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N. Vavilov

COMMUTATORS OF CONGRUENCE SUBGROUPS IN
THE ARITHMETIC CASE

ABSTRACT. In our joint paper with Alexei Stepanov it was estab-
lished that for any two comaximal ideals A and B of a commutative
ring R, A+ B = R, and any n > 3 one has [E(n, R, A), E(n, R, B)] =
E(n, R, AB). Alec Mason and Wilson Stothers constructed coun-
terexamples that show that the above equality may fail when A
and B are not comaximal, even for such nice rings as Z[i|. In the
present note, we establish a rather striking result that this equal-
ity, and thus also the stronger equality [GL(n, R, A), GL(n, R, B)] =
E(n, R, AB), do hold when R is a Dedekind ring of arithmetic type
with infinite multiplicative group. The proof is a blend of elemen-
tary calculations in the spirit of the previous papers by Wilberd van
der Kallen, Roozbeh Hazrat, Zuhong Zhang, Alexei Stepanov, and
the author, and an explicit computation of multirelative SK; from
my 1982 paper, which in turn relied on very deep arithmetical re-
sults by Jean-Pierre Serre, and Leonid Vaserstein (as corrected by
Armin Leutbecher and Bernhard Liehl).

To my dear friend and colleague Alexander Generalov,
with admiration and gratitude

§1. INTRODUCTION

Let R be a commutative ring with 1, G = GL(n, R) be the general linear
group of degree n > 3 over R. For an ideal I<IR denote by E(n, I) the corre-
sponding elementary subgroup, generated by the elementary transvections
of level I:

E(n,I) = (tij(a),a € I,1 <i#j<n).
The corresponding relative elementary subgroup F(n, R, I) is defined as
the normal closure of E(n, I) in the absolute elementary subgroup E(n, R).
Further, consider the reduction homomorphism

pr : GL(n, R) — GL(n,R/I)
Key words and phrases: general linear group, congruence subgroups, elementary

subgroups, standard commutator formulae, Dedekind rings of arithmetic type.
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modulo I. By definition, the principal congruence subgroup GL(n, R, I) is
the kernel of p;. In other words, GL(n, R,I) consists of all matrices g €
GL(n, R) congruent to e modulo I. Further, the full congruence subgroup
C(n,R,I) is the full pre-image of the centre of GL(n, R/I) with respect
to pr. In other words, C(n, R,I) consists of all matrices g € GL(n, R)
congruent to a scalar matrix modulo I.

A decade ago Alexei Stepanov and myself obtained the following re-
sults, the birelative standard commutator formula, Theorem 4 of [47], and
precise computation of the birelative elementary commutator subgroup in
the special case of comaximal ideals, Theorem 5 of [47].

Theorem A. Let A and B be two ideals of a commutative ring R and
n > 3. Then

[E(Tl, R, A)a C(Tl, R, B)] = [E(na R, A)a E(Tl, R, B)]

Theorem B. Let A and B be two comazimal ideals of a commutative ring
R, A+ B=R, andn > 3. Then

[E(n,R,A),C(n,R,B)] = E(n,R, AB).

These results, and the preceding result by Hong You [50]! unified and
generalised a great number of keynote results by Bass, Mason and Stothers,
Suslin, Vaserstein, Borewicz and myself, and many others, see, in particular
[2,4,24,25,37,41] and a complete bibliography of early papers in [8,12,48].
These results were then expanded in several directions by Stepanov and
myself, Hazrat and Zuhong Zhang, see [9-11,13-19,31-34,45-47,49|.

One of our starting points in that work was the following significant
result by Mason and Stothers, [25], Theorem 3.6 and Corollary 3.9, or [24]
Theorem 1.3, which established a stronger commutator formula, however
not for all commutative rings, but at the stable level. One can find an easy
modern proof in [17], Theorem 13.

