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ON TYPE I BLOW UP FOR THE NAVIER-STOKES

EQUATIONS NEAR THE BOUNDARY

Abstract. For suitable weak solutions to the Navier-stokes equa-
tions a new sufficient condition for the uniform boundeness of the
scale invariant energy functionals near a boundary point is estab-
lished.

§1. Introduction and Main Results

Denote C := { x ∈ R
3 : x2

1 + x2
2 < 1, |x3| < 1 }, and Q := C × (−1, 0).

We consider the Navier-Stokes equations in Q
{

∂tu−∆u+ (u · ∇)u+∇p = 0

div u = 0
in Q. (1.1)

Here u : Q → R
3 is the velocity field and p : Q → R is pressure. Together

with the system (1.1) we consider the Navier-Stokes equations near the
boundary:











∂tu−∆u + (u · ∇)u +∇p = 0

div u = 0

u|x3=0 = 0

in Q+. (1.2)

We use notation C+ := C ∩ {x3 > 0} and Q+ := C+ × (−1, 0).
In this paper we are interested in the local regularity for weak solutions

to the systems (1.2) satisfying the estimate

|u(x, t)| 6 C
√

x2
1 + x2

2

(1.3)

for a.e. (x, t) ∈ Q with some positive constant C.
Our interest is partly motivated by the study of the possible behavior

of axially symmetric solutions to the Navier–Stokes equations near the
boundary (that is why we use cylinders C, C+ etc rather than standard

Key words and phrases: Navie–Stokes equations, weak solutions, boundary
regularity.
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balls). We remind that that the solution u and p of (1.1) or (1.2) is called
axially symmetric if

u(x, t) = ur(r, z, t)er + uϕ(r, z, t)eϕ + ur(r, z, t)ez, p(x, t) = p(r, z, t),

where er, eϕ, ez is the cylindrical basis in R
3, r =

√

x2
1 + x2

2, z = x3. We
say the solution is axi-symmetric without swirl if

u(x, t) = ur(r, z, t)er + ur(r, z, t)ez, p(x, t) = p(r, z, t).

For axially symmetric solutions the condition (1.3) is one of the scale
invariant conditions which characterize so called Type I blow up at the
axis of symmetry, see terminology in [15] or [20].

It is well-known that in the internal case axi-symmetric solutions with-
out swirl are locally regular, see [7,9] and [6]. In contrast, in the boundary
case the corresponding result is unknown and an axi-symmetric solution
without swirl potentially can have a singularity near the origin (i.e. at the
point of the intersection of the axis of symmetry with the boundary of the
domain, see, for example, [5]).

On the other hand in the internal case in [6] and [15] it was proved that
axi-symmetric weak solutions with swirl satisfying (1.3) are regular. The
analogues result near the boundary is unknown.

In our approach we replace the condition (1.3) by a more general con-
dition

sup
r<1

Aw(u, r) 6 C0, (1.4)

where

Aw(u, r) :=
1√
r

esssupt∈(−r2,0) ‖u(·, t)‖L2,w(C+(r)).

We denote C+(r) := { x ∈ R
3 :

√

x2
1 + x2

2 < r, 0 < x3 < r } and for
any domain Ω ⊂ R

3 L2,w(Ω) is a weak Lebesgue space equipped with the
quasinorm

‖f‖L2,w(Ω) := sup
λ>0

λ |{x ∈ Ω : |f(x)| > λ}|1/2

Note that every measurable function u satisfying (1.3) meets the condition
(1.4) as well.

To formulate our main results we remind the notion of the bound-
ary suitable weak solutions. The notion of suitable weak solutions to the
Navier–Stokes system was introduced in the celebrated paper [2]. For the
boundary case we use the following definition, see, for example, [18] (the
notation for functional spaces are explained at the end of this section):
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Definition 1.1. We say that a pair of functions u and p are a boundary
suitable weak solution to the Navier–Stokes system in Q+ if

• u ∈ L2,∞(Q+) ∩W
1,0
2 (Q+), p ∈ L 3

2
(Q+)

• u|x3=0 = 0 in the sense of traces
• u and p satisfy the Navier–Stokes system in Q+ in the sense of

distributions
• for a.a. t ∈ (−1, 0), the pair u and p satisfies the local energy

inequality in Q+

∫

C+

ζ(x, t)|u(x, t)|2 dx+ 2

t
∫

−1

∫

C+

ζ|∇u|2 dxdt

6

t
∫

−1

∫

C+

|u|2 (∂tζ +∆ζ) dxdt+

t
∫

−1

∫

C+

u · ∇ζ
(

|u|2 + 2p
)

dxdt

(1.5)

for any non-negative test function ζ ∈ C∞(R3×R) vanishing near
the parabolic boundary ∂′Q = (∂C × [−1, 0]) ∪ (C̄ × {t = −1}).

