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ON SCHURIAN FUSIONS OF THE ASSOCIATION

SCHEME OF A GALOIS AFFINE PLANE OF PRIME

ORDER

Abstract. The schurian fusions of the association scheme of a Ga-
lois affine plane of prime order are completely identified.

§1. Introduction

An association scheme X on a (finite) set Ω can be thought as a special
partition S of the Cartesian square Ω2, that contains the diagonal as one
of the classes (for the exact definitions, see Section 2). It is very rare
that each coarser partition of Ω2 with the diagonal as a class is also an
association scheme, a fusion of X . In [7], it was proved that this is true
if X is the scheme of a finite affine plane A, i.e., Ω is the point set of A
and the nondiagonal classes of S are in one-to-one correspondence with
the parallel classes of A. Thus if A is of order q, then |Ω| = q2 and X has
exactly p(n) different fusions, where n = q + 1 and p(n) is the number of
all partitions of the set {1, . . . , n}.

An association scheme X on Ω is said to be schurian if there exists
a group K ≤ Sym(Ω) such that the classes of the partition S are the
orbits of the induced action of K on Ω2. The schurity problem in a class
of association schemes consists in identifying the schurian schemes in the
class in question, see [6]. In the present paper, we solve this problem for
the class of all schurian fusions of the association scheme of a Galois affine
plane of prime order.

Main Theorem. A schurian fusion of the scheme of a Galois affine plane

of prime order p is one of the following:

(1) wreath or subtensor product of two trivial schemes of degree p,
(2) primitive pseudocyclic scheme,

(3) one of the two exceptional schemes,
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(4) the involutive fusion of one of the above schemes.

The first three cases in the Main Theorem are basic. In case (1), the
wreath product is unique and schurian, whereas there are non-schurian
subtensor products, see example in [11, Theorem 26.4]. The schurian sche-
mes in case (2) are obtained from 3/2-transitive subgroups of AGL(2, p);
again there are many non-schurian primitive pseudocyclic schemes, see [3,
Example 2.6.15]. Two exceptional schurian schemes from case (3) corres-
pond to the alternating subgroups Alt(4) and Alt(5) of the group PGL(2,p).
For certain values of p, these schemes may be primitive pseudocyclic, see
Subsection 5.1.

A fusion of a scheme X is said to be involutive if there exists an algebraic
automorphism ϕ of X such that each class of the partition associated with
this fusion is of the form s ∪ ϕ(s), s ∈ S. The class of schemes in case (4)
is quite large and can contain schemes occurring in the other three cases.
Moreover, many involutive fusions of (even schurian) schemes are non-
schurian.

The proof of the Main Theorem is given in Sec. 4; the key ingredients are
a classification of 2-closed permutation groups of prime-squared degree [4]
and an information on the orbits of subgroups of PGL(2, q) [2]. In Sec. 2,
we cite some standard facts on association schemes. The scheme of an
affine plane is defined and studied in Sec. 3. Section 5 contains concluding
remarks and open problems.

Notation.

Throughout this paper, Ω is a finite set.
The diagonal of the Cartesian product Ω2 is denoted by 1Ω. For a rela-

tion s ⊆ Ω2, we set

s∗ = {(β, α) : (α, β) ∈ S} and αs = {β ∈ Ω : (α, β) ∈ s}

for all α ∈ Ω. For S ⊆ 2Ω
2

, we denote by S∪ the set of all unions of
the elements of S. We define S∗ = {s∗ : s ∈ S}, S# = S \ {1Ω} and
αS = ∪s∈Sαs, where α ∈ Ω. By Cp and Fq, we denote the cyclic group
of order p and a finite field of order q, respectively. By Sym(n), Alt(n),
and D2n, we denote the symmetric and alternating group of degree n, and
dihedral group of order 2n, respectively.
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§2. Association schemes

In this section, we cite all required concepts on association schemes; the
notation, terminology and results are taken from [3], see also [6].

2.1. Definitions. Let Ω be a finite set and S a partition of the Cartesian
square Ω2. A pair X = (Ω, S) is called an association scheme or scheme

on Ω if the following conditions are satisfied: 1Ω ∈ S, S∗ = S, and given
r, s, t ∈ S, the number

ctrs := |αr ∩ βs∗|

does not depend on the choice of (α, β) ∈ t. The elements of Ω, S, S∪,
and the numbers ctrs are called the points, basis relations, relations, and
intersection numbers of X , respectively. The numbers |Ω| and |S| are called
the degree and rank of X . A scheme of rank 2 is said to be trivial. The set
S of all basis relations of X is denoted by S(X ).