Theorem C. Let A and B be two ideals of a commutative ring R and
n > max(sr(R) + 1,3). Then

[GL(n,R, A),GL(n,R,B)} = [E(n,R,A),E(n,R,B)]
In the special case of comaximal ideals in a Dedekind ring of arithmetic

type, this result can be made even more precise, see [25], Theorem 5.1

1Of which we were not aware at the time of writing [18,46, 47|, see the discussion
in [14].
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Theorem D. Let A and B be two comazimal ideals of a Dedekind ring of
arithmetic type R = Og, A+ B =R andn > 3. Then

[GL(n, R, A),GL(n, R, B)] = E(n, R, AB).

The proof of this last result relied on the full force of the work by Bass,
Milnor and Serre [3] on the congruence subgroup problem. Also, Mason
and Stothers gave examples which show that the equality in this theorem
— and even the weaker equality in our Theorem 2 — may fail when A and
B are not comaximal.

The simplest such counter-example is A = B = (1 + i)3R, where
R = Z[i] in the ring of Gaussian integers. In this case the relative el-
ementary subgroup E(n, R, A?) in the right hand side has index 2 in
[E(n,R,A),E(n, R, A)], see [24,25] and [9,17]. A similar counter-example
A = B = 2(1 4+ 2w)R can be constructed also in the ring R = Z[w] of
Eisensteinian integers.

Quite amazingly, in the arithmetic case these are essentially the only
such counter-examples! Namely, in the case of Dedekind rings of arithmetic
type R = Og with infinite multiplicative group (or, what is the same,
|S| > 2) the claim of Theorem 2 remains valid for all pairs of ideals.

Theorem 1. Let A and B be two ideals of a Dedekind ring of arithmetic
type R = Og. Assume that the multiplicative group R* is infinite and that
n > 3. Then

[GL(n, R, A),GL(n, R, B)| = E(n, R, AB).

Here, again the main difficulty was not to write up the proof, but simply
to convince oneself that such a theorem could hold as stated. The proof
proceeds as follows. First of all, we invoke the above Theorem C and the
following recent unrelativisation result, [45], Theorem 2 (or more general
[49], Theorem 1).

Theorem E. Let A and B be two ideals of a commutative ring R, n > 3.
Then
[E(n,A),E(n,B)} = [E(n,R7 A),E(n,R,B)].

In view of these two results, it only remains to to prove the following.

Theorem 2. Let A and B be two ideals of a Dedekind ring of arithmetic
type R = Og. Assume that the multiplicative group R* is infinite and that
n > 3. Then

[E(n,A),E(n,B)} = E(n,R, AB).
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Let us mention the following important special case, where the proof is
quite a bit easier, which I noticed first, looking at the papers [27,28|.

Corollary. Let I be an ideal of a Dedekind ring of arithmetic type R = Og.
Assume that the multiplicative group R* is infinite and that n > 3. Then

[E(n,I),E(n,I)] = E(n,R,I?).

Then, trying to reconcile it with Theorem B, I inevitably arrived the
above results.

The rest of this paper is dedicated to the proof of Theorem 2. It consists
of two parts. First, we relate the left hand side with another elementary
subgroup defined in terms of ideals A and B, namely with

EE(”; A, B) = <U(Tl, A)a U~ (Tl, B)>a

where U(n, A) and U~ (n, B) are the upper and lower unitriangular sub-
groups, with parameters in A and B, respectively. See §§2, 3 for notation
and precise definitions of these and further relative and birelative sub-
groups. (Observe that EE(n,I,I) = E(n,I).)

This is done by elementary but somewhat bizarre calculations express-
ing all elementary generators of [E(n,A), E(n,B)] in terms of some of
them, & la Wilberd van der Kallen [20], Lemma 2.2, or its extension to all
Chevalley groups in the work of Alexei Stepanov [31], Theorem 3.4, etc.
However, since now we are interested in the case of two ideals, we have a
further type of generators to deal with, so that our calculations are even
fancier than that, see §4. In particular, there I prove the following result,
which is the main new step towards the proof of Theorem 2.

Theorem 3. Let A and B be two ideals of a commutative ring R and
n > 3. Then
[E(n,A),E(n,B)] < EE(n, A, B).