To formulate our results we also introduce scale invariant functionals:

A(u, r) = esssupt∈(−r2,0)

( 1

r

∫

C+(r)

|u(x, t)|2 dx
)1/2

,

C(u, r) =
( 1

r2

∫

Q+(r)

|u(x, t)|3 dxdt
)1/3

,

E(u, r) =
( 1

r

∫

Q+(r)

|∇u(x, t)|2 dxdt
)1/2

,

D(p, r) =
( 1

r2

∫

Q+(r)

|p(x, t)− [p]C+(r)(t)|3/2 dxdt
)2/3

.

(1.6)

The main result of the present paper is the following theorem:

Theorem 1.1. Assume u and p are a boundary suitable weak solution to
the system (1.2). Assume there exists C0 > 0 such that the condition (1.4)
holds. Then

sup
r<1

(

A(u, r) + C(u, r) + E(u, r) +D(p, r)
)

< +∞. (1.7)



ON TYPE I BLOW UP FOR THE NAVIER-STOKES EQUATIONS 139

Theorem 1.1 implies that suitable weak solutions with Aw(u, r)–norm
uniformly bounded in r can have only Type I singularities at the origin
(see the terminology in [20]).

It is interesting to compare our result with other known results in the
area. The first important result was obtained in [14] in the internal case.
Namely, in [14] it was shown that if

min
{

sup
r<1

A(u, r), sup
r<1

C(u, r), sup
r<1

E(u, r)
}

< +∞

then (1.7) holds. In [10] the same result was proved near the boundary.
In [13] (see also [21]) an analogues result was established in the internal
case under the condition

sup
r<1

Cs,l(u, r) < +∞, max

{

2− 1

l
,
3

2
+

1

2l

}

<
3

s
+

2

l
< 2,

where s ∈ (3,+∞), l ∈ (2,+∞) and

Cs,l(u, r) := r1−
3
s
− 2

l

(

0
∫

−r2

(

∫

B(r)

|u|s dx
)l/s

dt
)1/l

Under the assumption (1.3) the statements (1.7) in the internal case was
proved in [15].

The condition (1.4) also can be interpreted as a condition

esssupt∈(−1,0) ‖u( · , t)‖X < +∞ (1.8)

where X is some Morrey-type class with the scale-invariant quasi-norm

‖w‖X = sup
r<1

1√
r
‖w‖L2,w(C+(r))

The statement (1.7) is known in the internal case if (1.8) is satisfied and
X is one of the following spaces: X = L3(C), L3,w(C), BMO−1(C) (for the
explanation of the notation at the end of this section). Namely, in the case
X = L3 the condition (1.8) implies Hölder continuity of u near the origin
both in the internal and in the boundary cases, see [3] and [12]. In the case
of X = L3,w the regularity of u is unknown and only the estimate (1.7) is
available (this result follows easily from our Theorem 1.1). In the case of
X = BMO−1 the estimate (1.7) was obtained in in the internal case in [8]
and [16]. Moreover, in the paper of G. Seregin and D. Zhou [22] a similar
result is proved in the internal case if X is (globally defined) Besov space

Ḃ−1
∞,∞(R3).
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A simple consequence of our approach is the following ε-regularity con-
dition. Similar conditions in the boundary case can be found in [17]:

Theorem 1.2. There exists an absolute constant ε > 0 such that if a
boundary suitable suitable weak solution u and p to (1.2) satisfies the con-
dition (1.3) with C0 < ε then u is Hölder continuous in some neighborhood
of the origin.

Our paper is organized as follows. In Section 2 we recall some known
facts from the theory of functions. In Section 3 we prove Theorems 1.1
and 1.2.

Acknowledgement. The author thanks Timofey Shilkin for the state-
ment of the problem and Alexander Mikhaylov for valuable discussions.

