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Abstract. The aim of the paper is to investigate on some questions
of local regularity of a suitable weak solution to the Navier–Stokes
Cauchy problem. The results are obtained in the wake of the ones,

well known, by Caffarelli–Kohn–Nirenberg.

§1. Introduction

We deal with the Navier–Stokes Cauchy problem

ut + u · ∇u+∇πu = ∆u, ∇ · u = 0, in (0, T )× R3,
u(0, x) = u0(x) on {0} × R

3.
(1.1)

In system (1.1) u is the kinetic field, πu is the pressure field, ut :=
∂
∂t
u and

u · ∇u := uk
∂

∂xk
u. We investigate on the partial regularity of a suitable

weak solution, and we detect a new sufficient condition for the existence of a
regular solution. Our results are in the wake of the ones obtained in [1] and,
for small data, in [3]. As in [2,3,6], our study attempts to highlight what is
possible to obtain, without extra condition, in the setting of the L2-theory.
In this connection, although it is not our chief aim, we like to point out
that our results could lead to a sort of structure theorem in the space-time
cylinder. To be more precise in the claim we recall the well known Leray’s
structure theorem related to a weak solution. Leray’s theorem claims that
there exist an interval of regularity of the kind (θ,∞) and a sequence of
intervals of regularity included in (0, θ) whose complementary set on (0, θ)
is a set of zero 1

2 -Hausdorff measure. Mutatis mutandis, the results of [1]
(see below Theorem 1.4) and of this note give a sort of structure theorem
for a suitable weak solution related to the Cauchy problem. More precisely,
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under a suitable assumption for the initial data, in Theorem 1.4 it is proved
that a suitable weak solution is regular for all t > 0 in the exterior of a
ball with radius R0. In this note we prove that, almost everywhere, a
point (t, x) ∈ (0, θ) × B(R0) is the center of a parabolic neighborhood of
regularity for a suitable weak solution. Hence in (0, θ)×B(R0) there is at
most a sequence of open sets of regularity, whose complementary set in
(0, θ)×B(R0) has at most zero 1-Hausdorff measure.

To better state the details of our main results, we split the introduction
in two short subsections. In the first one we recall some definitions and
notation following the ones in [1]. Then we recall two fundamental regu-
larity results obtained in [1], and, with an alternative proof, in [11], and
their consequences. In the second subsection we give the statement of our
results.

1.1. Suitable weak solutions. We start by recalling the following:

Definition 1.1. Let u0 ∈ J2(R3). A pair (u, πu), such that u : (0,∞) ×
R3 → R3 and πu : (0,∞)×R3 → R, is said a weak solution to problem (1.1)
if

i) for all T > 0, u ∈ L2(0, T ; J1,2(R3)) and πu ∈ L
5
3 ((0, T )× R3)

ii) lim
t→0

||u(t)− u0||2 = 0,

iii) for all t, s ∈ (0, T ), the pair (u, πu) satisfies the equation:

t
∫

s

[

(u, ϕτ )− (∇u,∇ϕ) + (u · ∇ϕ, u) + (πu,∇ · ϕ)
]

dτ + (u(s), ϕ(s))

= (u(t), ϕ(t)) for all ϕ ∈ C1
0 ([0, T ]× R

3).

In [1] in order to investigate on the regularity of a weak solution it is
introduced an energy relation having a local character:

Definition 1.2. A pair (u, πu) is said a suitable weak solution if it is a
weak solution in the sense of the Definition 1.1 and, moreover,

∫

R3

|u(t)|2φ(t)dx + 2

t
∫

σ

∫

R3

|∇u|2φdxdτ 6

∫

R3

|u(σ)|2φ(σ)dx

+

t
∫

σ

∫

R3

|u|2(φτ +∆φ)dxdτ +

t
∫

σ

∫

R3

(|u|2 + 2πu)u · ∇φdxdτ,

(1.2)
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for all t > σ, for σ = 0 and a.e. in σ > 0, and for all nonnegative φ ∈
C∞

0 (R× R3).

In [1] and [7] the following existence result is proved:

Theorem 1.1. For all u0 ∈ J2(R3) there exists a suitable weak solution.

As a consequence of the inequality (1.2) and of the existence theorem
one gets.

Corollary 1.1. A suitable weak solution enjoys the strong energy inequal-

ity:

||u(t)||22 + 2

t
∫

s

||∇u(τ)||22dτ 6 ||u(s)||22,

for all t > s, for s = 0 and a.e. in s > 0 . (1.3)

Moreover for all s such that (1.3) holds we get

lim
t→s+

||u(t)− u(s)||2 = 0 . (1.4)

Let us recall the definition of singular point for a weak solution.

Definition 1.3. We say that (t, x) is a singular point for a weak solution

(u, πu) if u /∈ L∞ in any neighborhood of (t, x); the remaining points, where

u ∈ L∞(I(t, x)) for some neighborhood I(t, x), are called regular.

Definition 1.4. We say that u is a regular solution in (t0, t1) × Ω ⊆
(0, T )×R3 if u is a weak solution, for some q > 1, ut ∈ Lq

ℓoc((t0, t1)×Ω))
and, for all δ > 0, u ∈ L∞((t0 + δ, t1 − δ)× Ω) .

It is known that a regular solution in (t0, t1)×Ω is smooth on compact
subsets contained in (t0, t1)× Ω, see e.g. [10].

