
Записки научных
семинаров ПОМИ

Том 476, 2018 г.

Z. Kabluchko, D. Zaporozhets

ANGLES OF THE GAUSSIAN SIMPLEX

Abstract. Consider a d-dimensional simplex whose vertices are
random points chosen independently according to the standard Ga-
ussian distribution on Rd. We prove that the expected angle sum of
this random simplex equals the angle sum of the regular simplex of
the same dimension d.

§1. Main result

The sum of measures of angles in any triangle in the Euclidean plane is
constant. However, a similar statement is not true in higher dimensions.
The sum of solid angles of a d-dimensional simplex, where d > 3, can take
any value between 0 and 1/2 of the full solid angle, as will be shown in
Proposition 5.4. Thus, it is natural to ask about the “average value” of
the sum of solid angles of the simplex. Of course, the notion of “average”
depends on the probability measure we put on the set of all simplices. In
the present paper, we consider the Gaussian simplex, i.e., a random simplex
in R

d whose vertices X0, . . . , Xd are chosen independently according to the
standard Gaussian distribution on R

d. Our main result is the following

Theorem 1.1. The expected sum of the solid angles of the Gaussian sim-

plex coincides with the sum of the solid angles of the regular simplex of the

same dimension.

Let us mention some related results. Feldman and Klain [2] showed
that in every tetrahedron, the sum of solid angles, measured in steradians
and divided by 2π, gives the probability that a random projection of the
tetrahedron onto a uniformly chosen two-dimensional plane is a triangle.
They also obtained a generalization of this result to simplices of arbitrary
dimension. The probability that a random Gaussian tetrahedron is acute,
as well as the distribution of its solid angles, is discussed in the papers of
Finch [3] and Bosetto [1]. It seems that the angles of the Gaussian simplex
in dimension d > 4 were not studied so far. An explicit formula for the

Key words and phrases: convex hull, Gaussian simplex, regular simplex, solid angle,
random polytope, convex cone.

The work of the second author is supported by the grant RFBR 16-01-00367.

79



80 Z. KABLUCHKO, D. ZAPOROZHETS

solid angles of the regular d-dimensional simplex is known and can be
found in [7, 10, 6]. We shall not rely on this formula. Expected angles of
the so-called beta simplices (which contain Gaussian simplices as a limiting
case) were used in [5] to compute the expected f -vectors of beta polytopes,
but no formula for the expected angles was given there.

The paper is organized as follows. After recalling some necessary facts
from convex and stochastic geometry in Section 2, we shall present two
different proofs of Theorem 1.1 in Sections 3 and 4. Section 5 contains
some auxiliary (and probably known) results.

§2. Facts from convex and stochastic geometry

For vectors v1, . . . , vn ∈ R
d, we define their positive or conic hull as

pos(v1, . . . , vn) :=
{

n
∑

i=1

λivi : λ1, . . . , λn > 0
}

.

A set C ⊂ R
d is said to be a polyhedral cone (or just a cone) if it can be

represented as a positive hull of finitely many vectors. The solid angle of
the cone C is defined as

αd(C) := P[Z ∈ C], (1)

where Z is uniformly distributed on the unit sphere in R
d. The maximal

possible value of the solid angle in this normalization is αd(R
d) = 1. If

C 6= R
d, then P[Z ∈ C,−Z ∈ C] = 0 and (1) is equivalent to

αd(C) =
1

2
P[W1 ∩ C 6= {0}], (2)

where W1 denotes the line passing through Z and −Z. Equivalently, W1

is a random 1-dimensional linear subspace in R
d uniformly chosen with

respect to the Haar measure.
Let lin(C) be the linear hull of C, i.e. the minimal linear subspace

containing C. The dimension of the cone C, denoted by dimC, is defined as
the dimension of lin(C). If dimC = k < d, then, by definition, αd(C) = 0.
However, similarly to (1), we can define αk(C) as the solid angle of C
measured with respect to the linear hull of C, which is isomorphic to R

k.
Namely, we define αk(C) := P[Z ′ ∈ C], where Z ′ is uniformly distributed
on the unit sphere in the linear hull of C.
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If dimC = k and C is not a k-dimensional linear subspace, the conic
Crofton formula (see, e.g., [9, Eq. (6.63)]) implies the following generaliza-
tion of (2):

αk(C) :=
1

2
P[Wd−k+1 ∩C 6= {0}], (3)

where Wd−k+1 denotes a random (d− k + 1)-dimensional linear subspace
in R

d uniformly chosen with respect to the Haar measure. Alternatively,
we can observe that Wd−k+1 ∩ lin(C) is a random one-dimensional linear
subspace of lin(C) distributed uniformly on the set of all such subspaces,
so that (3) follows from (2) applied to lin(C) as the ambient space.