We use the following notation:

• R
3
+ := {x ∈ R

3 : x3 > 0}
• C(r) := {x ∈ R

3 :
√

x2
1 + x2

2 < r, |x3| < r}, C := C(1)
• C+(r) := C+(r) ∩R

3
+, C+ := C ∩R

3
+

• Lq(Ω), W
k
q (Ω),

◦

W k
q (Ω) are standard Lebesgue and Sobolev spaces

• for any measurable f : Ω → R we define

df (λ) := |{ x ∈ Ω : |f(x)| > λ }|

• for q ∈ [1,+∞) Lq,w(Ω) is a weak Lebesgue space equipped with
the quasi-norm

‖f‖Lq,w(Ω) := sup
λ>0

λdf (λ)
1/q

For q = ∞ we take L∞,w(Ω) := L∞(Ω)
• for q ∈ (0,+∞) and s ∈ (0,+∞) we denote by Lq,s(Ω) the Lorentz

space equipped with the quasi-norm

‖f‖Lq,s(Ω) := q
1
s





+∞
∫

0

λs−1df (λ)
s
q dλ





1
s

(1.9)

If s = ∞ we put Lq,∞(Ω) := Lq,w(Ω).
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• BMO(Ω) is the space of functions with bounded mean oscillation
in Ω equipped with the norm

‖f‖BMO(Ω) := sup
B(x0,R)⊂Ω

1

|B(R)|

∫

B(x0,R)

|f − [f ]B(x0,R)| dx,

[f ]B(x0,R) :=
1

|B(R)|

∫

B(x0,R)

fdx

BMO−1(Ω) := {divF ∈ D′(Ω) : F ∈ BMO(Ω)}
• Q(r) := C(r) × (−r2, 0), Q := Q(1)
• By [p]C and (p)Q we denote the spatial and the total averages of

the function p(x, t):

[p]C(t) :=
1

|C|

∫

C

p(x, t) dx, (p)Q :=
1

|Q|

∫

Q

p(x, t) dxdt

• Q+(r) := C+(r) × (−r2, 0), Q+ := Q+(1)
• Lq,l(Q(r)) is the anisotropic Lebesgue space equipped with the

norm

‖f‖Lq,l(Q(r)) :=
(

0
∫

−r2

‖f(·, t)‖lLq(C(r))
dt
)1/l

,

in the case l = ∞ Lq,∞(Q(r)) := L∞(−r2, 0;Lq(C(r))),

‖f‖Lq,∞(Q(r)) := esssupt∈(−r2,0) ‖f(·, t)‖Lq(C(r))

• W
1,0
q,l (Q(r)) := {u ∈ Lq,l(Q(r)) : ∇u ∈ Lq,l(Q(r))},

‖u‖W 1,0
q,l

(Q(r)) := ‖u‖Lq,l(Q(r)) + ‖∇u‖Lq,l(Q(r))

• W
2,1
q,l (Q(r)) := {u ∈ W

1,0
q,l (Q(r)) : ∇2u ∈ Lq,l(Q(r)), ∂tu ∈

Lq,l(Q(r))},

‖u‖W 2,1
q,l

(Q(r)) := ‖u‖W 1,0
q,l

(Q(r)) + ‖∇2u‖Lq,l(Q(r)) + ‖∂tu‖Lq,l(Q(r))

In the case of q = l we denote W 1,0
q (Q) := W 1,0

q,q (Q) etc

• Lq,w;∞(Q(r)) := L∞(−r2, 0;Lq,w(C(r)))
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§2. Some results from the function theory

First we recall an interpolation result concerning Lorentz spaces, see [1,
Theorem 5.3.1]:

Lemma 2.1. Assume 1 6 q1 < q < q2 6 ∞ and θ ∈ (0, 1) satisfy

1

q
=

1− θ

q1
+

θ

q2
.

Then for any 0 < s 6 ∞ there is a constant c = c(q1, q2, q, s) > 0 such
that for any domain Ω ⊂ R

n if u ∈ Lq1,w(Ω) ∩ Lq2,w(Ω) then u ∈ Lq,s(Ω)
and the estimate

‖u‖Lq,s(Ω) 6 c ‖u‖1−θ
Lq1,w(Ω)‖u‖

θ
Lq2,w(Ω) (2.1)

holds.

The next result is a trivial combination of Lemma 2.1 and Sobolev’s
imbedding theorem:

Lemma 2.2. Assume 1 6 q 6 p 6 6 and θ ∈ [0, 1] satisfy

1

p
=

1− θ

q
+

θ

6
.