Following [1] we introduce the parabolic cylinders

Qr = Qr(t, x) := {(τ, y) : t− r2 < τ < t and |y − x| < r}, (1.5)

and

Q∗
r := Q∗

r(t, x) := {(τ, y) : t− 7

8
r2 < τ < t+

1

8
r2 and |y − x| < r}, (1.6)
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and, for r ∈ (0, t
1
2 ), we set

M(r) =M(t, x, r) := r−2

∫∫

Qr

(|u|3 + |u||πu|)dydτ

+ r−
13
4

t
∫

t−r2

(
∫

|x−y|<r

|πu|dy
)

5
4

dτ , (1.7)

with Qr as in (1.5).
In paper [1], in connection with the regularity of a suitable weak solu-

tion, the authors furnish two regularity criteria. The first is Proposition 1
(or Corollary 1, p. 776) on p. 775:

Proposition 1.1. Let (u, πu) be a suitable weak solution in some par-
abolic cylinder Qr(t, x). There exist ε1 > 0 and c0 > 0 independent of
(u, πu) such that, if

M(t, x, r) 6 ε1, (1.8)

then

|u(τ, y)| 6 c
1
2

1 r
−1, a.e. in (τ, y) ∈ Q r

2
(t, x), (1.9)

where c1 := c0ε
2
3

1 . In particular, a suitable weak solution u is regular in
Q r

2
(t, x).

In [1] this result is used to prove another regularity criterion, that is
Proposition 2 on p. 776:

Proposition 1.2. There is a constant ε3 > 0 with the following property.
If (u, πu) is a suitable weak solution in some parabolic cylinder Q∗

r(t, x)
and

lim sup
r→0

r−1

∫∫

Q∗

r

|∇u|2dydτ 6 ε3 ,

then (t, x) is a regular point.

The above criterion is employed to get the following two main results
(respectively, Theorem B on page 772 and Theorem D on page 774 in [1]).

Theorem 1.2. For any suitable weak solution the set S of singular points
has one-dimensional parabolic Hausdorff measure equal to zero.
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Theorem 1.3. There exists an absolute constant L0 > 0 with the follow-
ing property. If u0 ∈ J2(R3), and if

||u0|x|−
1
2 ||2 = L < L0 , (1.10)

then there exists a suitable weak solution to (1.1) which is regular in the
region

{(t, x) : |x|2 < t(L0 − L)} .
There is a difference in the meaning of the above theorems. Theorem 1.2

gives a geometric measure of the possible set S of singular points. Theo-
rem 1.3 furnishes the existence of a suitable weak solution to (1.1) having
finite the following scaling invariant metric:

sup
0<τ<t

∫

{τ}×R3

|u|2|x|−1dx <∞ ,

t
∫

0

∫

R3

|∇u|2|x|−1dxdτ <∞ t > 0 ,

(1.11)
hence x = 0 is regular for t > 0.

Finally, as a corollary of the latter result, in [1] the authors prove the
following (Corollary p. 820 in [1]):

Theorem 1.4. Let (u, πu) be a suitable weak solution assuming initial
data u0. Suppose that ||∇u0||L2(|x|>R) < ∞. Then, there exists a R0 > R
such that, for all δ > 0, u ∈ L∞((δ,∞)× {x : |x| > R0}) .

1.2. The aims of this note. We work in the setting of the results of
Theorem 1.3 and Theorem 1.7 (below) already proved in [3]. Both these
theorems work with a scaling invariant norm that leads to (1.11) provided
that at the initial instant the weighted norm, that is (1.10),

E (u0, x) :=

∫

R3

|u0|2|x− y|−1dy , x ∈ R
3 , (1.12)

is small in a suitable sense. The consequence of the smallness is the exis-
tence of a regular solution global in time.

In this note we study the existence of a suitable weak solution that, at
least locally in time satisfies the regularity criterion of Proposition 1.1 and,
as a consequence, is locally a regular solution. Also in this case the result
follows from the assumption that the weighted norm (1.12) of the initial
data is finite, but, contrary to Theorem 1.3 and Theorem 1.7, we do not
require smallness. As a consequence we are able to deduce the regularity
only locally in time.
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Theorem 1.5. Let u(t, x) be a suitable weak solution. Assume that for
x ∈ E ⊆ R3 there exists v0 ∈ J1,2(R3) such that

ψ(x) :=

∫

R3

|u0(y)− v0(y)|2
|x− y| dy <

1

(4c)2
, (1.13)

where the constant c is independent of u0, x and v0. Then there exists a
t(x) > 0 such that

u ∈ L∞(Q
( s

4 )
1
2
(76s, x)), for all s ∈ (0, t(x)). (1.14)

In particular, if (τ, y) ∈ Q
( s

4 )
1
2
(76s, x) is a Lebesgue point, then

|u(τ, y)| 6 cτ−
1
2 . (1.15)

Corollary 1.2. Let u(t, x) be a suitable weak solution. Then, for all σ of
validity of the weighted energy inequality (1.2) there exists a set E ⊆ R3,
with R3 − E having zero Lebesgue measure, enjoying the property: for all
x ∈ E(σ), there exists a t(x) > 0 such that

u ∈ L∞(Q
( s

4 )
1
2
(σ + 7

6s, x)), for all s ∈ (0, t(x)). (1.16)

In particular, if (τ, y) ∈ Q
( s

4 )
1
2
(σ + 7

6s, x) is a Lebesgue point, then

|u(τ, y)| 6 c(τ − σ)−
1
2 , (1.17)

with c independent of τ .

We give some comments.
Firstly we observe that Theorem 1.5 seems similar to Theorem 1.3. The

difference is in the fact that we do not require condition (1.10) to the
initial data, but the weaker condition (1.13), that is almost everywhere
satisfied by means of u0 ∈ J2(Ω). The theorem establishes a result of
local regularity for a suitable weak solution of (1.1). The local character is
expressed in (1.14) either by the fact that the solution is L∞ just on the
parabolic cylinder, and by the fact that the height of the cylinder depends
on x, through t(x).

Estimate (1.15) (resp. (1.17)) expresses in what way the solution can
be singular in t = 0 (resp. in σ) provided that x ∈ E (resp. x ∈ E(σ)).