So far, all results were general, and apply to all commutative rings. In
§ 5 the fun starts. Namely, let R = Og be a Dedekind ring of arithmetic
type and let SF(n, A, B) be the minimal congruence subgroup in SL(n, R)
containing EE(n, A, B). It can be described as follows. First, let G(n, A, B)
be the subgroup defined by congruences g;; € A for ¢ < j and g;; € B
for ¢ > j. Inside G(n, A, B) the subgroup F(n, A, B) is defined by the
congruences g; = 1(mod AB) and SF(n, A, B) is its intersection with
SL(n, R), see § 3 for details. Then one of the main results of my ancient
paper [44], Theorem 2, gives in particular the following computation of the



COMMUTATORS OF CONGRUENCE SUBGROUPS 9

birelative SK; which, combined with the above results, implies Theorem
2.

Theorem F. Let A and B be two ideals of a Dedekind ring of arithmetic
type R = Og. Assume that the multiplicative group R* is infinite and that
n > 3. Then

SF(n, A, B)/ EE(n, A, B) = SKy (R, AB).

The proof of this result in [43,44] depended on deep arithmetic results
pertaining to the case of SL(2, R), due to Serre, Vaserstein, Leutbecher and
Liehl [22,23,30,40]. In fact, the main results of [44], were much more general
than that. They applied to the elementary subgroup E(c) corresponding
to any net o = (0y;), 1 < ¢,j < n, of non-zero ideals o;; I R.

Finally, in § 6 we collect some further related observations, and state
some unsolved problems.

§2. NOTATION

For two subgroups F, H < G, we denote by [F, H] their mutual commu-
tator subgroup spanned by all commutators [f, k], where f € F, h € H.
Observe that our commutators are always left-normed, [z, y] = zyz 1y~ L.
The double commutator [[z,y], z] will be denoted simply by [z, vy, z]. Fur-

ther, *y = zyx~! denotes the left conjugate of y by z. In the sequel we

repeatedly use obvious commutator identities such as [y, z] = [z,y] !, or
[xy, z] = *ly, 2] [z, z] and [z, yz] = [z, y]-Y]z, 2], mostly without any specific
reference.

Let, as in the introduction, R be any commutative ring with 1 and
GL(n, R) be the corresponding general linear group of degree n > 2. As
usual, e denotes the identity matrix and e;; is a standard matrix unit. For
c € Rand 1 <i# j <n, wedenote by t;;(c) = e+ ce;j, the corresponding
[elementary] transvection. A matrix g € GL(n, R) is written as g = (gs5),
1 < 4,5 < n, where g;; is its entry in the position (7,7). Entries of the
inverse matrix g~' = (g;), 1 < ,j < n, are denoted by gj;.

Let U(n,R) and U~ (n, R) be the groups of upper unitriangular and
lower unitriangular matrices, respectively. These are unipotent radicals of
the standard Borel subgroup, and its opposite Borel subgroup. They can
be defined either by equations

U(n, R) = {g = (9;) € GL(n, R) | gi;; = 0,i > j, gii = 1},
U™ (n,R) = {g = (gz‘j) € GL(n, R) | gij =0,i < j, gii = 1}’
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or by generators

U(Tl,R) = <tij(c); 1

N

i<j<n, cER),
U™ (n,R) = (tij(c), 1<j<i<n, cER).

Clearly, E(n,R) = (U(n,R),U" (n, R)).

Let I <R be an ideal of R. Some of the relative subgroups of level I were
already defined in the introduction. In particular, the unrelative elemen-
tary group E(n,I) and the relative elementary group E(n, R, I) of level I.
One denotes z;;(a,c) = %41(°)t;;(a). The following result on generation of
E(n,R,I) as a subgroup was first stated in [39,41,42].

Lemma 1. Let I < R be an ideal of a commutative ring, n > 3. Then
E(n,R,I) = <zij(a,c), 1<i#j<n, a€l, ce R).

