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LEGENDRIAN CURVES IN CP 3: CUBICS AND CURVES

ON A QUADRIC SURFACE

Abstract. We prove that the number of Legendrian rational cubics
in CP 3 through three generic points and a line is three. Also, we
classify all Legendrian curves on a quadric surface. Additionally,

several computations are verified using Macaulay2 computer algebra
system.

§1. Introduction

Inspired by Gromov–Witten invariants, one can try to count holomorp-
hic curves under some additional restrictions. For example, I. Vainsencher
asked to count Legendrian curves passing through a prescribed number of
generic points or lines. His student, Éden Amorim [2] used localizations
to count rational Legendrian curves through 2d + 1 generic lines in CP 3.
Then G. Mikhalkin proposed to me this problem as a potential topic for my
thesis. However, not much has been accomplished. In this paper, we show
that the family of Legendrian cubics passing through three generic points
in CP 3 forms a line in the space of coefficients and classify all algebraic
Legendrian curves on a quadric surface. Some computations are performed
in Macaulay2, [12].

The recent study of the complex Legendrian curves is motivated by
minimal surfaces in the four-dimensional sphere. The map

(z1, z2, z3, z4) 7→ (z1 + jz2, z3 + jz4)

from C4 to H2 yields the so-called twistor (or Penrose) map

φ : CP 3 → HP 1 = S4,
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and Bryant has shown [5] that the images of the Legendrian curves in CP 3

under φ are superminimal surfaces in S4. Furthermore, each minimal im-
mersion S2 → S4 can be obtained as φ(C), where C is a rational Legen-
drian curve in CP 3. Then, each Riemann surface M can be mapped to a
Legendrian curve in CP 3 using two meromorphic functions (f, g) on M .
This leads to the fact that for each Riemann surface M2 there exists a
conformal minimal immersion M2 → S4. Nowadays, such immersions are
mostly constructed by this approach. See a recent survey [1] about minimal
surfaces.

The area of the image of a harmonic map f : S2 → S4 is equal to
4πd if f(S2) comes as the projection of a Legendrian rational curve in
CP 3 of degree d. The dimension of the space Md,0 of Legendrian maps
CP 1 → CP 3 of degree d is proven to be 2d+4, see [13,17,24,25]; see [15] for
the Legendrian maps CP 1 → CP 2n+1. This is done via studying the pairs
(f, g) of meromorphic functions of degree d with the same ramification
divisor. Up to degree six, the space Md,0 is a smooth complex manifold,
see [4].

If d > g + 3, then the part of the space Md,g consisting of smooth
contact curves in CP 3 of degree d and genus g, is smooth, [19,26]. Besides,
a complete intersection cannot be a contact curve [6]. This complicates
the study of the contact curves of higher genus, which was approached
in [8, 9]. The dimension of Md,g is 2d− g + 4 for d > max(2g, g + 2), [18];
the dimension of each irreducible component of Md,g is between 2d−4g+4
and 2d−g+4, where the upper bound is always attained by totally geodesic
immersions (whose images belong to a line) and the lower bound is achieved
on M6,1 and M8g+1+3k,g , [8]. See [9] for further details about other possible
pairs (d, g) with non-trivial contact curve. All this means that, for g > 1,
we need to take the degree d of the curve at least 6, which is now beyond
our abilities to compute with formulae even using computer.

For a general overview of complex contact varieties and deformations
of contact curves, see [7], [26, 27]. Real algebraic contact structures are
numerous, the questions about polynomial distributions go back to [14,22],
see Example 2.4.

For the works of the same spirit, we mention the study of Legendrian
curves of minimal degree through two points with prescribed tangency [11]
and contact curves in PSL(2,C) [20].
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§2. The contact structure on CP 3

Definition 2.1. A section ω of the projectivization P (Ω1(CP 3)) of the

cotangent bundle of CP 3 is said to be a contact holomorphic form on CP 3

if ω ∧ dω is nowhere zero.

Formally, there are charts Ai, holomorphic 1-forms ωi on Ai, a set fij
of transition functions on Ai ∩Aj, fijωi = ωj, such that

⋃

Ai = CP 3 and

ωi ∧ dωi 6= 0 on Ai.