Then for any f ∈ Lq,w(C+(r)) ∩W 1
2 (C+(r)) the inclusion f ∈ Lp(C+(r))

holds and there exists a positive constant c = c(p, q) (independent on r > 0)
such that if f additionally satisfies f |x3=0 = 0 then

‖f‖Lp(C+(r)) 6 c ‖f‖1−θ
Lq,w(C+(r))‖∇f‖θL2(C+(r)) (2.2)

Next we recall the well known O’Neils inequality, see [4, Exercise 1.4.19]:

Lemma 2.3. If q1, q2, q ∈ (1,+∞] and s1, s2, s ∈ (0,+∞] satisfy

1

q1
+

1

q2
=

1

q
and

1

s1
+

1

s2
=

1

s

then

‖fg‖Lq,s(C+(r)) 6 c(q1, q2, s1, s2) ‖f‖Lq1,s1(C+(r))‖g‖Lq2,s2 (C+(r))

We will use the following modification of the O’Neils inequality for three
functions:
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Lemma 2.4. If q1, q2, q3, q ∈ (1,+∞] and s1, s2, s3, s ∈ (0,+∞] satisfy

1

q1
+

1

q2
+

1

q3
=

1

q
and

1

s1
+

1

s2
+

1

s3
=

1

s

then

‖fgh‖Lq,s(C+(r)) 6 c(qi, si) ‖f‖Lq1,s1(C+(r))‖g‖Lq2,s2 (C+(r))‖h‖Lq3,s3 (C+(r))

(2.3)

§3. Proof of the Main Results

We start with the following interpolation inequality. Below we denote
Aw(r) := Aw(u, r), C(r) := C(u, r) etc, see the definition of the functionals
in (1.6).

Theorem 3.1. Let u and p be a boundary suitable weak solution to the
Navier–Stokes equations in Q+. Then the following inequality holds:

C(r) 6 c A
1
2
w(r) E

1
2 (r) (3.1)

Proof. We apply (2.2) with p = 3, q = 2, and θ = 1
2 , which gives the

result. �

Our next result is the estimate of the pressure. This estimate is the
crucial point of our approach and it is different from the analogues estimate
in the internal case as it involves the stronger (energy-type) norms in the
right-hand side. This leads to additional technical difficulties which do not
arise in the internal case. To obtain the result we adopt the technique
developed in [11] for the study of the boundary regularity to the Navier–
Stokes equations.

Theorem 3.2. For any δ ∈ (0, 1) there exist positive constants c1, c2 such
that for any boundary suitable weak solution u and p to the Navier–Stokes
equation in Q+ the following inequality holds:

D(θr) 6 c1θ
4
3

(

C(r) +D(r)
)

+ c2θ
− 4

3E1+δ(r)A1−δ
w (r), (3.2)

for any r ∈ (0, 1) and any θ ∈ (0, 12 ).

Proof. First we prove (3.2) for r = 1. We decompose p = p1 + p2 and
u = u1+u2 where u1 and p1 are the solution to the initial-boundary value
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problem for the following linear system:










∂tu1 −∆u1 +∇p1 = (u · ∇)u

div u1 = 0

u1|∂Q+ = 0

in Q+. (3.3)

Then u2 = u− u1 and p2 = p− p1 satisfy following system










∂tu2 −∆u2 +∇p2 = 0

div u2 = 0

u2|x3=0 = 0

in Q+.

Moreover, we can assume that for a.e. t ∈ (−1, 0) [p]C+ = [p1]C+ =
[p2]C+ = 0. The right-hand side (u · ∇)u in the system (3.3) belongs to
L 9

8 ,
3
2
(Q). Applying the coercive estimate of solutions to the Stokes problem

in anisotropic Sobolev spaces (see [23]) for any ε ∈ (0, 1
8 ] we obtain

‖u1‖W 2,1

1+ε, 3
2

(Q+) + ‖∇p1‖L
1+ε, 3

2
(Q+) 6 c ‖(u · ∇)u‖L

1+ε, 3
2
(Q+)

To estimate the right-hand side of the last inequality we split

|(u · ∇)u| 6 |u| 13 |u| 23 |∇u|

and apply (2.3) with exponents q1 = 2, q2 = 3, q3 = 6(1+ε)
1−5ε and r1 =

2, r2 = ∞, r3 = 2(1+ε)
1−ε :

1

1 + ε
=

1

2
+

1

3
+

1− 5ε

6(1 + ε)
,

1

1 + ε
=

1

2
+

1

∞ +
1− ε

2(1 + ε)