In terms of reduction modulo I we defined there the principal and the
full congruence subgroups of level I:

GL(n,R,I) = {g = (9i;) € GL(n, R) | g;; = 0 (mod I),
C(n,R,I) = {g = (g955) € GL(n,R) | g; = 0 (mod I),
gii = gj; (mod I), i?'éja}
Further, let SL(n, R) be the special linear group of degree n over R,
consisting of all matrices ¢ € GL(n, R) with det(g) = 1. We denote by

SL(n, R, I) and SC(n, R, I) the corresponding principal and full congruence
subgroups,

SL(n, R,I) = GL(n, R, )NSL(n, R), SC(n,R,I) = C(n,R,I)nSL(n, R).

Suslin’s normality theorem (the special case of Theorem A where B =
R) asserts that for F(n, R,I) < GL(n, R), whenever n > 3. In particular,
we can define the quotients

Ki(n,R,I)=GL(n,R,I)/E(n,R,I),
SKi(n,R,I) =SL(n,R,I)/E(n,R,I).

The same notation will be used for n = 2, but in this case these are not
groups, in general, just pointed sets.
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§3. Groups EE(n, A, B) AND F(n, A, B)

Let A, B <R be two ideals of a commutative ring R. We define the two
following congruence subgroups modulo (A, B). Both of them consist of
matrices, whose entries above the principal diagonal belong to A, whereas
the entries below the principal diagonal belong to B. The difference is that
for the first one of them the diagonal entries are congruent to 1 modulo
the product AB, whereas for the second one no conditions are imposed on
the diagonal entries:

F(naAvB) = {g = (gij) € GL(TL,R) | Gij = O(mOd A)v 1< 7,
gij = 0(mod B), ¢ > j, gi;i = 1(mod AB) },

G(n,A,B) = {g = (g9ij) € GL(n,R) | g;j =0(mod A), i < j,
gij =0 (mod B), i > j}.

In this context, we use the prefix “S” in the same meaning as above, to
denote intersetcions with the corresponding special linear groups:

SF(n, A, B) = F(n, A, B) N SL(n, R),
SG(n, A, B) = G(n, A, B) N SL(n, R).
In the special case, where A = B = I the above congruence subgroups

boil down to the true congruence subgroup F(n,I) of level I and the brim-
ming congruence subgroup G(n,I) of level T

F(n,I) ={g=(g:;) €GL(n, R) | g;;=0(mod I), i#j, gis=1(mod I*)},
G(n,I) = {g = (9i5) € GL(n,R) | gij =0 (mod I), i # j}.

Observe that F'(n, I) is sometimes called the unrelativised congruence sub-
group and denoted by GL(n,I). On the other hand (following Tits [39])
Nica [28] uses the notation F'(n, R, I) to denote E(n,T).

Further, set

U(n,I)=U(n,R)NGL(n,R,I), U (n,I)=U"(n,R)NGL(n,R,I).
Clearly,
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Now, let A and B be two ideals of R. We introduce the main protagonist
of all subsequent calculations:

EE(n, A, B) = (U(n, A), U (n, B)).

This is a straightforward generalisation of the unrelativised elementary
subgroup E(n, I). Indeed, when A = B = I one gets EE(n,I,I) = E(n,I).

In the proof of Theorem 1 we need the following lemma. Actually, when
R is a Dedekind ring and n > 3 it immediately follows from the charac-
terisation of F(n, A, B) as the smallest congruence subgroup containing
EE(n, A, B). But since it is so easy also in the general case, we reproduce
the proof.

Lemma 2. Let A and B be two ideals of a commutative ring R, n > 2.
Then

F(n, A, B) = EE(n, A, B) - GL(n, R, AB).

Proof. Let g = (gi5) € F(n, A, B). First, we clear its entries above the
principal diagonal by elementary transformations from EE(n, A, B). With
this end form the matrix u = (u;;) by setting u;; = g;; for i < j, and
u;j = d;; otherwise. Clearly, by the very definition of F(n, A, B) one has
u € U(n,A) <EE(n, A, B) and g = u (mod B).

