end{pmatrix} + b_0 \begin{pmatrix} P_a \\ Q_a \end{pmatrix}$$
(9.16)

 ∂ ля $a = 0, 1, 2, \dots$ с начальными условиями

$$\begin{pmatrix} P_d \\ Q_d \end{pmatrix} = \mathcal{P}_{\alpha}^d \begin{pmatrix} P_0 \\ Q_0 \end{pmatrix}, \dots, \begin{pmatrix} P_1 \\ Q_1 \end{pmatrix} = \mathcal{P}_{\alpha} \begin{pmatrix} P_0 \\ Q_0 \end{pmatrix}, \tag{9.17}$$

задающимися матрицей Пизо \mathbf{P}_{α} и столбцом $\left(\begin{array}{c} P_0 \\ Q_0 \end{array} \right)$ из (9.13)–(9.15).

Доказательство. 1. Целочисленность столбцов $\begin{pmatrix} P_a \\ Q_a \end{pmatrix}$ вытекает непосредственно из свойства целочисленности вершин базисного симплекса \triangle , формулы (9.13) и равенства (9.15).

- 2. Столбцы $\binom{P_a}{Q_a}$ связаны между собою формулой (9.13). Поэтому мы можем применить предложение 9.1, из которого выводим рекуррентное соотношение (9.16) с начальными условиями (9.17). Характеристический многочлен $ch_{P_\alpha}(x)$ в (9.7) имеет целые коэффициенты. Отсюда, (9.16) и (9.17) также следует целочисленность столбцов $\binom{P_a}{Q_a}$.
- **9.4.** Асимптотическое разложение для координат Q_a . Применяя метод, использованный в [14] при доказательстве леммы 9.1, можно доказать следующий результат об асимптотическом поведении последних координат Q_a векторов \mathbf{v}_a из (9.5).

Пемма 9.2. Для координат Q_a имеет место асимптотическое разложение

$$Q_a = k\lambda^a + \mathcal{O}(\lambda_{2\,\text{max}}^a) \tag{9.18}$$

при $a \to +\infty$. Здесь $\lambda > 1$ — единица Пизо (2.18), значение $\lambda_{2,\max}$, удовлетворяющее неравенству $|\lambda_{2,\max}| < 1$, определено равенством (9.4) и коэффициент k > 0 в разложении (9.18) не зависит от a.

9.5. Основная теорема об аппроксимации. В теореме 8.1 было доказано, что r-параллелоэдры \mathbf{T}^a обладают свойством минимальности (8.17) и (8.18). Используя включение (8.18), можно получить оценку скорости приближения точки α рациональными дробями $\frac{P_a}{Q_a}$ в терминах их знаменателей Q_a .

Теорема 9.1. Если $\alpha=(\alpha_1,\dots,\alpha_d)$ – вещественная полная точка степени $\deg(\alpha)=d+1,$ то для любого фиксированного $\theta>0$ существует такая локализованная матрица Пизо P_α из предложения 2.1, что выполняются неравенства

$$\left|\alpha - \frac{P_a}{Q_a}\right| \leqslant \frac{c}{Q_a^{1 + \frac{1}{d} - \theta}} \tag{9.19}$$

для всех $a\geqslant a_{\alpha,\theta}$, где константы $a_{\alpha,\theta}>0$ и $c=c_{\alpha,\theta}>0$ не зависят от a. Здесь подходящие дроби $\frac{P_a}{Q_a}$ вычисляются c помощью рекуррентного соотношения (9.16).

Доказательство. Учитывая включение (8.18), можем записать

$$\left|\alpha - \frac{P_a}{Q_a}\right| \leqslant \frac{\varrho(\mathbf{T}^a)}{Q_a} = \frac{\varrho_a}{Q_a},$$

где a уловлетворяет неравенству $a\geqslant l_{\alpha}(\triangle).$ Отсюда и леммы 9.1 выводим неравенство

$$\left|\alpha - \frac{P_a}{Q_a}\right| \leqslant \frac{c_\alpha \,\lambda_{2,\text{max}}^a}{Q_a}.\tag{9.20}$$

Согласно предложению 1.2 для любого фиксированного $\theta>0$ существует такая локализованная матрица Пизо P_{α} , что выполняются неравенства (1.7). По определению (2.18) имеем $\lambda=\zeta^{\nu}>1$ – единица Пизо (1.4). Поэтому, используя предложение 1.2, оцениваем значение $\lambda_{2,\max}$, определенное в (9.4):

$$\lambda_{2,\max} = \max_{2 \leqslant i \leqslant d+1} |\lambda^{(i)}| \leqslant \lambda^{-1/d+\theta}$$
(9.21)

с любым фиксированным показателем $\theta > 0$. Теперь применяя (9.20), лемму 9.2 и формулу (9.21), приходим к нужному неравенству (9.19).