Note that if ω is locally a contact form and f is a function, then fω is
also a contact form since

fω ∧ d(fω) = f2ω ∧ dω. (1)

Example 2.2. The form ω = ydx− xdy + wdz − zdw is contact.

Indeed, consider the restriction of ω to the chart w = 1. We have

ω|w=1 = dz + ydx− xdy,

ω|w=1 ∧ dω|w=1 = −2dx ∧ dy ∧ dz 6= 0,

similar formulae hold in other charts.

Theorem 2.3 ( [16]). Each contact holomorphic form ω on CP 3 is of the

type

(py − qz + aw)dx + (−px+ rz + bw)dy + (qx− ry + cw)dz

+ (−ax− by − cz)dw, (2)

where a, b, c, p, q, r are constants and pc + qb + ra 6= 0. Furthermore, all

such forms are equivalent under the GL(4,C) action.

Proof. We only sketch a proof from [16]. Let α be a holomorphic contact
form in CP 3. Note that the set fij of transition functions determines a
linear bundle whose first Chern class we denote by c1(α). The form α∧dα
gives a section of the canonical bundle. Considering transition function (1),
we conclude that c1(CP

3) = 2c1(α). This means that if Pdx+Qdy+Rdz
is a contact form in the chart w = 1, then it extends to all of CP 3 only
if the transition functions to other charts have w in the denominator in
degree at most two. Therefore, P , Q, and R are polynomials of degree one.
The explicit form of all such polynomials follows by a direct computation.

�

Quite the contrary, there are many algebraic contact structures on RP 3.
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Example 2.4. The following forms are contact forms on RP 3:

ω′

1 = (yz2 + yw2)dx+ (−xz2 − xw2)dy

+ (x2w + y2w + w)dz + (−x2z − y2z − z)dw,

ω′

2 =(x2y + y3 + yz2 + yw2)dx − (x3 + xy2 + xz2 + xw2)dy

+ (x2w + y2w + z2w + w3)dz − (x2z + y2z + z3 + zw2)dw.

Note also that a small perturbation of the coefficients of a real contact
form does not affect the fact that ω′ ∧ dω′ never vanishes.

It seems not easy to enumerate real algebraic curves that are contact
with respect to these contact structures.

Proposition 2.5. Any irreducible algebraic curve C in CP 3 that is not

a collection of lines is Legendrian with at most one holomorphic contact

structure.

Indeed, when we intersect the distribution given by (2) with the distri-
bution given by ω = yxd − xdy + wdz − zdw, we obtain a vector field v
almost everywhere (except for a finite collection of points as the Macaulay2
code below shows). On the other hand, we know that there is a line, tan-
gent to the obtained distribution, through each point in CP 3. Therefore,
the integral curves for v are lines almost everywhere. Hence, the only locus
where a curve tangent to both distributions can live, is the set where these
two contact forms coincide, i. e., a finite collection of points.

The following code in Macaulay2, [12], obtains the ideal J of the variety
of the points where two contact structures coincide. Comments start with
“--”. What follows after “=” is the output of the corresponding command.
We use these conventions throughout this paper.

use QQ[p,q,r,a,b,c,x,y,z,w]

a1=p*y-q*z+a*w

a2=-p*x+r*z+b*w

a3=q*x-r*y+c*w

a4=-a*x-b*y-c*z

I=ideal(a1*x-a2*y, a2*w-a3*x,a3*z-a4*w)

C=minimalPrimes I

J=C_8 -- all the other ideals C_0, C_1, ...

-- give lines if we fix a,b,c,p,q,r

dim J -- =7
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-- 7-6=1 because we have 6 parameters p,q,r,a,b,c

-- so it is just several lines through the origin,

-- that is, a collection of points after the homogenisation.

The global Reeb vector field for the contact structure

ω = ydx− xdy + wdz − zdw

is given by

y
∂

∂x
− x

∂

∂y
+ w

∂

∂z
− z

∂

∂w
.