2.2. Isomorphisms and schurity. A bijection from the point set of a
scheme X to the point set of a scheme X ′ is called an isomorphism from
X to X ′ if it induces a bijection between their sets of basis relations. The
schemes X and X ′ are said to be isomorphic if there exists an isomorphism
from X to X ′.

An isomorphism from a scheme X to itself is called automorphism if the
induced permutation of the basis relations of X is the identity. The set

Aut(X ) = {f ∈ Sym(Ω) : sf = s for all s ∈ S}

of all automorphisms of X is a group with respect to composition. One can
easily see that Aut(X ) = Sym(Ω) if and only if the scheme X is trivial.

Let K ≤ Sym(Ω) be a transitive permutation group, and let S denote
the set of orbits in the induced action of K on Ω2. Then,

Inv(K) := (Ω, S)

is a scheme; we say that Inv(K) is associated with K. A scheme X on
Ω is said to be schurian if it is associated with the group Aut(X ) (or
equivalently with a certain transitive permutation group on Ω).

2.3. Algebraic isomorphisms and fusions. Let X and X ′ be schemes.
A bijection ϕ : S → S′, r 7→ r′ is called an algebraic isomorphism from X
to X ′ if

ctrs = ct
′

r′s′ , r, s, t ∈ S. (1)
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Each isomorphism f from X onto X ′ induces an algebraic isomorphism
s 7→ sf , but not every algebraic isomorphism is induced by an isomorphism.
The group of all algebraic automorphisms of X is denoted by Autalg(X ).

Let K ≤ Autalg(X ). Given s ∈ S, denote by sK the union of all relations
sk, k ∈ K. Then the pair

XK = (Ω, SK)

with SK = {sK : s ∈ S}, is called the algebraic fusion of X with respect
to the group K. When the order of K equals 2, the fusion is said to
be involutive.

2.4. Parabolics. Let X = (Ω, S) be a scheme. Following [8], any equivale-
nce relation e ∈ S∪ is called a parabolic of X . Clearly, 1Ω and Ω2 are
parabolics of X ; they are said to be trivial. The scheme X is said to be
primitive if they are the only parabolics of X ; otherwise, X is said to be
imprimitive. The following almost obvious statement is well known.

Proposition 2.1. For a transitive group K, the scheme Inv(K) is primiti-

ve if and only if so is the group K.

Let e be a parabolic of X . Denote by Ω/e the set of all classes of e. For
any s ∈ S, we define sΩ/e to be the relation on Ω/e that consists of all
pairs (∆,Γ) such that the relation s∆,Γ = s ∩ (∆× Γ) is not empty. Then
the pairs

XΩ/e = (Ω/e, SΩ/e) and X∆ = (∆, S∆),

where SΩ/e and S∆ are the sets of all nonempty relations of the form sΩ/e

and s∆,∆, respectively, are schemes; here, s runs over S, and ∆ ∈ Ω/e is
fixed.

If X is schurian, then XΩ/e is the scheme associated with the group
induced by the action of Aut(X ) on Ω/e, whereas X∆ is the scheme induced
by the action of the setwise stabilizer of ∆ in Aut(X ) on ∆.

2.5. Wreath and subtensor products. Let Ω1 and Ω2 be sets and
Ω = Ω1 × Ω2. Denote by e1 and e2 the equivalence relations on Ω such
that

Ω/e1 = {{α} × Ω2 : α ∈ Ω1} and Ω/e2 = {Ω1 × {α} : α ∈ Ω2}.

In what follows, the set Ωi is canonically identified both with Ω/ei and
with a class of the equivalence relation e3−i, i = 1, 2.
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Let X1 and X2 be schemes on Ω1 and Ω2, respectively. The wreath

product of X1 and X2 is defined to be the scheme on Ω that has the smallest
rank among the schemes X having a parabolic e = e2 and such that

XΩ1
= X1 and XΩ/e2 = X2,

where Ω1 on the left-hand side is treated as a class of e (in particular,
X∆ = X1 for all ∆ ∈ Ω/e1). The basis relations of the wreath product can
be found explicitly, see [3, Subsection 3.4.1].