Thus, gu=! € F(n, A, B) N GL(n, R, B) and now we can do the same
with the entries below the principal diagonal. Form the matrix v = (v;j)
by setting v;; = (gu');; for i > j, and v;; = §;; otherwise. Clearly, by
the very definition of F(n, A, B) one has v € U™ (n,B) < EE(n, A, B)
and gu~! = v (mod A). Since already gu™! = v = e(mod B), one has
gu~lv™! € GL(n, R, AB), as claimed. O

§4. PROOF OF THEOREM 3

Now, we are starting to compare the groups [E(n, A), E(n,B)] and
EE(n, A, B). Mostly, the corresponding calculations are already contained
in the previous papers by Wilberd van der Kallen, Roozbeh Hazrat, Alexei
Stepanov, Zuhong Zhang, and myself.

The following result is [17], Lemma 1A. However, what we need for the
sequel, is not this statement, but the first paragraph of its proof.

Lemma 3. Let A and B be two ideals of a commutative ring R, n > 3.
Then

E(n,R,AB) < [E(n7 A), E(n, B)}
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The next result can be extracted from the proof of [45], Theorem 1, but
was first stated in this form as the Main Lemma of [49], in the context of
Chevalley groups.

Lemma 4. Let A and B be two ideals of a commutative ring R, n > 3.
Then as a group [E(n, A), E(n, B)] is generated by E(n, R, AB) and the
elementary commutators [ti;(a),t;;(b)], where 1 < i # j < n, a € A,
be B.

Let us state a result by Wilberd van der Kallen, [20], Lemma 2.2.
Morally, it is a trickier and mightier version of Lemma 1, with a smaller
set of generators.

Lemma 5. Let I < R be an ideal of a commutative ring, n > 3. Then
as a subgroup E(n, R,I) is generated by E(n,I) and zn(a,c), for a fized
1<h<n,and alli#h,acl, ceR.

Alternatively, one could take as extra generators zp;(a, ¢), for a fixed 1 <
h < n, and all j # h. This lemma served as an inspiration for Stepanov’s
much more general results, see for instance [33], Theorem 2.2. Of course,
Stepanov proves such similar results for all Chevalley groups, and not
just for U and U™, as we need, or for U; and U; , as van der Kallen
does, but rather for the unipotent radicals Up and U, of an arbitrary
parabolic subgroup P and its opposite. Besides, when 2 is not invertible
in R, symplectic groups require some additional care, and some of the
statements have to be modified in this case.

The following lemma is a typical result of Stepanov’s “elementary cal-
culus”, developed with this end, see [31], Lemma 2.1.

Lemma 6. Let A and B be two ideals of a commutative ring R, n > 3.
Then

E(n,AB) < EE(n, A, B).

For actual calculations it is usually more expedite to use it in the fol-
lowing slightly more precise form [33], Lemma 2.1.

Lemma 7. Let A and B be two ideals of a commutative ring R, n > 3.
Then

E(n,AB) < [U(n,A),U"(n,B)] -U(n,AB) - U~ (n, AB).

Now, we can summarise Lemmas 3, 5 and 6.
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Lemma 8. Let A and B be two ideals of a commutative ring R, n > 3.
Then
E(n,R,AB) < EE(n, A, B).

Proof. From Lemma 6 we already know that E(n, AB) < EE(n, A, B).
Next, we wish to show that z;;(ab,c), where 1 <i# j<n,a€ A, be B,
¢ € R, also belong to EE(n, A, B).

Assume that (i,5) # (1,n),(n,1). Then there exists either h > 4,5 or
h <i,j. In the first case express t;;(ab) as

tij(ab) = [tih(a),thj(b)] (S [U(H,A), U_(’I'L,B)]
Similarly, in the second case express one has
tij(ab) = [tih(b),th]’(a)} € [Ui(’ﬂ,,B), U(Tl,A)]

Up to switching the ideals A and B, we can assume, we are in the first
case. Then, clearly,

zij(ab, ¢) = 935 (ab) = 2 [tan(a), 1 ()] = [ tan(a), 5 Ot (0)]
Clearly, the commutator on the right hand side again belongs to
[U(n, A),U"(n, B)] <EE(n, 4, B).