Let x0, . . . , xd be d+ 1 points in R
n, where n > d, such that the affine

subspace spanned by these points has dimension d. A simplex S with
vertices at x0, . . . , xd is defined as the convex hull of these points, that is,

S := conv(x0, . . . , xd) :=
{

d
∑

i=0

λixi : λ0, . . . , λd > 0,
d

∑

i=0

λi = 1
}

.

We say that the dimension of S is d. Define the solid angle of S at xi as

αd(S, xi) := αd(pos(x0 − xi, x1 − xi, . . . , xd − xi)).

The sum of the solid angles of S is denoted by

γd(S) :=

d
∑

i=0

αd(S, xi). (4)

A simplex is called regular if the pairwise distances between its vertices
are all equal. We shall use the following convenient form of the regular
d-dimensional simplex in R

d+1:

T d := conv(e0, . . . , ed),

where e0, . . . , ed is the standard orthonormal basis in R
d+1.

We shall be interested in random simplices defined as follows. Let X0,. . . ,
Xd be independent random points with standard Gaussian distribution on
R

d. The Lebesgue density of any of the Xi’s is thus given by

f(x) = (2π)−d/2e−|x|2/2,

where |x| is the Euclidean norm of x ∈ R
d. The d-dimensional Gaussian

simplex is defined as the convex hull of X0, . . . , Xd:

Pd := conv(X0, . . . , Xd).

With this notation, we can restate our main result as follows:
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Theorem 2.1. We have E γd(Pd) = γd(T
d).

Since the family (X0, . . . , Xd) is exchangeable and all solid angles of the
regular simplex are equal, an equivalent formulation of the theorem is as
follows:

Eαd(Pd, X0) = αd(T
d, e0). (5)

In the next two sections, we give two different proofs of (5).

§3. Proof I: Lifting the dimension

The main idea is to represent the d-dimensional Gaussian simplex in
R

d as a projection of a d-dimensional Gaussian simplex in R
n and then

let n go to infinity. We shall show that the expected solid angles of both
simplices are equal and there is a “freezing phenomenon”: In the large n
limit, the d-dimensional Gaussian simplex in R

n converges to the regular
one.

Consider d+1 independent sequences of independent standard Gaussian
variables (constructed on the same probability space):

N01, N02, . . . , N0n, . . . ,

N11, N12, . . . , N1n, . . . ,

. . . ,

Nd1, Nd2, . . . , Ndn, . . . .

For all n ∈ N and k = 0, . . . , d, let X
(n)
k be a standard Gaussian vector in

R
n formed by the first n variables of the kth sequence:

X
(n)
k := (Nk1, . . . , Nkn)

⊤,

where ⊤ stands for transpose. For n > d, the convex hull

P(n)
d := conv(X

(n)
0 , . . . , X

(n)
d )

is a d-dimensional simplex in R
n, with probability one. In particular, P(d)

d

is equidistributed with Pd. We now show that the expected solid angles of

P(n)
d and Pd are equal.

Lemma 3.1. For all n > d, we have

Eαd(P(n)
d , X

(n)
0 ) = Eαd(Pd, X0).
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Proof. By (3),

Eαd(P(n)
d , X

(n)
0 ) = Eαd(pos(X

(n)
1 −X

(n)
0 , . . . , X

(n)
d −X

(n)
0 ))

=
1

2
P[Wn−d+1 ∩ pos(X

(n)
1 −X

(n)
0 , . . . , X

(n)
d −X

(n)
0 ) 6={0}],

where Wn−d+1 is the random (n − d + 1)-dimensional linear subspace of
R

n distributed uniformly on the set of all such subspaces and independent
of everything else. Let e1, . . . , en denote the standard orthonormal basis in
R

n. Since the standard Gaussian distribution is rotationally invariant, we
can replace Wn−d+1 by lin(ed, . . . , en), the linear hull of ed, . . . , en:

Eαd(P(n)
d , X

(n)
0 )

=
1

2
P[lin(ed, . . . , en) ∩ pos(X

(n)
1 −X

(n)
0 , . . . , X

(n)
d −X

(n)
0 ) 6= {0}].