A subtensor product of X1 and X2 is defined to be a scheme X = (Ω, S)
such that e1 and e2 are parabolics of X ,

XΩ/e1 = X1 and XΩ/e2 = X2,

and each relation of X is contained in the product

s1 ⊗ s2 = {((α1, α2), (β1, β2)) ∈ Ω× Ω : (α1, α2) ∈ s1, (β1, β2) ∈ s2},

where s1 and s2 are basis relations of X1 and X2, respectively. Such a
scheme is not unique and coincides with the tensor product of X1 and X2

if the rank of X equals the product of the ranks of X1 and X2, see [3,
Subsection 3.2.2].

Proposition 2.2. Let K1 ≤ Sym(Ω1) and K2 ≤ Sym(Ω2) be transitive.

Then

(1) the scheme of the wreath product K1 ≀K2 in the imprimitive action

equals the wreath product of Inv(K1) and Inv(K2),
(2) the scheme of the subdirect product K1 ⊔K2 in the product action

equals the subtensor product of Inv(K1) and Inv(K2).

Proof. Follows from [3, Theorem 3.4.6] and [3, Subsection 3.2.21]. �

2.6. Pseudocyclic schemes. Let X = (Ω, S) be a scheme, and let s be
a basis relation of X . The numbers

ns = c1Ωss∗ and c(s) =
∑

r∈S

csrr∗

are called the valency and indistinguishing number of s, respectively. The
scheme X is said to be pseudocyclic if there exists a positive integer k such
that

ns = k = c(s) + 1
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for all s ∈ S# (another but equivalent definition is given in [9, Theo-
rem 3.2]). It is known that the scheme of any Frobenius group is pseu-
docyclic, and the converse statement is true whenever |Ω| is much greater
than k.

§3. Affine schemes and their fusions

Let A be a finite affine plane with point set Ω. Then the set Ω2 \1Ω can
be partitioned into the classes according to parallelism: two pairs (α, β)
and (α′, β′) of points are in one class if and only if

αβ = α′β′ or αβ ‖ α′β′,

where αβ and α′β′ are the lines through α and β, and α′ and β′, respecti-
vely.

The obtained classes together with 1Ω form a partition of Ω2; denote it
by SA. Then the pair

XA = (Ω, SA)

is an association scheme [7]. It is called the scheme of A [7]. The basic
properties of this scheme are straightforward and given in the lemma below,
see also [7, 10].

Lemma 3.1. In the above notation, let q be the order of A, X = XA, and

S = SA. The following statements hold:

(1) |Ω| = q2 and |S#| = q + 1,
(2) any s ∈ S# is the disjoint union of q complete graphs of order q;

in particular, ns = q − 1,
(3) Autalg(X ) = Sym(S)1Ω ;1 in particular, the scheme X is pseudocyc-

lic.

Corollary 3.2. Let X be a fusion of the scheme XA. Then given a para-

bolic e of X and ∆ ∈ Ω/e, the schemes X∆ and XΩ/e are trivial.

Let X be a fusion of the scheme XA. From statement (2) of Lemma 3.1,
it follows that the valency of any irreflexive basis relation of X is a multiple
of q − 1. Set

Λ(X ) =
{ ns

q − 1
: s ∈ S(X )#

}

.

Clearly, this set contains at most q + 1 positive integers each of which is
less than or equal to q + 1.

1Here, Sym(S)1Ω is the point stabilizer of 1Ω in Sym(S).
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Lemma 3.3. In the above notation, set Λ = Λ(X ). Then

(1) X is imprimitive if and only if 1 ∈ Λ,

(2) X is pseudocyclic if and only if |Λ| = 1.

Proof. The “if” part of statement (1) immediately follows from state-
ment (2) of Lemma 3.1. To prove the “only if” part, assume that the
scheme X is imprimitive. Then there is a nontrivial parabolic e of X . De-
note by a the number of irreflexive basis relations of X contained in e. By
statements (1) and (2) of Lemma 3.1, we have

1 ≤ a < q + 1 and 1 + a(q − 1) divides q2.

Consequently, a = 1. It follows that e = 1Ω ∪ s for some s ∈ S(X )#. Thus,
Λ(X ) contains the number ns

q−1
= 1.