Its trajectories (which are also the fibers of the Penrose map CP 3 → S4)
are given by

ϕ(t) =

(

A
(t2 − 1)

(t2 + 1)
, 2A

t

(t2 + 1)
, B

((t+ k)2 − 1)

((t+ k)2 + 1)
, 2B

(t+ k)

((t+ k)2 + 1)

)

(3)

and
(

t2 − 1

t2 + 1

)′

=
4t

t2 + 1
,

(

2t

t2 + 1

)

′

=
t2 − 1

t2 + 1
.

So, the Reeb vector field just rotates in xy plane and zw plane on the same
angle. For each fixed angle, this gives a linear transformation.

§3. Contact form automorphisms

It is known that the group of automorphisms of CP 3 that preserve the
form

ω = ydx− xdy + wdz − zdw

is the symplectic group Sp(4,C). Indeed, we have 6 conditions on the
coefficients of a matrix A ∈ GL(4,C), since A preserves ω, and the condi-
tion detA 6= 0, but one can check (by Macaulay2, for example) that the set
of such A ∈ C16 is a quasiprojective variety of dimension 10. The dimension
count gives dimSp(4,C) = 10 and dimPGL(4,C) = 15, which agrees with
the fact the set of all contact structures in (2) is five-dimensional.

Proposition 3.1. We list the set of generators of this group Sp(4,C).

• 1) x → x+ λy,









1 λ 0 0
0 1 0 0
0 0 1 0
0 0 0 1









,
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• 2) x → y, y → −x,









0 1 0 0
−1 0 0 0
0 0 1 0
0 0 0 1









,

• 3) x → z, y → w,









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0









,

• 4) x → x+ λw, z → z + λy,









1 0 0 λ
0 1 0 0
0 λ 1 0
0 0 0 1









,

• 5) x → λx, y → y/λ,









λ 0 0 0
0 1/λ 0 0
0 0 1 0
0 0 0 1









.

Proposition 3.2. The restriction of a contact structure of the type (2)
on the plane z = w = 0 is p(ydx− xdy) = 0 by an easy computation.

Therefore, the vector field generated by the contact form, at a point
(x, y) equals the vector (x, y), so that the only integral curves are the lines
passing through the origin. Since all of the planes are equivalent under
the action of GL(4,C), it follows that all of the planar contact curves are
collections of lines.

Let us choose an arbitrary plane L.

Proposition 3.3. Each contact curve in L is a collection of lines through

a point p ∈ L. Moreover, L is the contact plane at p, i. e., L is the zero

set of ω computed at p.

Proposition 3.4. All of the elements of Sp(4,C) that preserve the points

(0, 0, 0, 1), (1, 1, 1, 1), (−1, 1,−1, 1)

are of the form

Stab3µ : x → x, y → y + µ(z − x), z → z,

w → w − µ(z − x),









1 0 0 0
−µ 1 µ 0
0 0 1 0
µ 0 µ 1









.
(4)
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Proof. Direct computation. �

It is easy to send any point of CP 3 to (0, 0, 0, 1) by an element of Sp(4).
Consequently, the points of CP 3 can be divided into two classes: those
lying on the plane L through (0, 0, 0, 1) such that ω((0, 0, 0, 1))|L = 0 and
all the others. The subgroup of Sp(4) stabilizing (0, 0, 0, 1) acts on both
these classes transitively. Now, consider a point p that is not on the con-
tact planes through (0, 0, 0, 1) and (1, 1, 1, 1). A direct computation shows
that the subgroup of Sp(4) stabilizing (0, 0, 0, 1) and (1, 1, 1, 1) contains an
element that sends p to (−1, 1,−1, 1). Thus, we have the following lemma.

Lemma 3.5. The group Sp(4) is generically 3-transitive, i. e., any three

points p1, p2, p3 ∈ CP 3 in general position can be sent to any three points

q1, q2, q3 ∈ CP 3 in general position by an element a ∈ Sp(4,C). In general,

the set

{a ∈ Sp(4,C) | a(pi) = qi, i = 1, 2, 3}

is of dimension one.