In the way specified below, the set E represents the new aspect of our
result of local regularity stated with an initial data in J2(R3). Actually, if
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we consider u0 ∈ J2(R3), then the Riesz potential

E (u0, x) :=

∫

R3

u20(y)

|x− y|dy (1.18)

is well posed a.e. in x ∈ R3. This claim is consequence of the fact that,
by the Hardy–Littlewood–Sobolev theorem, the following transformation
is well defined:

u20 ∈ L1(R3) → E (u0, x) :=

∫

R3

u20(y)

|x− y|dy ∈ L(3,∞)(R3). (1.19)

Then, for all q ∈ [1, 3) and for any compact K ⊂ R3, the function E (u0, x) ∈
Lq(K). Hence it is almost everywhere finite. Denoting by {uk0} a sequence
of smooth functions converging to u0 in L2(R3), for example the mollified
of u0, for x ∈ R

3 and k ∈ N we define the sequence

ψk(x) :=

∫

R3

|u0 − uk0 |2
|x− y| dy . (1.20)

By Hardy–Littlewood–Sobolev theorem (see Lemma 2.6), it is easy to ver-
ify that the sequence {ψk} converges to zero almost everywhere in x ∈ E ⊆
R3. This makes satisfied almost everywhere in x the assumption (1.13) and
E is the set indicated in Corollary 1.2. We prove that for any x ∈ E there
exists a t(x) > 0 such that M(76s, x, r) 6 ε1 for suitable r and for any
s ∈ (0, t(x)). This result, by means of Proposition 1.1, ensures the regu-
larity in Q r

2
(76s, x), for any s ∈ (0, t(x)). Therefore, if we denote by Sx

the projection onto R3 of the set S of singular points given in Theorem 1.2
(whose one-dimensional Hausdorff measure is zero from the same theorem),
throughout Corollary 1.5 we can claim that S ⊆ R3 \ E. This last claim
makes clear that we do not improve the regularity exhibited in [1] (accord-
ing with the result proved in [8]), but we investigate on the existence of
a size, as function of x belonging to E, of the parabolic neighborhood of
regularity of a weak solution. In Corollary 1.2 it is claimed a dependence
on σ of the set E: this is due to the fact that we have to employ both (1.2)
and the continuity on the right in L2-norm of the weak solution.

The following results are two main consequences of Theorem 1.5.
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Theorem 1.6. Let u(t, x) be a suitable weak solution. Assume the exis-
tence of Ω ⊆ R3 and v0 ∈ J1,2(R3) such that

ψ(x) <
1

(4c)2
uniformly in x ∈ Ω . (1.21)

Then there exists a T0 such that (1.14), and (1.15), hold for all (s, x) ∈
(0, T0)× Ω.

We observe that if Ω ≡ R
3 then Theorem 1.6 gives the existence of a

regular solution (u, πu) on (0, T0)× R3.

Corollary 1.3. Let u(t, x) be a suitable weak solution. For any B(R) and
for any ε > 0, there exists a set Ωε ⊂ B(R), withmeas(B(R)\Ωε) < ε, and
there exists a T0(ε) > 0 such that (1.14) holds for all (s, x) ∈ (0, T0(ε))×Ωε.

Theorem 1.7. Let u(t, x) be a suitable weak solution, and assume also
that ess sup

x
E (u0, x) is sufficiently small. Then, (u, πu) is regular for all

t > 0 and it is unique up to a function c(t) for the pressure field.

The last theorems are the regular solutions counterpart of Theorem 1.5
and Corollary 1.2, provided that the assumptions on the data are stronger
than the simple assumption u0 ∈ J2(R3). The theorems work in the light
of the scaling invariant weighted norm (1.18).

Theorem 1.6 establishes a local existence result stated by requiring a
“suitable closeness”, in the weighted norm (1.18), of the initial data u0 ∈
L2(R3) to a smooth function v0. As the existence is achieved on the element
v0 of the approximation which is close to u0 in the metric (1.18), we are
not able to give a size of T0 by means of u0, but (0, T0) is just (a priori)
a subinterval of existence of the smooth solution (v, πv) corresponding
to v0. In this connection we point out that the above question on the
size of T0 is the same that we meet assuming the data u0 in J3(Ω) or
in L3(Ω) ⊂ L(3,∞), respectively completion of C0(Ω) in L3(Ω) and in
L(3,∞)(Ω). Both these spaces are scaling invariant and in order to prove
the existence local in time we need an auxiliary function, say u0 which
is close to u0 in the metric of L3 or L(3,∞) and u0 ∈ X , where X is a
function space adequate to ensure the existence of a regular solution on
some interval (0, T0). This is an aspect developed with details in [5]. We
conclude that in the statement of Theorem 1.6 we can substitute J1,2 with
any space X which is suitable to ensure the existence of a regular solution
corresponding to v0.
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Corollary 1.3 makes operational condition (1.21) on a suitable subdo-
main. Indeed the existence of the domain Ωε ⊆ B(R) follows from the
construction of a sequence {ψk} almost everywhere converging to zero and
the Severini–Egorov theorem.

Theorem 1.7 furnishes a global existence result just requiring a smallness
condition. It is also an immediate consequence of our previous result in [3].

§2. Preliminaries

Below we recall some results which are fundamental for our aims.

Lemma 2.1. Suppose that |x|βu ∈ L2(R3) and |x|α∇u ∈ L2(R3). Also

i) r > 2, γ + 3
r
> 0, α+ 3

2 > 0, β + 3
2 > 0, and a ∈ [ 12 , 1],

ii) γ + 3
r
= a(α+ 1

2 ) + (1− a)(β + 3
2 ) (dimensional balance),

iii) a(α− 1) + (1− a)β 6 γ 6 aα+ (1− a)β.

Then, with a constant c independent of u, the following inequality holds:

|||x|γu||r 6 c|||x|α∇u||a2 |||x|βu||1−a
2 . (2.1)

Proof. See [1] Lemma 7.1 . �

Lemma 2.2. Assume that K is a singular bounded transformation from
Lp into Lp, p ∈ (1,∞), of Calderón–Zigmund kind. Then, K is also a
bounded transformation from Lp into Lp with respect to the measure (µ+
|x|)αdx, µ > 0, provided that α ∈ (−n, n(p− 1)).