Замечание 9.1. Описанный в теореме 9.1 способ нахождения наилучших приближений (9.19) алгебраической точки $\alpha = (\alpha_1, \dots, \alpha_d)$ через рациональные дроби $\frac{P_a}{Q_a} \in \mathbb{Q}^d$, вычисляемые с помощью рекуррентного соотношения (9.16), представляет собой тот самый *ядерно-модульный алгоритм* (КМ-алгоритм), речь о котором шла во введении (0.1).

9.6. Точки Фарея. Точку $\frac{P_a}{Q^a}=\left(\frac{P_1^a}{Q^a},\dots,\frac{P_d^a}{Q^a}\right)$ назовем точкой Фарея r-параллелоэдра \mathbf{T}^a по аналогии с [1]. Она вычисляется по коэффициентам точки $\mathbf{v}^a=P_a-Q_a\alpha$. Согласно (8.19) точка \mathbf{v}^a получается как сумма вершин параллелоэдра \mathbf{T}^a , отвечающих звезде \mathbf{r}^a из (8.6). Если перейти к неоднородной записи

$$\frac{\mathbf{v}^a}{Q_a} = \frac{P_a}{Q_a} - \alpha,\tag{9.22}$$

то выделяется дробь $\frac{P_a}{Q_a}$ и аппроксимируемая ею точка α . В [1] вместо параллелоэдров \mathbf{T}^a используются симплексы \mathbf{s}^a с рациональными вершинами, суммы Фарея которых есть точки Фарея $\frac{P_a}{Q_a}$ – подходящие дроби в неравнствах (9.19). Напомним, что операция сложения Фарея обычных дробей определяется следующим образом $\frac{a}{b} + \frac{c}{d} = \frac{a+b}{c+d}$ (см., например, [3]).

При переходе от параллелоэдров \mathbf{T}^a к симплексам \mathbf{s}^a или в алгебраческих обозначениях (9.22) свойство минимальности (8.17), (8.18) переформулируется следующим образом. Точка $\frac{P_a}{Q_a}$ является единственной рациональной точкой из \mathbb{Q}^d , содержащейся внутри симплекса \mathbf{s}^s :

$$\frac{P_a}{Q_a} \in \mathbf{s}^{a \, \text{int}}$$
 со знаменателем $1 \leqslant Q_a \leqslant \mathbf{m}^a$, (9.23)

где \mathbf{m}^a – порядок симплекса \mathbf{s}^s , по определению равный порядку (8.16) параллелоэдра \mathbf{T}^a_α . Точки Фарея $\frac{P_a}{Q_a}$ представляют собою многомерные подходящие дроби, вычисляемые с помощью рекуррентного соотношения (9.16). Для них, как и в одномерном случае (см., например, [2]), выполняется свойство минимальности (8.17), (8.18) или эквивалентное ему свойство (9.23).

9.7. Диофантова экспонента алгебраических точек. Диофантову экспоненту для вещественной точки $\alpha \in \mathbb{R}^d$ определим как супремум показателей Θ , для которых неравенство

$$\left|\alpha - \frac{p_a}{q_a}\right| \leqslant \frac{1}{q_a^{1+\Theta}} \tag{9.24}$$

имеет беконечно много решений $p_a \in \mathbb{Z}^d$ и $q_a = 1, 2, 3, \dots$

Следствие 9.1. Для вещественной полной точки $\alpha = (\alpha_1, \dots, \alpha_d)$ степени $\deg(\alpha) = d+1$ диофантова экспонента Θ из (9.24) равна

$$\Theta = \frac{1}{d}.\tag{9.25}$$

Доказательство. Неравенство $\Theta \leqslant \frac{1}{d}$ хорошо известно (см., например, [19], гл. V-3). С другой стороны, оценка снизу $\Theta \geqslant \frac{1}{d} - \theta$, где $\theta > 0$ – любое фиксированное число, получается из теоремы 9.1, что приводит к равенству (9.25).

Список литературы

- 1. В. Г. Журавлев, Симплекс-модульный алгоритм разложения алгебраических чисел в многомерные цепные дроби. Зап. науч. семин. ПОМИ **449** (2016), 168–195.
- 2. А. Я. Хинчин, Цепные дроби. 4-е изд. М., Наука, 1978.
- 3. И. М. Виноградов, Основы теории чисел. 5-е изд. М., Наука, 1972.
- 4. В. Г. Журавлев, Дифференцирование индуцированных разбиений тора и многомерные приближения алгебраических чисел. — Зап. науч. семин. ПОМИ **445** (2016), 33–92.