§4. Curves on a hypersurface of degree two

Consider a contact form ω of the type (2). We will find the restriction
of ω on the surface X given by

{xy − zw = 0} = Im (f : CP 1 × CP 1 → CP 3),

f : (µ : µ′), (ν : ν′) → (µν′, µ′ν, µν, µ′ν′). (5)

Note that any irreducible hypersurface X ′ of degree 2 in CP 3 is projecti-
vely equivalent to X . Therefore, this method describes all of the Legendrian
curves on all of the non-degenerate hypersurfaces X ′ of degree 2.

Computing in the affine chart (µ, ν) → (µ, ν, µν, 1) ∈ X , we obtain

f∗ :
∂

∂µ
→

∂

∂x
+ y

∂

∂z
,
∂

∂ν
→

∂

∂y
+ x

∂

∂z
.

The fact that ω(f∗(M
∂
∂µ +N ∂

∂ν ) = 0 at (µ, ν, µν, 1) is equivalent to

(pν − qµν + a)M + (−pµ+ rµν + b)N + (qµ− rν + c)(Mν +Nµ) = 0,

i.e.,

M(pν + a− rν2 + cν) +N(−pµ+ b+ qµ2 + cµ) = 0.
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If a curve is locally of type (µ(t), ν(t)), then its tangent vector is given
by the formula µ′ ∂

∂µ +ν′ ∂
∂ν . But this one, after reparametrization, rewrites

as
dµ

dt
= (c− p)µ+ b+ qµ2,

dν

dt
= −((p+ c)ν + a− rν2). (6)

We are looking for the algebraic leaves of this foliation. See [10, 23]
for details about the space of foliations with algebraic leafs, [3] for the
classification of the quadratic systems with the first integral.

Example 4.1. Consider the curve (t, t2, t3, 1), which lies on the hypersur-
face {xy − zw = 0}. It is Legendrian with respect to the form

3dx− 3dy + wdz − zdw = 0,

so we put

p = 3, c = 1, q = a = r = b = 0

and (6) becomes

(µ′, ν′) = (−2µ,−4ν) = (µ, 2ν),

whence we have µ = et, ν = e2t, which is the same as (µ, ν) = (t, t2).
Subsequently,

(µ, ν, µν, 1) = (t, t2, t3, 1).

Depending on the coefficients, each equation dx
dt = c0 + c1x+ c2x

2 after
a linear change of the coordinates (over the complex numbers) becomes
one in the following list:

• dx
dt = c,

• dx
dt = cx,

• dx
dt = cx2,

• dx
dt = c(x2 − 1).

Example 4.2. If dµ
dt = c0(µ

2 − 1), dνdt = c1(ν
2 − 1), then dµ

µ2−1
= c3

dν
ν2−1

.

This implies that

log

(

µ− 1

µ+ 1

)

= c4 log

(

ν − 1

ν + 1

)

+ c5,

and finally c6(
ν−1

ν+1
) = c7(

µ−1

µ+1
)d1 , which is algebraic if d1 ∈ Q.

To the contrary, the case where

dµ

dt
= c0(µ

2 − 1),
dν

dt
= c1ν

2
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always gives a non-algebraic curve if c0c1 6= 0 because this gives an equa-
tion of the type µ−1

µ+1
= e1/ν . So, by a direct computation, we prove the

following theorem.

Theorem 4.3. After a linear change of coordinates

µ̃ = c0 + c1µ, ν̃ = c2 + c3ν,

any Legendrian curve on the quadric xy−zw = 0 with parametrization (5)
can be written in one of the following standard forms:

• c0(
ν−1

ν+1
)d1 = c1(

µ−1

µ+1
)d2 ,

• c0ν
d1 = c1µ

d2 ,

• c0(
ν−1

ν+1
)d1 = c1µ

d2 ,

• c0(
µ−1

µ+1
)d1 = c1ν

d2 ,

• c0µν + c1µ+ c2ν = 0,
• c0µ+ c1ν + c2 = 0,
• c0µν + c1µ+ c2 = 0,
• c0µν + c1ν + c2 = 0,
• µ = c0,
• ν = c0,

where ci ∈ C, di ∈ N0 are some constants.