Proof. [9] Theorem 1. �

Lemma 2.3. Assume that (u, πu) is a suitable weak solution. Then the
pressure field admits the following representation formula

πu(t, x)=−Dxi
Dxj

∫

R3

E(x−y)ui(y)uj(y)dy, a.e. in (t, x)∈(0,∞)×R
3, (2.2)

and the following holds:

πu(t, x) ∈ L
5
3 (0, T ;L

5
3 (R3)) . (2.3)

Proof. See [3] Lemma 2.4. Moreover, since u2 ∈ L
5
3 (0, T ;L

5
3 (R3)) esti-

mate (2.3) easily follows. �

Lemma 2.4. For all v0 ∈ J1,2(R3) there exists a unique regular solution
(v, πv) to problem (1.1) on some interval (0, T ) such that

v ∈ C([0, T ); J1,2(R3)), vt, D
2v, ∇πv ∈ L2(0, T ;L2(Ω)) , (2.4)
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where T > c||∇u0||−4
2 .

Proof. The result is due to Leray, see [4]. �

For µ > 0 we define the functionals

E (v, t, x, µ) :=

∫

R3

|v(t, y)|2
(|x− y|2 + µ2)

1
2

dy ,

D(v, t, x, µ) :=

∫

R3

|∇v(t, y)|2
(|x− y|2 + µ2)

1
2

dy,

(2.5)

and set

p(y) := (|x− y|2 + µ2)−
1
2 .

When no confusion arises, we omit some or all the dependences on (v, t, x, µ).
For µ > 0, we call

E (v, t, x, µ) +

t
∫

0

D(v, t, x, µ)dτ (2.6)

weighted energy.

Lemma 2.5. Let (v, πv) be the regular the solution of Lemma2.4. Then,

for all µ > 0, the following weighted energy relation and weighted energy

inequality hold:

E (v, t, x, µ) + 2

t
∫

0

D(v, τ, x, µ)dτ+ 3µ2

t
∫

0

∫

R3

v2(τ, y)

(|x−y|2 +µ2)
5
2
dydτ

= E (v, 0, x, µ) +

t
∫

0

∫

R3

v ⊗ v · v ⊗∇pdydτ + 2

t
∫

0

∫

R3

πvv · ∇pdydτ,

(2.7)

E (t, x, µ) +

t
∫

0

D(τ, x, µ)dτ + 3µ2

t
∫

0

∫

R3

v2(τ, y)

(|x− y|2 + µ2)
5
2
dydτ

6 E (0, x, µ) + c

t
∫

0

E (τ, x, µ)||∇v(τ)||42dτ ,

(2.8)

for all t ∈ [0, T ) and x ∈R3.
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Proof. Identity (2.7) can be formally obtained by multiplying equation
(1.1)1 by vp and integrating by parts on (0, t)×R3. Let us show that it is
well posed for any µ > 0. We start by remarking that in our hypotheses
on v0 we get E (0, x, µ) < ∞ for all x ∈ R3 and µ > 0. By multiplying
equation (1.1)1 by vp and integrating by parts on (0, t)× R

3, we obtain

E (t, x, µ) + 2

t
∫

0

D(τ, x, µ)dτ + 3µ2

t
∫

0

∫

R3

v2(τ, y)

(|x− y|2 + µ2)
5
2
dydτ

= E (0, x, µ)− 2

t
∫

0

∫

R3

(v · ∇v) · vpdydτ − 2

t
∫

0

∫

R3

∇πv · v · pdydτ

=: E (0, x, µ) + 2

t
∫

0

(J1+J2)dτ .

(2.9)

Let us show that the right-hand side is well defined. Applying Hölder’s
inequality and inequality (2.1), we get

|J1| 6 ||v(|x− y|2 + h2)−
1
4 ||24||∇v||2 6 E

1
4 D

3
4 ||∇v||2 6

1

4
D + cE ||∇v||42 .

From the representation formula (2.2), after integrating by parts, we get

∇πv(t, x) = ∇
∫

R3

Dyj
E(x− y)vi(y)Dyi

vj(y)dy .

Hence, applying Hölder’s inequality and employing Lemma 2.2, we deduce

|J2| 6 ||∇πv(|x− y|2 + µ2)−
1
4 || 4

3
||v(|x − y|2 + µ2)−

1
4 ||4

6 c||v · ∇v(|x − y|2 + µ2)−
1
4 || 4

3
||v(|x− y|2 + µ2)−

1
4 ||4 .

Applying again Hölder’s inequality and subsequently (2.1), we deduce the
following estimate:

|J2| 6 c||v(|x− y|2 + µ2)−
1
4 ||24||∇v||2 6 cE

1
4 D

3
4 ||∇v||2 6

1

4
D + cE ||∇v||42.

Hence from (2.9) and via estimates for terms J1 and J2 we obtain the
integral inequality (2.8), from which, thanks to the regularity of v, it is
easy to deduce that (2.7) holds for all µ > 0 and for all t ∈ [0, T ). �
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Lemma 2.6. Let u0 ∈ J2(R3). There exists a set E such that R3 −E has
zero Lebesgue measure, and for all x ∈ E and for all η > 0 there exists a
u0 ∈ J1,2(R3) such that

∫

R3

|u0 − u0|2
|x− y| dy < η . (2.10)

Moreover, for all R > 0 and ε > 0 there exists Ωε ⊆ E such that
meas(B(R)− Ωε) < ε and

∫

R3

|u0 − u0|2
|x− y| dy < η uniformly in x ∈ Ωε . (2.11)

Proof. We denote by {uk0} the mollified functions of u0. It is known that
{uk0} ⊂ C∞(R3) ∩ J1,2(R3), and {uk0} converges to u0 in L2-norm. For all
k ∈ N, we define (1.20), that is

ψk(x) :=

∫

R3

|u0 − uk0 |2
|x− y| dy <∞ .