The “only if” part of statement (2) immediately follows from the definiti-
on of pseudocyclic scheme. To prove the “if” part, assume that Λ(X ) = {d}
for some positive integer d ≤ q + 1. Then each irreflexive basis relation

of X is a union of exactly d relations belonging S#
A

. By statement (3) of
Lemma 3.1, this implies that there exists a cyclic group

K ≤ Autalg(XA)

of order d that fixes 1Ω, acts semiregularly on S#
A

. Thus in accordance with
[9, Theorem 3.4], the scheme X is pseudocyclic. �

Let A be a Galois affine plane of order q. It is easily seen that the group
Aut(XA) contains the center of GL(2, q). Now if X is a fusion of XA, then
Aut(X ) contains Aut(XA), and hence

Z(GL(2, q)) ≤ Aut(X ). (2)

From now on assume that X is schurian and, in addition,

Aut(X ) ≤ AGL(2, p). (3)

Then the group Aut(X ) preserves the parallelism in A and hence acts
on the parallel classes of A. Since the parallel classes are in one-to-one
correspondence with the relations of SA, this action induces a group K ≤
Sym(SA) leaving the relation 1Ω fixed. By statement (3) of Lemma 3.1,
this implies that

K ≤ Autalg(XA).

Since K is induced by the automorphism group of X , this scheme is
the algebraic fusion of XA with respect to K. On the other hand, in view
of (2) and (3) the group K can be identified with a subgroup of PGL(2, q)
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acting on q+1 points of the underlying projective line. Thus, the following
statement holds.

Theorem 3.4. Let A be a Galois affine plane of order q and X a schurian

fusion of XA. Assume that condition (3) holds. Then there is K≤PGL(2, q)
such that

X = (XA)
K .

In particular, Λ(X ) equals the set N(K) of cardinalities of the orbits of K.

§4. The proof of the Main Theorem

By the hypothesis of the theorem, X is the scheme of Aut(X ); in par-
ticular, X is primitive (respectively, imprimitive) if and only if Aut(X )
is primitive (respectively, imprimitive) (Proposition 2.1). The proof is di-
vided into two parts depending on whether or not the group scheme X is
imprimitive.

The imprimitive case corresponds to statement (1) of the Main Theo-
rem; here we use a characterization of the 2-closed subgroups of Sym(p2)
given in [4]. Statements (2), (3), and (4) of the Main Theorem arise in
the primitive case; here our tool is the information on the subgroups of
PGL(2, q) given in [2].

4.1. The scheme X is imprimitive. The group Aut(X ) being the au-
tomorphism group of a scheme is 2-closed in the sense of [12]. Therefore,
we make use of the following statement which is an immediate consequence
of [4, Theorem 14].

Lemma 4.1. Let K ≤ Sym(p2) be a 2-closed group with a regular subgroup

Cp × Cp. Then one of the following statements holds.

(i) K is primitive, and K ≤ AGL(2, p), or K = Sym(p) ≀ Sym(2) or

Sym(p2),
(ii) K is imprimitive, and one of the following statements holds:

(ii1) K = Sym(p)×K ′, where K ′ ≤ Sym(p),
(ii2) K < AGL(1, p)×AGL(1, p),
(ii3) K = K1 ≀K2, where K1,K2 ≤ Sym(p) are 2-closed groups.

By Lemma 4.1 for K = Aut(X ), we have two cases: the first one is
formed by statements (ii1) and (ii2), whereas the second one consists of just
statement (ii3). In the former case, K is subdirect product of two groups.
Therefore the scheme X is the subtensor product of two schemes of degree
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p (statement (2) of Proposition 2.2), and both of them are trivial (Corol-
lary 3.2). In the latter case, X is the wreath product Inv(K1) ≀ Inv(K2)
(statement (1) of Proposition 2.2), and again both of them are trivial
(Corollary 3.2). Thus if X is imprimitive, then statement (1) of the Main
Theorem holds.

4.2. The scheme X is primitive. Without loss of generality, we may
assume that (a) X is not trivial, for otherwise statement (2) of the Main
Theorem holds and (b) the relation

1 6∈ Λ(X ) (4)

holds, for otherwise X is imprimitive by statement (1) of Lemma 3.3. Then
p is odd and the following statement is a special case of the results proved
in [2, Theorem 2 and Sec. 4].

Lemma 4.2. Let K ≤ PGL(2, p) be an intransitive permutation group

acting on p + 1 points of the underlying projective line, and N = N(K).
Then one of the following statements holds:

(1) K = Cd and N ⊆ {1, d}, d ≥ 1,
(2) K = D2d and N ⊆ {2, d, 2d}, d ≥ 2,
(3) K = Cp ⋊ Cd and N ⊆ {1, p}, d | p− 1,
(4) K = Alt(4), Alt(5), or Sym(4).

By Theorem 3.4 for q = p, there exists a group K satisfying the hy-
pothesis of Lemma 4.2 and such that

X = (XA)
K and Λ = N,

where A is a Galois affine plane of order p and Λ = Λ(X ). Note that
this group is intransitive, because the scheme X is nontrivial. To complete
the proof we will verify that in each of the four cases of Lemma 4.2, the
conclusion of the Main Theorem holds.