This shows that all of the above relative elementary generators z;;(ab, ¢),
apart maybe from z1,(ab,c) and z,1(ab,c), also belong to EE(n, A, B).
Anyway, there are enough of those inside EE(n, A, B) to be able to apply
Lemma 4: just take any h # 1,n, then all z;,(ab, ¢) belong to EE(n, A, B).

O

Now, we are all set to finish the proof of Theorem 3.

Proof. By Lemma 8, the group EE(n, A, B) contains E(n, R, AB). Also,
by the very definition, EE(n, A, B) contains half of the elementary com-
mutators, namely, those of the form [t;;(a),t;;(b)], where ¢ < j, a € A,
be B.

By Lemma 3 it only remains to prove that the other half of the elemen-
tary commutators, those of the form [t;;(a),t;;(b)], where i > j, a € A,
b € B, also belong to EE(n, A, B). This is done by the switching trick
standard in the works on bounded generation (see, for instance, [5,29,38]),
when by elementary moves the entries a and b are interchanged by rolling
them over to a different position. A very similar calculation is also hidden
inside the proof of the main Theorem in [21], and it would be interesting
to understand the common source of this.
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Namely, rewrite the above problematic elementary commutator with
1> 7 as

2= [tij(a), ;i (0)] = tij(a) - 7" Otij(—a) = tij(a) - 7O [tin(a), tn; (~1)].

Expanding the conjugation by t;;(b), we see that

z = ti(a)- [ Otin(a), Oty (—1)] = tij(a)-[tjn(ab)tin(a), tny(—1)tni(b)].

Now, the first factor t;,(ab) of the first argument in this last commu-
tator already belongs to the group E(n, R, AB) which is contained in
EE(n, A, B) by the previous lemma. Since E(n, R, AB) is by the very def-
inition normal in the absolute elementary group E(n,R), in the sequel
we can argue modulo F(n, R, AB): at the moment, we see anything from
E(n,R, AB), we can drop it, since pulling it out from our expression to
the right, we still get something from E(n, R, AB) < EE(n, A, B).
Thus,

z =ti5(a) - [tin(a), thj (—1)tni(b)] (mod E(n, R, AB)),

and it remains to satisfy ourselves that this last expression belongs to
EE(n, A, B). Using multiplicativity of the commutator w.r.t. the second
argument, we see that

z=ty(a) - [tin(a), tny(=1)] - 1D [tin (@), thi(b)] (mod E(n, R, AB)).

Now, the first two factors of the last expression cancel, and if we have
chosen h wisely, [tin(a),tn;(b)] belongs to EE(n, A, B) by the very defini-
tion. The only case, when it cannot be done is ¢ = n, so that you cannot
roll z forwards. But in that case we would have started rewriting the com-
mutator z differently, as

2= [tija), tj(0)] = 9D t5i(b) - t5i(=b) = " [t (b), ti(1)] - £5a(~b),

to eventually roll it over backwards.
But since [tin(a), thi(b)] already belongs to GL(n, R, AB)NEE(n, A, B),
conjugation by t5;(—1) does not change anything, since

W tin (), thi(D)] = tij(—a®b)tn;(—ab) - [tin(a), thi()]

again belongs to EE(n, A, B), as claimed. O
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§5. PROOF OF THEOREM 2

So far, all results pertained to all commutative rings. However, there
is no hope to explicitly compute the values of Ki-functors, or the mutual
commutator subgroups [E(n, A), E(n, B)] in similar generality. Starting
from this point, we assume that R = Og is a Dedekind ring of arithmetic
type.