By the Hardy-Littlewood-Sobolev theorem we get, for r ∈ [1, 3),

||ψk||Lr(K) 6 c(r,K)||uk0 − u0||22, for all compact set K ⊂ R
3.

Hence, the sequence {ψk} converges to zero in Lr(K), for all r ∈ [1, 3). In
particular, there exists a subsequence {ψkj} which converges to zero almost
everywhere in x ∈ K. We denote by {Kν} a sequence of compact sets such
that Kν ⊂ Kν+1 and ∪

ν∈N

Kν = R3. By virtue of the above convergence,

we denote Eν ⊆ Kν the set of the convergence almost everywhere of the
sequence {ψkj}. Then, by means of Cantor’s diagonal method, we construct
a sequence {ψℓ} which converges to 0 for all x ∈ E := ∪

ν∈N

Eν . Hence for

all x ∈ E and η > 0 there exists a ψℓ ∈ {ψℓ} such that u0 := ul̄0 verifies
(2.10). Property (2.11) is a consequence of the above construction and of
the Severino–Egorov theorem. The lemma is completely proved. �

§3. Local in time weighted energy inequality for a

suitable weak solution

In this section we prove that any suitable weak solution admits at least
locally in time a weighted energy inequality with µ = 0. Actually, the
following lemma holds
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Lemma 3.1. Let (u, πu) be a suitable weak solution. Let x, v0 and c as
in Theorem 1.5. Then there exists a t∗(x) > 0 such that

E (u, t, x) +
1

2

t
∫

0

D(u, τ, x)dτ 6 N <∞, for all t ∈ [0, t∗(x)) , (3.1)

with E (u, t, x) and D(u, τ, x) defined in (2.5).

Proof. The proof of estimate (3.1) reproduces in a suitable way an idea
employed in [2]. This idea follows the Leray-Serrin arguments employed for
the proof of the energy inequality in strong form. The proof is achieved by
means of five steps. We set w := u− v and πw := πu − πv, where (u, πu) is
the suitable weak solution and (v, πv) the regular solution corresponding
to v0 and furnished by Lemma 2.4. The first four steps are devoted to prove
the following inequality

E (w, t, x, µ) +
1

2

t
∫

0

D(w, τ, x, µ)dτ 6
1

8c2
,

for all t ∈ [0, t∗(x)) and µ > 0 . (3.2)

Step 1. We start proving that for all t > 0

E (t, x, µ) + 2

t
∫

0

∫

R3

D(τ, x, µ)dτ +3µ2

t
∫

0

∫

R3

|u(τ)|2
(|x−y|2+µ2)

5
2
dydτ

6E (0, x, µ)+

t
∫

0

∫

R3

|u(τ)|2 u · (x−y)
(|x−y|2 + µ2)

3
2

dydτ+ 2

t
∫

0

∫

R3

πu(τ)u(τ)·(x−y)
(|x−y|2 + µ2)

3
2

dydτ.

(3.3)

In the energy inequality (1.2) we set φ(τ, y) := (|x−y|2+µ2)−
1
2 hR(y)k(τ) ∈

C∞
0 (R× R3), with hR and k such that

hR(y) :=







1 if |y| 6 R
∈(0,1) if |y| ∈(R, 2R)
0 for |y| > 2R ,

and k(τ) :=







1 if |τ | 6 t
∈(0,1) if |τ | ∈(t, 2t)
0 for |τ | > 2t .

We get



100 F. CRISPO, P. MAREMONTI

∫

R3

|u(t)|2hR
(|x− y|2 + µ2)

1
2
dy + 2

t
∫

0

∫

R3

|∇u(τ)|2hR
(|x− y|2 + µ2)

1
2
dydτ

+3µ2

t
∫

0

∫

R3

|u(τ)|2hR
(|x − y|2 + µ2)

5
2
dydτ 6

∫

R3

|u0|2hR
(|x− y|2 + µ2)

1
2
dy

+

t
∫

0

∫

R3

|u(τ)|2hR u · (x− y)

(|x− y|2 + µ2)
3
2

dydτ + 2

t
∫

0

∫

R3

πu(τ)hRu(τ) · (x − y)

(|x− y|2 + µ2)
3
2

dydτ

+F (t, R) :=

∫

R3

|u0|2hR
(|x − y|2 + µ2)

1
2
dy + I1(t, x) + I2(t, x) + F (t, R),

(3.4)

where

F (t, R) :=

t
∫

0

∫

R3

|u|2
[

2∇hR · ∇(|x − y|2 + µ2)−
1
2 +

∆hR
(|x − y|2 + µ2)

1
2

+
u · ∇hR

(|x− y|2 + µ2)
1
2

]

dydτ +

t
∫

0

∫

R3

πuu · ∇hR
(|x − y|2 + µ2)

1
2
dydτ .

Since πu, u
2 ∈ L

5
3 (0, T ;L

5
3 (R3)), applying Hölder’s inequality and em-

ploying the decay of ∇hR, ∆hR, for all t > 0, we get F (t, R) = o(R). We
estimate the terms Ii, i = 1, 2. Since µ > 0, by virtue of the integrability
properties of a suitable weak solution, applying Lemma 2.1 we get

|I1(t, x)| 6
t

∫

0

|| u

(|x − y|2 + µ2)
1
3
||33dτ

6 c

t
∫

0

|| u

(|x − y|2 + µ2)
1
4
||2||

∇u
(|x− y|2 + µ2)

1
4
||22dτ.

For I2, applying the Hölder’s inequality and Lemma 2.2, we obtain
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|I2(t, x)| 6 c

t
∫

0

|| u

(|x− y|2 + µ2)
1
3
||3||

πu
(|x− y|2 + µ2)

2
3
|| 3

2
dτ

6 c

t
∫

0

|| u

(|x− y|2 + µ2)
1
3
||33dτ.

Hence, as in the previous case, applying Lemma 2.1, we get

|I2(t, x)| 6 c

t
∫

0

|| u

(|x − y|2 + µ2)
1
4
||2||

∇u
(|x− y|2 + µ2)

1
4
||22dτ.