The next observation is that

lin(ed, . . . , en) ∩ pos(X
(n)
1 −X

(n)
0 , . . . , X

(n)
d −X

(n)
0 ) 6= {0}

if and only if the convex hull of the orthogonal projection of X
(n)
1 −

X
(n)
0 , . . . , X

(n)
d −X

(n)
0 on lin(ed, . . . , en)

⊥ = lin(e1, . . . , ed−1) contains the

origin. By definition, the orthogonal projection of X
(n)
k on lin(e1, . . . , ed−1)

is X
(d−1)
k . Therefore,

Eαd(P(n)
d ,X

(n)
0 )=

1

2
P[0 ∈ conv(X

(d−1)
1 −X(d−1)

0 ,. . ., X
(d−1)
d −X(d−1)

0 )]. (6)

This relation holds for all n > d and the right-hand side does not depend
on n. Thus we have

Eαd(P(n)
d , X

(n)
0 ) = Eαd(P(d)

d , X
(d)
0 ) = Eαd(Pd, X0),

which proves the lemma. �

To complete the proof of (5), we let n tend to infinity. The strong law
of large numbers implies that we have

lim
n→∞

〈X(n)
i , X

(n)
j 〉

n
= 0 and lim

n→∞

〈X(n)
i , X

(n)
i 〉

n
= 1 almost surely (a.s.)

whenever 0 6 i < j 6 d, whence it follows that

lim
n→∞

〈X(n)
i −X

(n)
0 , X

(n)
j −X

(n)
0 〉

|X(n)
i −X

(n)
0 ||X(n)

j −X
(n)
0 |

= 1/2 a.s.
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whenever 1 6 i < j 6 d. On the other hand, for the regular simplex
T d = conv(e0, . . . , ed) we have

〈ei − e0, ej − e0〉
|ei − e0||ej − e0|

= 1/2.

By Corollary 5.2 and Remark 5.3 stated below, this yields the convergence
of the corresponding solid angles:

lim
n→∞

αd(P(n)
d , X

(n)
0 ) = αd(T

d, e0) a.s.

Since the solid angle is bounded by 1, the dominated convergence theorem
implies that

lim
n→∞

Eαd(P(n)
d , X

(n)
0 ) = αd(T

d, e0).

Applying Lemma 3.1 completes the proof.

§4. Proof II: Projection

The starting point of our second proof of Theorem 1.1 is the identity

Eαd(Pd, X0) =
1

2
P[0 ∈ conv(Y1 − Y0, . . . , Yd − Y0)], (7)

where Y0, . . . , Yd are independent standard Gaussian vectors in R
d−1. Even

though this identity follows from (6), we provide an independent argument.
With probability one, the cone pos(X1 − X0, . . . , Xd − X0) is of full di-
mension d and does not coincide with R

d. Therefore, by (2),

Eαd(Pd, X0) =
1

2
P[W1 ∩ pos(X1 −X0, . . . , Xd −X0) 6= {0}],

where W1 is a uniformly distributed one-dimensional linear subspace of
R

d which is independent of X0, . . . , Xd. By rotational invariance, we can
replaceW1 by the line lin(e), where e ∈ R

d is any unit vector. Let Y0, . . . , Yd

be the projections of X0, . . . , Xd on the orthogonal complement of e (which
we identify with R

d−1). The key observation is that

lin(e) ∩ pos(X1 −X0, . . . , Xd −X0) 6= {0} if and only if

0 ∈ conv(Y1 − Y0, . . . , Yd − Y0).

The proof of (7) is complete.
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Let us now look at the right-hand side of (7). Observe that conv(Y1 −
Y0, . . . , Yd − Y0) contains 0 if and only if there exist λ1, . . . , λd > 0 with
λ1 + · · ·+ λd > 0 such that

λ1(Y1 − Y0) + · · ·+ λd(Yd − Y0) = 0,

or equivalently,

(−λ1 − · · · − λd)Y0 + λ1Y1 + · · ·+ λdYd = 0. (8)

We denote by Y the (d−1)× (d+1)-matrix whose columns are Y0, . . . , Yd:

Y := (Y0, . . . , Yd).

Then Condition (8) is equivalent to the following one:

Y









−λ1 − · · · − λd

λ1

. . .
λd









= 0 or









−λ1 − · · · − λd

λ1

. . .
λd









∈ kerY. (9)

Now, let C be the cone in R
d+1 defined as

C := pos(e1 − e0, . . . , ed − e0),

where e0, . . . , ed is the standard orthonormal basis in R
d+1. By definition,

we have

αd(C) = αd(T
d, e0). (10)

On the other hand, it is obvious that

C = {(−λ1 − · · · − λd, λ1, . . . , λd) ∈ R
d+1 : λ1, . . . , λd > 0}.