Remark 4.4. Given this classification, one might count the Legendrian
curves of given degree and genus lying in a quadric. For example, all ra-
tional quartics lie on a quadric surface.

§5. Legendrian curves of degrees one and two

Definition 5.1. A map f : M → CP 3 is totally geodesic if f(M) is a

Legendrian line.

Let us study the rational Legendrian curves of degrees one and two. In
the case deg x, y, z = 1 or 2, it happens that such curves are parametrized
by (f, p+ qf, r + pf), where f is a polynomial of degree 1 or 2.

Consider a general line

l = (a0 + b0s, a1 + b1s, a2 + b2s, a3 + b3s)

in CP 3. Putting it into the contact form we conclude that the line l is
Legendrian if and only if

a1b0 − a0b1 + a3b2 − a2b3 = 0.
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This means that for a point A we have a one-dimensional family of Le-
gendrian lines through A. This family is just the contact plane through A.
Therefore, the number of Legendrian lines through one point and one line
equals one.

Let us observe one important property of Legendrian lines. One can
think of a line l in CP 3 as of four section x, y, z, w of O(1) on CP 1. Let
X , Y , Z, W be the roots of x, y, z, w, x = a0+b0s, X = −a0

b0
, y = a1+b1s,

Y = −a1

b1
, etc.

Proposition 5.2. The following three conditions are equivalent:

• the line l is Legendrian,

• y(X)/z(X) = w(Z)/x(Z),
• x(Y )/w(Y ) = z(W )/y(W ).

Proof. Look at the table with values of x, y, z, w in X , Y , Z, W .










X = (0, a1b0−b1a0

b0
, a2b0−b2a0

b0
, a3b0−b3a0

b0
)

Y = (a0b1−a1b0
b1

, 0, a2b1−a1b2
b1

, a3b1−a1b3
b1

)

Z = (a0b2−a2b0
b2

, a1b2−a2b1
b2

, 0, a3b2−a2b3
b2

)

W = (a0b3−a3b0
b3

, a1b3−a3b1
b3

, a2b3−a3b2
b3

, 0)











. �

Remark 5.3. Is it possible to generalize this proposition for the curves
of higher degree?

§6. Legendrian cubics

Let us find all of the Legendrian cubics passing through three generic
points in CP 3. We parametrize our curve and suppose that it passes
through chosen points at t = −1, 0, 1. This imposes constraints on the
coefficients of this parametrization and we will find that the correspond-
ing subvariety of the space of coefficients of cubics through three generic
points is a line. This subvariety happens to be of dimension one (as ex-
pected) and of degree one (it was not expected). First, we do it using
Macaulay2; then, we do it “by hands”.

clearAll

--coefficients of the parametrization of the cubic

mainvar=(a0,a1,a2,a3,b0,b1,b2,b3,c0,c1,c2,c3,d0,d1,d2,d3)

R=QQ[mainvar]; P=R[s];

--polynomials for each coordinate

x=a0+a1*s+a2*s*s+a3*s*s*s; y=b0+b1*s+b2*s*s+b3*s*s*s;
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z=c0+c1*s+c2*s*s+c3*s*s*s; t=d0+d1*s+d2*s*s+d3*s*s*s;

ourconditions=y*diff(s,x)-x*diff(s,y)+t*diff(s,z)-z*diff(s,t)

--in M, we have our relation for variables

--since in the variable ourconditions

--(as a polynomial in z) all the coef. should be zeroes

(C,M) = coefficients ourconditions

(A,B,C)=(0,1,-1)

xA=sub(x,{s=>A}); xB=sub(x,{s=>B}); xC=sub(x,{s=>C});

yA=sub(y,{s=>A}); yB=sub(y,{s=>B}); yC=sub(y,{s=>C});

zA=sub(z,{s=>A}); zB=sub(z,{s=>B}); zC=sub(z,{s=>C});

tA=sub(t,{s=>A}); tB=sub(t,{s=>B}); tC=sub(t,{s=>C});

--choose random points

(p11,p12,p13,p14)=(29,-6,13,11)