For a.e. t ∈ (−1, 0) we obtain

‖(u · ∇)u‖L1+ε(C+) 6 c ‖∇u‖L2(C+)‖|u|
2
3 ‖L3,w(C+)‖|u|

1
3 ‖

L
6(1+ε)
1−5ε

,
2(1+ε)
1−ε (C+)

Taking into account the property of the Lorentz norm
∥

∥|u|θ
∥

∥

Lq,s(C+)
=

‖u‖θLθq,θs(C+), where q, θ ∈ (0,+∞) and s ∈ (0,+∞], we obtain

‖(u · ∇)u‖L1+ε(C+) 6 c ‖∇u‖L2(C+)‖u‖
2
3

L2,w(C+)‖u‖
1
3

L
2(1+ε)
1−5ε

,
2(1+ε)
3(1−ε) (C+)

Applying the Hölder inequality with exponents l1 = 2, l2 = ∞, l3 = 6,

2

3
=

1

2
+

1

∞ +
1

6
,
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we arrive at

‖(u · ∇)u‖L
1+ε, 3

2
(Q+)

6 c ‖∇u‖L2(Q+) ‖u‖
2
3

L2,w;∞(Q+)

∥

∥u
∥

∥

1
3

L2

(

−r2,0; L
2(1+ε)
1−5ε

,
2(1+ε)
3(1−ε) (C+)

)

Using (2.1) we get:

‖u‖
L

2(1+ε)
1−5ε

,
2(1+ε)
3(1−ε) (C+)

6 c ‖u‖1−δ′

L2,w(C+(r))‖u‖
δ′

L6(C+)

Here 1−5ε
2(1+ε) = 1−δ′

2 + δ′

6 and δ′ = 3ε
1−5ε . Now using Sobolev embedding

theorem we obtain

‖u‖
L

2(1+ε)
1−5ε

,
2(1+ε)
3(1−ε) (C+)

6 c ‖u‖1−δ′

L2,w(C+)‖∇u‖δ′L2(C+)

Therefore

‖u · ∇u‖L
1+ε, 3

2
(Q+) 6 c ‖∇u‖1+

δ′

3

L2(Q+)‖u‖
2
3+

1−δ′

3

L2,w;∞(Q+)

= c ‖∇u‖1+δ
L2(Q+)‖u‖

1−δ
L2,w;∞(Q+)

where δ := δ′

3 = ε
1−5ε . So, we finally obtain

‖u1‖W 2,1

1+ε, 3
2

(Q+) + ‖∇p1‖L
1+ε, 3

2
(Q+) 6 c ‖∇u‖1+δ

L2(Q+)‖u‖
1−δ
L2,w;∞(Q+)

Now we turn to the derivation of the estimate for p2. From the local regular-
ity theory for the linear Stokes system near the boundary (see, for example,

[18, Theorem 2.3]) for any m ∈ (1,+∞), we conclude p2 ∈ W
1,0

m, 32
(Q+(12 ))

and for any ρ < 1
2 the following estimate holds:

‖∇p2‖L
m, 3

2
(Q+( 1

2 ))
6 c

(

‖u2‖L
1+ε, 3

2
(Q+) + ‖p2‖L

1+ε, 3
2
(Q+)

)

6 c
(

‖u1‖L
1+ε, 3

2
(Q+) + ‖u‖L

1+ε,3
2
(Q+) + ‖p‖L

1+ε, 3
2
(Q+) + ‖p1‖L

1+ε, 3
2
(Q+)

)

6 c
(

‖u‖L
1+ε,3

2
(Q+) + ‖p‖L

1+ε,3
2
(Q+) + ‖∇u‖1+δ

L2(Q+)‖u‖
1−δ
L2,w;∞(Q+)

)

(3.4)

Taking any θ < 1
2 and using Poincare inequality we obtain

‖p2 − [p2]C+(θ)‖L 3
2
(Q+(θ)) 6 c θβ‖∇p2‖L

m, 3
2
(Q+( 1

2 ))
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where β > 0 depends on m ∈ (1,+∞). Choosing m = 9 we get β = 8
3 .