Employing the estimates obtained for Ii, i = 1, 2, via the Lebesgue domi-
nated convergence theorem, in the limit as R → ∞, for all t > 0 we deduce
the inequality (3.3).

Step 2. In this step we derive a sort of Green’s identity between solutions
(u, πu) and (v, πv), where (v, πv) is the regular solution given in Lemma 2.4,
corresponding to the initial data v0 ∈ J1,2(R3). In the following (0, T ) is
the interval of existence of (v, πv). We also recall that the regular solution
(v, πv) is smooth for t > 0. We denote by λ(τ) a smooth cutoff function
such that λ(τ) = 1 for τ ∈ [s, t] and λ(τ) = 0 for τ ∈ [0, s2 ].

For all t, s ∈ (0, T ), we consider the weak formulation iii) of Defini-
tion 1.1 written with ϕ = λvp:

t
∫

s

[

(pu, vτ )− (p∇u,∇v) + (pu · ∇v, u) + (πu, v · ∇p)
]

dτ + (pu(s), v(s))

= (pu(t), v(t)) +

t
∫

s

[

(∇u, v ⊗∇p) + (u⊗ u, v ⊗∇p)
]

dτ . (3.5)

We multiply equation (1.1)1 written for (v, πv) by up. After integrating by
parts on (s, t)× R3, we get
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t
∫

s

[

(pu, vτ ) + (p∇u,∇v) + (pv · ∇v, u)− (πv, u · ∇p)
]

dτ

=

t
∫

s

[

(∇u, v ⊗∇p) + (u · v,∆p)
]

dτ .

(3.6)

making the difference between formulas (3.5) and (3.6) we get

t
∫

s

[

−2(p∇u,∇v)+(pu · ∇v, u)−(pv ·∇v, u)+(πu, v ·∇p)+(πv, u ·∇p)
]

dτ

= (pu(t), v(t))− (pu(s), v(s)) +

t
∫

s

[

(u⊗ u, v ⊗∇p)− (u · v,∆p)
]

dτ ,

Since in a suitable neighborhood of 0 all the terms of the last integral
equation are continuous on the right, letting s→ 0+, we get

t
∫

0

[

−2(p∇u,∇v)+(pu ·∇v, u)−(pv ·∇v, u)+(πu, v ·∇p)+(πv, u ·∇p)
]

dτ

=(pu(t), v(t))−(pu(0), v(0))+

t
∫

0

[

(u ⊗ u,v ⊗∇p)−(u · v,∆p)
]

dτ,

(3.7)
which furnishes the wanted Green’s identity.

Step 3. Setting w := u−v and πw := πu−πv, let us derive the following
estimate

E (w, t, x, µ) +

t
∫

0

D(w, τ, x, µ)dτ

6 E (w, 0, x, µ) + c

t
∫

0

E
1
2 (w, τ, x, µ)D(w, τ, x, µ)dτ +H(v, t, x, µ),

for all t ∈ [0, T ), x ∈ R
3, µ > 0,

(3.8)
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with

H(v, t, x, µ) := c

t
∫

0

||∇v(τ)||42dτ+c
t

∫

0

E (v, τ, x, µ)D(τ, v, x, µ)dτ.

We remark that from the representation formula (2.2) and regularity of v
we get that

πw = π1 + π2 , π1:= Dxj

∫

R3

Dyi
E(x−y)wi(y)wj(y)dy

and π2:= 2

∫

R3

Dyj
E(x−y)w(y)·∇vj(y)dy.

(3.9)

We sum estimates (2.7) and (3.3), then we add twice formula (3.7). written
for s = 0. Recalling the definition of (w, πw) and formula (3.9), after a
straightforward computation we get

E (w, t, x, µ) + 2

t
∫

0

D(w, τ, x, µ)dτ + 3µ2

t
∫

0

∫

R3

w2(τ, x)

(|x − y|2 + µ2)
5
2
dτ

6 E (w, 0, x, µ) + F1(w, t, x, µ) + F2(w, v, t, x, µ),
(3.10)

where

F1 := F1(w, t, x, µ) :=

t
∫

0

(w ⊗ w,w ⊗∇p)dτ + 2

t
∫

0

(π1, w · ∇p)dτ

F2 := F2(w, v, t, x, µ) := 2

t
∫

0

(π2, w · ∇p)dτ

−2

t
∫

0

(w · ∇v, wp)dτ +
t

∫

0

(v · ∇p, w2) .

The term F1 admits the same estimate as I1 and I2 given in Step 1, hence
we get

|F1| 6 c

t
∫

0

E
1
2 (τ, w, x, µ)D(τ, w, x, µ)dτ for all t ∈ (0, T ), x ∈ R

3, µ > 0.
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For term F2 we estimate the first two terms in a different way from the
last. Taking the representation formula of π2 into account, we get

∣

∣

∣

t
∫

0

(π2, w·∇p)dτ−2

t
∫

0

(w·∇v, wp)dτ
∣

∣

∣
=
∣

∣

∣

t
∫

0

p∇π2·wdydτ+2

t
∫

0

(w·∇v, wp)dydτ
∣

∣

∣
.

Hence, applying the same arguments employed in Lemma 2.5 to estimate
J1 and J2, we get

∣

∣

∣

t
∫

0

(π2, w · ∇p)dτ − 2

t
∫

0

(w · ∇v, wp)dτ
∣

∣

∣
6

∫ t

0

||wp 1
2 ||24||∇v||2dτ

6

t
∫

0

E
1
3 (w, τ, x, µ)D(w, τ, x, µ)dτ + c

t
∫

0

||∇v(τ)||42dτ ,

for all t ∈ [0, T ), x ∈ R
3, µ > 0.

For the last term in F2, applying Hölder’s inequality, we get

∣

∣

∣

t
∫

0

(v · ∇p, w2)dτ
∣

∣

∣
6

∫ t

0

||wp 1
2 ||24||vp||22dτ .