(p21,p22,p23,p24)=(-3,-17,7,-5)

(p31,p32,p33,p34)=(16,-5,6,23)

--conditions that our curve passes through chosen points

(i1,i2,i3)=(p14*xA-p11*tA,p14*yA-p12*tA,p14*zA-p13*tA)

(j1,j2,j3)=(p24*xB-p21*tB,p24*yB-p22*tB,p24*zB-p23*tB)

(k1,k2,k3)=(p34*xC-p31*tC,p34*yC-p32*tC,p34*zC-p33*tC)

use R; N= M_0; l=i->lift(i,R);

J = ideal(i1,i2,i3,l(N_0),l(N_1),l(N_2),l(N_3),l(N_4))

S = minimalPrimes J

J0 = S_0; J1 = S_1; J2 = S_2;

--S_3 does not exist

di=i->dim variety i; use P;

Null = ideal(x,y,z,t) --if Null is a subset of our ideal,

-- it means that x, y, z, t are all zeroes at some point,

-- so we are not interested in such coefficients a0, a1, ...
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di J0 --=7

di J1 --=8 that raises our suspicions

-- that it contains Null...

di J2 --=7

--ideal(s-A) means evaluation at A

isSubset(Null, promote(J0,P)+ideal(s-A)) --=false,

isSubset(Null, promote(J1,P)+ideal(s-A))

--=true, eliminate from our consideration!

isSubset(Null, promote(J2,P)+ideal(s-A)) --=false

use R; S0 = minimalPrimes (J0+ideal(j1,j2,j3));

J00=S0_0; J01=S0_1; --S0_2 do not exist

use P

isSubset(Null, promote(J00,P)+ideal(s-B)) --=false

isSubset(Null, promote(J01,P)+ideal(s-B)) --=true, eliminate!

use R; S01 = minimalPrimes (J00+ideal(k1,k2,k3))

J000=S01_0; J001=S01_1;

use P; isSubset(Null, promote(J000,P)+ideal(s-C)) --=false

isSubset(Null, promote(J001,P)+ideal(s-C)) --=true, eliminate!

di J000 --=1

degree J000 --=1, so it is linear!

---------

S2 = minimalPrimes (J2 + ideal(j1,j2,j3))

J20=S2_0 --S2_1 does not exist

isSubset(Null, promote(J20,P)+ideal(s-B)) --=true, eliminate!

Any rational non-planar cubic is equivalent to (t, t2, t3, 1). We can choose
a contact form ω1 such that (t, t2, t3, 1) is Legendrian with respect to it.

Lemma 6.1. The cubic (t, t2, t3, 1) is Legendrian with respect to only one

contact structure

ω1 = 3ydx− 3xdy + wdz − zdw.

Proof. Direct calculation, using (2). �
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We fix the contact form w1, then by a contactomorphism we can bring
any three generic points to the points

(0, 0, 0, 1), (1, 1, 1, 1), (−1, 1,−1, 1).

The main result of this section is the following theorem (above we have
just predicted that the family of such curves is a line in the space of the
coefficients).

Theorem 6.2. All of the rational cubics passing through

(0, 0, 0, 1), (1, 1, 1, 1), (−1, 1,−1, 1)

and tangent to

ω1 = 3ydx− 3xdy + wdz − zdw

are of the form

l(t, µ) = (t, t2 + µ(t− t3), t3, 1− 3µ(t− t3)). (7)

The result of the theorem is not surprising. This is the orbit of the
action of Stab3µ (see Eq. (4)) on (t, t2, t3, 1). Therefore, the only problem
is to show that there are no other solutions.

Corollary 6.3. For each holomorphic contact form on CP 3, the number

of rational contact cubics through three generic points and a line in general

position is equal to three.

Proof. We intersect family (7) with a generic line L of the type

(t′, p1 + q1t
′, p2 + q2t

′, p3 + q3t
′).

Because of the genericity, L does not pass through

(0, 0, 0, 1) = l(0, µ).