Finally, we can estimate p = p1 + p2:

‖p− [p]C+(θ)‖L 3
2
(Q+(θ)) 6 2‖p1‖L 3

2
(Q+(θ)) + ‖p2 − [p2]C+(θ)‖L 3

2
(Q+(θ))

6 c
(

‖∇u‖1+δ
L2(Q+)‖u‖

1−δ
L2,w;∞(Q+) + θ

8
3 ‖∇p2‖L

9, 3
2
(Q+( 1

2 ))

)

Taking into account (3.4) with m = 9 we obtain

‖p− [p]C+(θ)‖L 3
2
(Q+(θ))

6 c‖∇u‖1+δ
L2(Q+)‖u‖

1−δ
L2,w;∞(Q+) + cθ

8
3

(

‖u‖L
1+ε,3

2
(Q+) + ‖p‖L 3

2
(Q+)

)

(3.5)

Using the definition of the functionals D(r) := D(p, r) etc we arrive at the
estimate

D(θ) 6 c1 θ
4
3 (C(1) +D(1)) + c2θ

− 4
3E1+δ(1)A1−δ

w (1)

To finish the proof we use the standard scaling arguments and get (3.2)
for any r ∈ (0, 1) and any θ ∈ (0, 12 ). �

Now we can give the proof of our Theorem 1.1:

Proof. As u and p are a boundary suitable weak solution and (3.1) holds
we have:

sup
r<1

Aw(r) 6 C0, A
(3

4

)

+ E
(3

4

)

6 C1 < ∞

From (3.1) we obtain

C(r) 6 c(C0) E
1
2 (r) (3.6)

Denote E(r) = E(r)+A(r)+D(r). Using the local energy inequality (1.5)
for any θ ∈ (0, 1

16 ) we get:

E(θr) 6 C(2θr) + C
3
2 (2θr) + C

1
2 (2θr)D

1
2 (2θr) +D(θr)

applying Young’s inequality we get:

E(θr) 6 c (C(2θr) + C
3
2 (2θr) +D(2θr)) (3.7)

Taking in (3.2) δ = 1
7 with the help of (3.6) we obtain

D(θr) +D(2θr) 6 c θ
4
3

[

C
( r

4

)

+D
(r

4

)]

+ c(C0)θ
− 4

3E
8
7

( r

4

)

(3.8)
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Combining (3.6), (3.7) and (3.8) we get

E(θr) 6 c(C0)
[

E
1
2 (2θr) + E

3
4 (2θr) + θ−

4
3E

8
7

(r

4

)]

+ cθ
4
3

(

C
(r

4

)

+D
(r

4

))

6 c(C0)
[

θ−
1
4 E 1

2 (r) + θ−
3
8 E 3

4 (r)

+ θ−
4
3E

8
7

( r

4

)]

+ cθ
4
3 E

( r

4

)

(3.9)

One of the terms in the right hand side of (3.9) has an exponent 8
7 > 1.

So, to estimate it we use (3.6) and (3.7) again:

E
8
7 (

r

4
) 6

(

C
( r

2

)

+ C
3
2

( r

2

)

+D
( r

2

))
8
7

6 c(C0)
(

E 1
2 (r) + E 3

4 (r)
)

8
7

6 c(C0)
(

E 4
7 (r) + E 6

7 (r)
)

Combining the last estimate with (3.9) we arrive at

E(θr) 6 c(C0)
[

θ−
1
4 E 1

2 (r) + θ−
3
8 E 3

4 (r) + θ−
4
3

(

E 4
7 (r) + E 6

7 (r)
) ]

+ cθ
4
3 E(r).

Taking ε > 0 and using Young’s inequality θβEα(r) 6 εE(r) + c(ε, θ, α, β)
for any α < 1, β ∈ R, we proceed to

E(θr) 6 E(r)(ε + cθ
4
3 ) + F (ε, C0, θ)

where F (ε, C, θ) is some continuous function which in nondecreasing with
respect to C and has the property

for any fixed ε, θ ∈ (0, 1) F (ε, C, θ) → 0 as C → +0.

Let us fix θ ∈ (0, 1
16 ) and after that fix ε ∈ (0, 1) in such a way that

ε+ cθ
4
3 6 1

2 . Then we obtain the estimate

E(θr) 6 1

2
E(r) + F (C0), ∀ r ∈ (0, 1).

Using the standard iteration technique we can conclude that

sup
r<1

E(r) 6 c F (C0) < +∞. (3.10)

Theorem 1.1 is proved. �

We finish the paper with the proof of Theorem 1.2.
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Proof. Assume C0 6 ε. As the function F (C) in (3.10) is continuous,
nondecreasing and tends to zero as C → +0 we can fix ε > 0 in such a
way that

sup
r<1

E(r) 6 ε∗

where ε∗ > 0 is the absolute constant from the boundary analogue of
Caffarelli–Kohn–Nirenberg theorem, see [11]. Then Theorem 1.2 follows
from results of [11], see also [19] and [18]. �
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