By virtue of estimate (2.1), applying Young’s inequality we deduce:

∣

∣

∣

t
∫

0

(v · ∇p, w2)dτ
∣

∣

∣

6 c

t
∫

0

E
1
4 (w, τ, x, µ)D

3
4 (w, τ, x, µ)E

1
4 (v, τ, x, µ)D

1
4 (v, τ, x, µ)dτ

6

t
∫

0

E
1
3 (w, τ, x, µ)D(w, τ, x, µ)dτ + c

t
∫

0

E (v, τ, x, µ)D(v, τ, x, µ)dτ.
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Hence, we obtain

|F2| 6 2

t
∫

0

E
1
3 (w, τ, x, µ)D(w, τ, x, µ)dτ + c

t
∫

0

||∇v(τ)||42dτ

+c

t
∫

0

E (v, τ, x, µ)D(v, τ, x, µ)dτ, for all t ∈ [0, T ), x ∈ R
3, µ > 0.

Finally, applying Young’s inequality, we get

|F2| 6
t

∫

0

D(w, τ, x, µ)dτ + c

t
∫

0

E
1
2 (w, τ, x, µ)D(w, τ, x, µ)dτ

+c

t
∫

0

||∇v(τ)||42dτ + c

t
∫

0

E (v, τ, x, µ)D(v, τ, x, µ)dτ,

for all t ∈ [0, T ), x ∈ R
3, µ > 0.

Estimates for F1, F2 and (3.10) furnish the integral inequality (3.8).

Step 4. Deduction of estimate (3.2).
Under our assumptions on x, v0 and c, we have, a fortiori,

E (w, 0, x, µ) <
1

(4c)
2, for all µ > 0. (3.11)

Moreover by virtue of the regularity of the solution (v, πv), see Lemma 2.4
and Lemma 2.5, there exists a t∗ such that

H(t∗) <
1

(4c)
2, for all µ > 0. (3.12)

Let us deduce (3.2) that for convenience of the reader we rewrite:

E (w, t, x, µ)+ 1
2

t
∫

0

D(w, τ, x, µ)dτ < 1
8c2 , for all t ∈ [0, t∗), µ > 0. (3.13)

Since w = u− v is right continuous in L2-norm in t = 0, for all µ > 0 the
same continuity property holds for E (w, t, x, µ). Therefore there exists a
δ = δ(µ) > 0 such that

E (w, t, x, µ) <
1

8c2
, for all t ∈ [0, δ). (3.14)
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Hence the validity of estimates (3.8) and (3.11)–(3.12) yields for any t ∈
[0, δ)

E (w, t, x, µ)+

t
∫

0

D(w, τ, x, µ)dτ <
1

8c2
+ c

t
∫

0

E
1
2 (w, τ, x, µ)D(w, τ, x, µ)dτ,

that, thanks to (3.14), gives (3.13) on [0, δ).
Let us show that estimate (3.14) holds for t ∈ [0, t∗). For all µ > 0, the

function

f(t, µ) := E (w, 0, x, µ)+ c

t
∫

0

E
1
2 (w, τ, x, µ)D(w, τ, x, µ)dτ +H(v, t, x, µ)

is uniformly continuous on [0, t∗]. Hence there exists η = η(µ) > 0 such
that

|t1 − t2| < η ⇒ |f(t1)− f(t2)| <
1

8c
2 − E (w, 0, x, µ) −H(t∗(x)).

We state that estimate (3.14) and, consequently, estimate (3.13), also holds
for t ∈ [δ, δ + η). Assuming the contrary, there exists t ∈ [δ, δ + η) such
that

E (w, t, x, µ) >
1

8c2
. (3.15)

On the other hand, the validity of (3.8) yields

E (w, t, x, µ)+

t
∫

0

D(w, τ, x, µ)dτ 6 (f(t)− f(δ)) + f(δ)

<
1

8c2
+ c

δ
∫

0

E
1
2 (w, τ, x, µ)D(w, τ, x, µ)dτ.

Estimate (3.14) allows to deduce that

c

δ
∫

0

E
1
2 (w, τ, x, µ)D(w, τ, x, µ)dτ <

1√
8

t
∫

0

D(w, τ, x, µ)dτ.

Hence the last two estimates imply

E (w, t, x, µ) <
1

8c2
,
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which is in contradiction with (3.15). Since the arguments are independent
of δ, the result holds for any t ∈ [0, t∗(x)), which proves (3.13)

Step 5. Since u = w + v, via estimate (2.8) and via estimate (3.13)
we deduce, with obvious meaning of N and t∗(x) independent of µ, the
following inequality

∫

R3

|u(t, y)|2
(|x − y|2 + µ2)

1
2
+ (1− 1√

8
)

t
∫

0

∫

R3

|∇u(t, y)|2
(|x− y|2 + µ2)

1
2
dydτ 6 N ,

for all t ∈ [0, t∗(x)) .

The thesis is an easy consequence of estimate (3.2) and the following re-
mark: the families of functions

{

t
∫

0

∫

R3

|∇u(t, y)|2
(|x− y|2 + µ2)

1
2
dydτ

}

and

{
∫

R3

|u(t, y)|2
(|x− y|2 + µ2)

1
2
dy

}

are monotone in µ > 0. Hence, by virtue of the Beppo Levi’s theorem, in
the limit as µ→ 0, we deduce (3.1). �

Corollary 3.1. Let (u, πu) be a suitable weak solution. Let σ > 0 such
that (1.2) is verified. Then there exists a set E ⊆ R3, with R3 − E having
zero Lebesgue measure, enjoying the property: for all x ∈ E(σ) there exists
a t∗(x) > 0 such that

E (u, t, x) + (1 − 1√
8
)

t
∫

σ

D(u, τ, x)dτ 6 N <∞, for all t ∈ [σ, σ + t∗(x)) .