Therefore, we may assume that t 6= 0 at any intersection of L and l(t, µ).
Consequently, at a point of intersection, we have t′ = ct for some c. Then
it follows that

p1 + q1t
′ = c(t2 + µ(t− t3)),

p2 + q2t
′ = ct3,

p3 + q3t
′ = c(1− 3µ(t− t3)). (8)

We have

3(p1 + q1t
′) + p3 + q3t

′ = c(3t2 + 1).
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Therefore, substituting t′ = ct, we obtain

c =
3p1 + p3

3t2 − 3q1t− q3t+ 1
.

Then, using the first equality in (8), we get

µ =
p1 + q1ct− ct2

c(t− t3)
.

Then, since c(t3 − q2t) = p2, we have

t3 − q2t =
p2

3p1 + p3
(3t2 − 3q1t− q3t+ 1).

Choosing p2, q2 appropriately, we see that the last equation usually has
three roots. �

Corollary 6.4. For the contact form

ω = ydx− xdy + wdz − zdw,

the parametrization of the family of Legendrian rational cubics through the

points

(0, 0, 0, 1), (1, 1, 1, 1), (−1, 1,−1, 1)

is

(3t− t3, 2t2 + 2µ(t− t3), 2t3, 1 + t2 − 2µ(t− t3)). (9)

The surface swept by all these cubics is given by F = 0, where

F (x, y, z, w) = 2x3 + 21x2z − 27y2z − 54yzw− 27zw2 + 60xz2 + 25z3.

Such a surface intersects a generic line in three points. This gives another

proof of Corollary 6.3.

§7. Proof of Theorem 6.2

Each rational cubic curve has a parametrization of the form

(a0 + a1t+ a2t
2 + a3t

3,

b0 + b1t+ b2t
2 + b3t

3,

c0 + c1t+ c2t
2 + c3t

3,

d0 + d1t+ d2t
2 + d3t

3).

We supposed that our cubic passes through the points

(0, 0, 0, 1), (1, 1, 1, 1), (−1, 1,−1, 1)
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at t = 0, 1,−1, respectively. Substituting t = 0 in the parametrization, we
obtain

a0 = b0 = c0 = 0, d0 = 1.

Substitutions t = ±1 give us

a1 + a2 + a3 = b1 + b2 + b3 = c1 + c2 + c3 = 1 + d1 + d2 + d3,

a1 − a2 + a3 = −b1 + b2 − b3 = c1 − c2 + c3 = 1− d1 + d2 − d3.

Therefore,

a2 = b1 + b3 = c2 = d1 + d3, a1 + a3 = b2 = c1 + c3 = 1 + d2.

Substituting indeterminates with bigger indices as functions of the inde-
terminates with smaller indices, we see that our curve is parametrized by

(a1t+ a2t
2 + (b2 − a1)t

3,

b1t+ b2t
2 + (a2 − b1)t

3,

c1t+ a2t
2 + (b2 − c1)t

3,

1 + d1t+ (b2 − 1)t2 + (a2 − d1)t
3).

Evaluating the form 3ydx− 3xdy+wdz − zdw on the curve, we obtain

3(b1t+ b2t
2 + (a2 − b1)t

3)(a1 + 2a2t+ 3(b2 − a1)t
2)

− 3(a1t+ a2t
2 + (b2 − a1)t

3)(b1 + 2b2t+ 3(a2 − b1)t
2)

+ (1 + d1t+ (b2 − 1)t2 + (a2 − d1)t
3)(c1 + 2a2t+ 3(b2 − c1)t

2)

− (c1t+ a2t
2 + (b2 − c1)t

3)(d1 + 2(b2 − 1)t+ 3(a2 − d1)t
2) = 0.

The coefficient before t0 should be equal to 0, so c1 = 0. The parametri-
zation rewrites as

3(b1t+ b2t
2 + (a2 − b1)t

3)(a1 + 2a2t+ 3(b2 − a1)t
2)

− 3(a1t+ a2t
2 + (b2 − a1)t

3)(b1 + 2b2t+ 3(a2 − b1)t
2)

+ (1 + d1t+ (b2 − 1)t2 + (a2 − d1)t
3)(2a2t+ 3b2t

2)

− (a2t
2 + b2t

3)(d1 + 2(b2 − 1)t+ 3(a2 − d1)t
2) = 0.