Let K be a global field, i. e. a finite extension either of Q, the number
case, or of F,(t), the function case. Further, let S be a finite set of places
(non-equivalent valuations) of K, which contains all Archimedian places in
the number case. For a non-Archimedian valuation p of K we denote by v,
the corresponding exponent. As usual, R = Og denotes the ring consisting
of € K such that v,(x) > 0 for all valuations p of K that do not belong
to S. Such a ring is called Dedekind ring of arithmetic type determined by
the set of places S of the field K. In the number case they are also called
Hasse domains. By Dirichlet’s unit theorem, the multiplicative group O%
of Og is infinite if and only if |S| > 2.

Another important auxiliary result is the following normality theorem,
which is a very special case of [44], Theorem 1.

Lemma 9. Let A and B be two ideals of a Dedekind ring of arithmetic
type R = Og. Assume that the multiplicative group R* is infinite and that
n > 3. Then EE(n, A, B) is normal in G(n, A, B).

Now, we are in position to finish the proof of Theorem 2.

Combining Lemma 2, Lemma 8 and Lemma 9, we see that there is a
surjective homomorphism

SKi(n, R, AB)=SL(n, R, AB)/E(n, R, AB)—SF(n, A, B)/ EE(n, A, B).

On the other hand, since SK;(n, R, AB) are finite cyclic groups by [3],
Theorem F implies this is an isomorphism, or, what is the same, that

SL(n, R, AB) N EE(n, A, B) = E(n, R, AB),

On the other hand, by Lemma 3 the relative commutator subgroup
[E(n,A), E(n, B)] sits in the sandwich of level AB,

E(n,R,AB) < [E(n,A), E(n, B)] < SL(n, R, AB),
and it remains to compare it with Theorem 3, which asserts that

[E(n,A), E(n, B)] < EE(n, A, B).
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It follows that
[E(n,A), E(n,B)] < SL(n,R,AB)NEE(n, A, B) = E(n, R, AB).

Combining the last inclusions we see that [F(n, A), E(n, B)]=FE(n, R, AB)
as claimed.
Theorem 1 is simply a conjunction of Theorems C, D and 2.

§6. FINAL REMARKS

As we already mentioned in the introduction, our main results fail when
R is the ring of integers of a quadratic imaginary field. However, it should
be very easy to verify them for SL(n,Z), n > 3. In the special case A =
B =TI this is indeed done by Jens Mennicke [27] and Bogdan Nica [28], see
also [36]. They prove that in this case F'(n,I) = E(n, I), which amounts to
the positive solution of the congruence subgroup problem. In our situation
of a Dedekind ring of arithmetic type R with infinite multiplicative group
one has F(n,I)/E(n,I) 2 SK;(n, R, I?), for n = 2 by Vaserstein [40] and
for n > 3 by myself [44].

It would be natural to try to generalise these results to other groups.
This is not quite as trivial as it seems, since in most cases many of the
preliminary results are not yet there.

Problem 1. Generalise results of the present paper to Chevalley groups.

It seems that for Theorem 3 such a generalisation would be mostly an
exercise. Most of the requisite commutator calculus was already developed
in our joint papers with Roozbeh Hazrat and Zuhong Zhang [14,15,49],
whereas the elementary calculus at the level of unipotent radicals of par-
abolic subgroups can be found in the papers by Alexei Stepanov [31-34].
Theorem E is established in [15,49] and after that it would take 3-4 pages
of calculations to prove an analogue of Theorem 3 in this generality.

On the other hand, I am not aware of a full-scale analogue of Theorem
C in such generality (however, for small dimensional rings it should mostly
follow from the general commutator formula, see [34]). Most importantly,
even to establish Theorem 2 one has to first prove an analogue of Theorem
F. For Dedekind rings most of the necessary stability results were already
established in [3,26]. But there are some complications in the symplec-
tic case. In exactly the same way as in [44] one can easily prove that the
2/-parts of the occurring groups are isomorphic. But establishing isomor-
phism of the 2-parts would require somewhat more detailed calculations
in Sp(4, R).
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As we know from the work of Vaserstein and others [22,23,40], for
Dedekind rings of arithmetic type with infinite multiplicative group the
isomorphism

F(2,A,B)/EE(2, A, B) = SK, (2, R, AB)

holds already for n = 2. Nevertheless, it would be extremely difficult to
fully generalise the main results of the present paper to this case. In fact,
computation of commutators in SLs over rings becomes quite tricky in
the presence of residue fields of 2 or 3 elements. The peculiarities of the
SLo case are discussed in a great number of papers, notably in the very
profound and intricate papers by Douglas Costa and Gordon Keller, see,
for instance, [6] and especially [7], which expressly addresses the arithmetic
case.