(3.16)

Proof. For all σ > 0 for which u verifies (1.2), via Lemma 2.6, there
exists a set E such that for x ∈ E and ε > 0 there exists a function u(σ) ∈
J1,2(R3) that allows us to verify (1.13) of Theorem 1.5 with u(σ) − u(σ).
As the assumptions of Lemma 3.1 are satisfied, the result follows. �

§4. Proof of Theorems 1.5–1.6 and Corollaries 1.2–1.3.

To prove Theorem 1.5 we employ the result of Proposition 1.1. To this
aim, in the following Lemma 4.1 we prove that, for a suitable r > 0, esti-
mate (3.1) of Lemma 3.1 implies condition (1.8) of Proposition 1.1.
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Lemma 4.1. Let the assumption of Lemma 3.1 be satisfied. Then, there
exists δ > 0 such that

M(t, x, r) 6 ε1 , for all r ∈ (0, [(1− δ)t]
1
2 ) and t ∈ (0, t∗(x)). (4.1)

with t∗(x) given in Lemma 3.1.

Proof. By virtue of our assumption, and by virtue of representation for-
mula (2.2) and Lemma 2.2, a.e. in t ∈ (0, t∗(x)), we get that

||πu(t)|x − y|− 4
3 || 3

2
6 c|||u(t)||x − y|− 2

3 ||23 . (4.2)

Applying Hölder’s inequality, from (4.2) and from Lemma 2.1, for all t ∈
(0, t∗(x)) and t− r2 > 0, we have

r−2

t
∫

t−r2

∫

|x−y|<r

[

|u|3 + |v||πu|
]

dydτ

6c

t
∫

t−r2

[

|| u(τ)|x − y|23||
3
3 + || u(τ)|x− y|23||3||

πu(τ)

|x − y|43|| 32
]

dτ

6c

t
∫

t−r2

|| u(τ)|x− y| 1
2

||2||
∇u(τ)
|x− y| 12||

2
2dτ

= c

t
∫

t−r2

E (τ, x)
1
2 D(τ, x)dτ =: N1.

(4.3)

Considering the second term on the right-hand side of M(t, x, r) in (1.7),
applying twice Hölder’s inequality, (4.2), or all t ∈ (0, t∗(x)) and t−r2 > 0,
we get

r−
13
4

t
∫

t−r2

[

∫

|x−y|<r

|πu(τ, y)|dy
]

5
4

dτ 6 cr−
1
3

t
∫

t−r2

[

|| πu(τ)|x − y| 4
3

|| 3
2

]
5
4

dτ

6cr−
1
3

t
∫

t−r2

|| u(τ)|x− y| 1
2

||
5
6

2 ||
∇u(τ)
|x− y| 1

2

||
5
3

2dτ 6 c
[

t
∫

t−r2

E
1
2 (τ, x)D(τ, x)dτ

]
5
6

=: N2.

(4.4)
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Hence (4.3) and (4.4) imply that

M(t, x, r) 6 N1 +N2.

Employing estimate (3.1), we get

N1 +N2 6 cN
1
2

t
∫

t−r2

D(τ, x)dτ +
[

cN
1
2

t
∫

t−r2

D(τ, x)dτ
]

5
6

,

for all t ∈ (0, t∗(x)) and t− r2 > 0.

On the other hand the function

t∗(x)
∫

t

D(τ)dτ is uniformly continuous on [0, t∗(x)].

Hence there exists a δ ∈ (0, 1) such that

[

cN
1
2

t
∫

(1−δ)t

D(τ, x)dτ
]

5
6

+ cN
1
2

t
∫

(1−δ)t

D(τ, x)dτ < ε1 ∀t ∈ (0, t∗(x)).

Hence the lemma is proved. �

Now we are in a position to prove the results of Theorem 1.5 and The-
orem 1.6.

Proof of Theorem 1.5. By virtue of Lemma 3.1, for any x satisfying the
assumptions, estimate (3.1) holds on some interval [0, t∗(x)). Set t(x) :=
6
7 t

∗(x), by virtue of Lemma 4.1, there exists a δ > 0 such thatM(76s, x, r) 6

ε1, for all r ∈ (0, [(1 − δ)76s]
1
2 ), s ∈ (0, t(x)). This, via Proposition 1.1,

implies the local regularity (1.14), provided that δ ∈ (0, 17 )
1. Finally, in

order to prove (1.15) it is enough to observe that the point (s, x) belongs
to Q

( s
4 )

1
2
(76s, x) and, if (s, x) is a Lebesgue point, then, via estimate (1.9),

we can state (1.15). The theorem is completely proved. �

Proof of Corollary 1.2. By virtue of Corollary 3.1, there exists a set
E(σ) such that for all x ∈ E(σ) estimate (3.1) holds on some interval
[σ, σ + t∗(x)). Then one can conclude as in the proof of Theorem 1.5. �

1This condition ensures that we can choose r =
√
s, being (1 − δ) 7

6
s > s.
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Proof of Theorem1.6. Under the assumption of the theorem, Lem-
ma 3.1 holds for any x in Ω, with t∗(x) uniform in Ω. The last claim
is a consequence of the fact that in the definition of ψ the smooth func-
tion v0 is independent of x ∈ Ω. Hence under our assumption (1.21) we
have that both (3.11) and (3.12) are uniform with respect to x. Setting
T0 := t∗, we write (3.1) for t ∈ [0, T0) for all x ∈ Ω. As a consequence, all
the arguments employed for the proof of Theorem 1.5 work independently
of x ∈ Ω. The theorem is proved. �

Proof of Corollary 1.3. Fixed the ball B(R) and given ε > 0, we can
employ Lemma 2.6 which furnishes property (2.11). Hence the assumption
of Theorem 1.6 holds for any x in Ωε. �
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Università degli Studi
della Campania “Luigi Vanvitelli”,
via Vivaldi 43, 81100 Caserta, Italy

E-mail : francesca.crispo@unicampania.it,
paolo.maremonti@unicampania.it