The coefficient before t1 equals 2a2, so a2 = 0.
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3(b1t+ b2t
2 − b1t

3)(a1 + 3(b2 − a1)t
2)

− 3(a1t+ (b2 − a1)t
3)(b1 + 2b2t− 3b1t

2)

+ (1 + d1t+ (b2 − 1)t2 − d1t
3)(3b2t

2)

− (b2t
3)(d1 + 2(b2 − 1)t− 3d1t

2)

= 3(b1t+ b2t
2 − b1t

3)(a1 + 3(b2 − a1)t
2)

− 3(a1t+ (b2 − a1)t
3)(b1 + 2b2t− 3b1t

2)

+ b2t
2(3+3d1t+3(b2−1)t2−3d1t

3−d1t−2(b2−1)t2+3d1t
3)

= 3(b1t− b1t
3)(a1 + 3(b2 − a1)t

2)− 3(a1t+ (b2 − a1)t
3)(b1 − 3b1t

2)

+ b2t
2(3(b2 − a1)t

2 − 3a1 + 3 + 2d1t+ (b2 − 1)t2)

= b1t
3(−3a1−9(b2−a1)t

2+9(b2−a1)+9a1−3(b2−a1) + 9(b2−a1)t
2)

+ b1t(3a1 − 3a1) + b2t
2(3(b2 − a1)t

2 − 3a1 + 3+ 2d1t+ (b2 − 1)t2)

= 6b1b2t
3 + b2t

2(3(b2 − a1)t
2 − 3a1 + 3 + 2d1t+ (b2 − 1)t2)

= b2t
2(6b1t+ 3(b2 − a1)t

2 − 3a1 + 3 + 2d1t+ (b2 − 1)t2)

= b2t
2(t(6b1 + 2d1) + t2(4b2 − 3a1 − 1)− 3a1 + 3) = 0.

Therefore, either b2 = 0 or a1 = 1, b2 = 1, d1 = −3b1.
In the first case, the curve is going to be as follows:

(a1t− a1t
3, b1t− b1t

3, 0, 1 + d1t− t2 − d1t
3) = (a1t, b1t, 0, 1 + d1t).

This is not really a cubic, but in the second case we have

(t, b1t+ t2 − b1t
3, t3, 1− 3b1t+3b1t

3) = (t, t2 +µ(t− t3), t3, 1− 3µ(t− t3)).

As it was predicted by Macaulay2, we have obtained a linear family of
cubics.

Remark 7.1. One can look at what happens in the limiting case µ = ∞.
The family of curves converges (if we look at the parametrizations) to a
point (0,−1/3, 0). On the other hand, their tangent vectors at t = 0, 1,−1
converge to

(0, 1, 0), (−3,−4,−3), (3,−4, 3),

respectively. Then, contact lines from

(0, 0, 0, 1), (1, 1, 1, 1), (−1, 1,−1, 1)
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with these tangent vectors all intersect in (0,−1/3, 0). So, the family l(t, µ)
converges to these three lines as µ → ∞. These three lines with the embed-
ded point (0,−1/3, 0) is a point on the boundary of the Hilbert scheme of
rational cubics in CP 3 (see [21] for more details about the compactification
of the space of rational cubics).

Remark 7.2. Is it true that the number of higher degree rational Leg-
endrian curves passing through given points can be computed by means
of degeneration? A hypothesis: there always exist at least d Legendrian
rational curves of degree d passing through d generic points and a line.
A heuristic argument is as follows. We take the one-dimensional family
(because Stab3µ acts on these curves) of the degree d Legendrian curves
through d points that all belong to a given plane L, and write the equa-
tion of the surface that they sweep. Then, we intersect this surface with L.
We obtain a collection of d lines in the intersection. Therefore, the degree
of the surface is at least d. Consequently, there are at least d Legendrian
curves through d generic points and one generic line. Also, this approach
by perturbation of degenerate families might work for any genus, as long
as the set of the curves is not empty.
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