In the case (1), assumption (4) implies that N = {d}. It follows that
|Λ| = 1. Thus the scheme X is pseudocyclic by statement (2) of Lemma 3.3.

In the case (2), one can see as above that the scheme X is pseudocyclic
whenever 2 6∈ N and d 6∈ N . Assume first that 2 ∈ N . Denote by K ′ the
kernel of the action of K on an orbit of size 2. Then K ′ is a subgroup of
index 2 and 1 ∈ N(K ′). It follows that if

X ′ = (XA)
K′

, (5)

then X is an involutive fusion of X ′ and 1 ∈ N(K ′) = Λ(X ′). The scheme
X ′ is imprimitive by statement (1) of Lemma 3.3. By the first part of the
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proof (the imprimitive case), this implies that statement (1) of the Main
Theorem holds for X ′, and we are done.

Remaining in the case (2), we may assume that N = {d, 2d}. Then K
has a subgroup K ′ of index 2 such that

N(K ′) = {d}. (6)

Indeed, the action of K on an orbit of cardinality d is permutation isomor-
phic to the action of K on the right cosets of a subgroup generated by an
involution k ∈ K. Depending on whether or not k lies in the center of K,
one can take as K ′ a subgroup of K isomorphic to Dd or Cd. Now, in view
of (6), the scheme X ′ defined by formula (5) is pseudocyclic (statement (2)
of Lemma 3.3). Therefore statement (2) of the Main Theorem holds for X ′.
Since X is an involutive fusion of X ′, we are done.

To complete the proof, it suffices to note that in the case (3) the scheme
X is pseudocyclic by assumption (4), whereas in the case (4) the scheme
X is either exceptional (K = Alt(4) or Alt(5)), or an involutive fusion of
the scheme (5) with K ′ = Alt(4) for K = Sym(4).

§5. Concluding remarks

In what follows, C1, C2, C3, and C4 denote the classes of schemes in
statements (1), (2), (3), and (4) of the Main Theorem, respectively.

5.1. Interrelation between the classes from the Main Theorem.

In view of the remarks made after the Main Theorem, we are interested
in the interrelation between the classes C1, C2, and C3. The schemes in C1
are imprimitive, whereas those in C2 and C3 are not. Therefore,

C1 ∩ C2 = C1 ∩ C3 = ∅.

The classes C2 and C3 have nontrivial intersection. This follows from the
information on the orbit lengths of the groups Alt(4),Alt(5) ≤ PGL(2, p)
obtained in [2, Lemmas 9,11]. Indeed, the exceptional schemes associated
with groups Alt(4) and Alt(5) are primitive pseudocyclic if, e.g.,

p = −1 (mod a), a = 3 or 5.

5.2. The automorphism groups. In principle, all the information of
the automorphism group of the scheme X in the Main Theorem can be
extracted from Lemma 4.1. In the most cases, we have

Aut(X ) ≤ AGL(2, p),
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i.e., X is isomorphic to a normal Cayley scheme over Cp ×Cp in the sense
of [5]. Apart from this case, the only possibility for the group Aut(X ) are
the following:

Sym(p)× Sym(p), Sym(p) ≀ Sym(p), Sym(p) ≀ Sym(2), Sym(p2). (7)

The first two groups appear in statements (ii1) and (ii3) of Lemma 4.1 and
the schemes of these groups are in the class C1, whereas the second two
groups appear in statement (i) and the schemes of these groups are the
Hamming scheme H(2, p) and trivial scheme lying in the classes C4 and
C2, respectively.

5.3. Further research. The first natural problem is to generalize the
Main Theorem to the p-powers q, i.e., to find a compact description of
schurian fusions of a Galois affine plane of order q. In this way, one can
still use the results of [2] where they were established arbitrary q. However,
to the author knowledge, there is no generalization of Lemma 4.1.

The class C2 contains the cyclotomic schemes over near-fields of order p2

[1] and the schemes of Frobenius groups. It would be interesting to find
other schemes in C2 (if they are).

From the algorithmic point of view, one of the problem in the above
context is how to recognize the schemes X from the Main Theorem in
the class of all association schemes efficiently. Definitely, this can easily
be done if Aut(X ) is one of the groups (7). For the other schemes, the
problem can efficiently be reduced to recognizing schemes belonging to the
classes C2 and C4.
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