- 5. В. Г. Журавлев, Симплекс-ядерный алгоритм разложения в многомерные цепные дроби. Современные проблемы математики, МИАН **299** (2017), 1–20.
- V. Brun, Algorithmes euclidiens pour trois et quatre nombres. In Treizieme congres des mathematiciens scandinaves, tenu a Helsinki 18-23 aout (1957), 45-64. Mercators Tryckeri, Helsinki, 1958.
- E. S. Selmer, Continued fractions in several dimensions. Nordisk Nat. Tidskr. 9 (1961), 37–43.
- A. Nogueira, The three-dimensional Poincare continued fraction algorithm. Israel J. Math. 90, No. 1-3 (1995), 373-401.
- 9. F. Schweiger, Multidimensional Continued Fraction. Oxford Univ. Press, New York,
- V. Berthe, S. Labbe, Factor complexity of S-adic words generated by the arnoux-rauzy-poincare algorithm. — Advances in Applied Mathematics 63 (2015), 90–130.
- P. Arnoux, S. Labbe, On some symmetric multidimensional continued fraction algorithms. — arXiv:1508.07814, August 2015.
- 12. J. Cassaigne, Un algorithme de fractions continues de complexite lineaire. October 2015. DynA3S meeting, LIAFA, Paris, October 12th, 2015.
- 13. З. И. Боревич, И. Р. Шафаревич, Теория чисел. Второе изд. М.: Наука, 1972.
- 14. В. Г. Журавлев, Локализованные единицы Пизо и совместные приближения алгебраических чисел. Зап. науч. семин. ПОМИ 458 (2017), 104–134.
- 15. В. Г. Журавлев, Перекладывающиеся торические развертки и множества ограниченного остатка. Зап. науч. семин. ПОМИ **392** (2011), 95–145.
- 16. Е. С. Федоров, Начала учения о фигурах. М., 1953.
- 17. Г. Ф. Вороной, Собрание сочинений, том 2. Киев, 1952.
- 18. В. Г. Журавлев, Унимодулярность индуцированных разбиений тора. Зап. науч. семин. ПОМИ **469** (2018), 96–137.
- 19. Дж. В. С. Касселс, Введение в теорию диофантовых приближений, М.: Из-во иностранной литературы, 1961.

Zhuravlev V. G. The best approximation of algebraic numbers by multidimensional continued fractions.

A karyon-modular algorithm (\mathcal{KM} -algorithm) is proposed for decomposition of algebraic numbers $\alpha = (\alpha_1, \dots, \alpha_d)$ from \mathbb{R}^d to multidimensional continued fractions, that are a sequence of rational numbers

$$\frac{P_a}{Q_a} = \left(\frac{P_1^a}{Q^a}, \dots, \frac{P_d^a}{Q^a}\right), \qquad a = 1, 2, 3, \dots,$$

from \mathbb{Q}^d with numerators $P_1^a,\ldots,P_d^a\in\mathbb{Z}$ and the common denominator $Q^a=1,2,3,\ldots$ The \mathcal{KM} -algorithm belongs to a class of tuning algorithms. It is based on the construction of localized Pisot units $\zeta>1$,

for which the moduli of all conjugates $\zeta^{(i)} \neq \zeta$ are contained in the θ -neighbourhood of the number $\zeta^{-1/d}$, where the parameter $\theta>0$ can take an arbitrary fixed value.

It is proved that if α is a real algebraic point of degree $\deg(\alpha) = d+1$, then \mathcal{KM} - algorithm allows to obtain the following approximation

$$\left|\alpha - \frac{P_a}{Q_a}\right| \leqslant \frac{c}{Q_a^{1 + \frac{1}{d} - \theta}}$$

for all $a \geqslant a_{\alpha,\theta}$, where the constants $a_{\alpha,\theta} > 0$ and $c = c_{\alpha,\theta} > 0$ do not depend on $a = 1, 2, 3, \ldots$ and the convergent fractions $\frac{P_a}{Q_a}$ are calculated by means of some recurrence relation with constant coefficients determined by the choice of the localized units ζ .

Владимирский государственный университет улица Строителей 11, 600024, Владимир, Россия

 $E ext{-}mail:$ vzhuravlev@mail.ru

Поступило 18 апреля 2019 г.