Let us state another question that naturally suggests itself, a generali-
sation of Lemma 9.

Problem 2. Let A and B be two ideals of a commutative ring R, n > 3.
Prove that EE(n, A, B) is normal in G(n, A, B).

It is essentially a minor variation of the (morally) much more general [4],
Theorem 3. It seems that is should immediately follow from Suslin’s fac-
torisation [37], in the form it was used by Zenon Borewicz and myself [4],
§ 7, compare also [1]. But it is not the case, some of the factors v (4, j), in the
notation of [4], do not obviously belong to EE(n, A, B). In [4] these recal-
citrant factors were subdued by stipulating that the elementary subgroup
E(o) was major: for each index i there were two other distinct indices
J, h, both of them distinct from 4, such that F (o) contained all elementary
transvections from the copy of SL(3, R) in the rows and columns i, j, h, not
just the ones with parameters in ideals. The special case A = B = I of the
problem was solved by Nica [28], Theorem 2. To supress these obstinate
factors, he rolls them over to another position, in essentially the same way
as above, towards the very end of the proof of Theorem 3. However, now
the problem is that by doing so we also switch the ideals A and B.

Let us mention another possible generalisation. Let P be a proper stan-
dard parabolic subgroup of GL(n,R). We can define the corresponding
subgroup of EE(n, A, B) as follows

EEp(n, A, B) = (Up(A),Up (B)),
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where Up(A) and Uy (B) are the intersections of U(n, A) and U~ (n, B)
with the unipotent radicals Up and U of P and its opposite standard par-
abolic P~ respectively. In the definition of EE(n, A, B) itself P = B(n, R)
is the standard Borel subgroup. However, in many cases it is technically
much more expedient to work with the maximal standard parabolics in-
stead.

Problem 3. Let A and B be two ideals of a commutative ring R, and P be
a standard parabolic subgroup of GL(n,R), n > 3. Generalise Theorem 3
and other related results from EE(n, A, B) to EEp(n, A, B).

As we have already mentioned, some of the requisite preliminary facts
were already established by Stepanov in [31-33], in a more general context.
After that it should be more or less straightforward to carry over to this
more general setting also the calculations in § 4.

Observe, that EEp(n, A, B) could be used to prove the main results
of the present paper instead of EE(n, A, B). The corresponding minimal
congruence subgroup is SFp(n, A, B) defined by the following congruences
on its matrices g = (g;;). As above, g;; € A or g;; € B, respectively, when
(4,7) corresponds to a position inside the unipotent radical Up or Up,
whereas g;; = J;; (mod AB) for positions inside the Levi factor L,. As
established in [44], the corresponding factor SFp(n, A, B)/ EEp(n, A, B)
still equals SK;(n, R, AB).

The author cordially thanks Roozbeh Hazrat, Alexei Stepanov, and
Zuhong Zhang for ongoing discussion of this circle of ideas and long-
standing cooperation over the last decades. In July—September 2019 we
started to specifically discuss arithmetic case with Boris Kunyavsky and
Eugene Plotkin, in connection with our work on bounded generation. The
present paper is a spin-off of our discussions in “Biblioteka Cafe”, and then
in “Manneken Pis” on Kazanskaya on September 16. I very much appre-
ciate also the very pertinent questions by Pavel Gvozdevsky and Sergei
Sinchuk, which prompted me to generalise Theorem 3 and some of the
previous results, especially those of [49].
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