Therefore, the condition that there exist λ1, . . . , λd>0 with λ1+· · ·+λd>0
such that (9) holds is equivalent to the condition

C ∩ kerY 6= {0}.
This implies that

Eαd(Pd, X0) =
1

2
P[C ∩ kerY 6= {0}].

By definition, Y is a (d−1)× (d+1) matrix whose entries are independent
standard Gaussian variables. Thus, with probability one, kerY is a 2-
dimensional linear subspace in R

d+1 and it is uniformly distributed with
respect to the Haar measure on the set of all 2-dimensional subspaces in
R

d+1. Recall that lin(C) denotes the minimal linear subspace containing
C. Since dimC = d, we have that W ′

1 := kerY ∩ lin(C) is uniformly
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distributed on the set of all 1-dimensional linear subspaces in lin(C) with
respect to the Haar measure. Therefore, we have

Eαd(Pd, X0) =
1

2
P[C ∩ kerY 6= {0}] = 1

2
P[C ∩ (lin(C) ∩ kerY ) 6= {0}]

=
1

2
P[C ∩W ′

1 6= {0}] = αd(C),

see (2) for the last equality. Together with (10), this completes the proof
of (5).

§5. Appendix

5.1. Formula for the solid angle of a simplicial cone. Since we could
not find a proper reference for the following statement, we present its proof.
This proof was obtained jointly with Anna Gusakova.

Proposition 5.1. Let v1, . . . , vd be linearly independent vectors in R
d.

Then the solid angle of the cone C := pos(v1, . . . , vd) is given by

αd(C) =

√
det Γ

(2π)d/2

∫

R
d

+

exp

(

− 1

2
〈x,Γx〉

)

dx,

where Γ is the Gram matrix of v1, . . . , vd.

Proof. Let V be the d × d-matrix whose columns are v1, . . . , vd. Let Vij

denote the (i, j)-minor of V obtained by eliminating the ith row and the
jth column. For k = 1, . . . , d, let nk be the vector defined by

nk :=
1

detV

d
∑

i=1

(−1)k+i(det Vik)ei,

where e1, . . . , ed is the standard orthonormal basis in R
d. We shall com-

pute the Gram matrix of n1, . . . , nd and show that C has the following
representation:

C = {x ∈ R
d : 〈nk, x〉 > 0 for all k = 1, . . . , d}. (11)

By definition of nk, we have

〈nk, nl〉 =
1

(detV )2

d
∑

i=1

(−1)k+l detVik detVil.
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The well-known formula for the inverse of a matrix, namely

V −1 =
1

detV
((−1)i+j detVji)

d
i,j=1,

yields the Gram matrix of n1, . . . , nd:

Σ := (〈nk, nl〉)dk,l=1 = (V TV )−1 = Γ−1. (12)

Now, let us prove (11). For a vector x ∈ R
d, let Vk(x) be the matrix

with columns v1, . . . , vk−1, x, vk+1, . . . , vd. By the Laplace formula for the
determinant, we have

〈nk, x〉 =
detVk(x)

detV
.

Taking x = vi gives

〈nk, vi〉 =
{

1, if k = i,

0, if k 6= i.

Therefore, the cones spanned by v1, . . . , vd and −n1, . . . ,−nd are polar to
each other, so that we have

C = {x ∈ R
d : 〈nk, x〉 > 0 for all k = 1, . . . , d}.

Since the standard Gaussian distribution is rotationally invariant, Def-
inition (1) is equivalent to

αd(C) = P[X ∈ C],

where X is a standard Gaussian vector in R
d. The last two equations imply

that

αd(C) = P[〈nk, X〉 > 0 for all k = 1, . . . , d].

The random vector (〈n1, X〉, . . . , 〈nd, X〉) is centered Gaussian with co-
variance matrix Σ = Γ−1 given by (12) because

E [〈nk, X〉〈nl, X〉] = 〈nk, nl〉.
Using the formula for its density function completes the proof. �

Corollary 5.2. Let (vnk)n=0,1,...; k=1,...,d be a family of vectors in R
d such

that for each n, the vectors vn1, . . . , vnd are linearly independent. If n ∈
{0, 1, . . .}, let Cn denote the cone pos(vn1, . . . , vnd). If for all i, j with

1 6 i < j 6 d we have

lim
n→∞

〈vni, vnj〉
|vni||vnj |

=
〈v0i, v0j〉
|v0i||v0j |

,
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then

lim
n→∞

αd(Cn) = αd(C0).

Proof. Since the replacement of vni by vni/|vni| does not change the solid
angles, the statement readily follows from Proposition 5.1 and the domi-
nated convergence theorem. �

Remark 5.3. Although we stated Corollary 5.2 for cones of full dimen-
sion, the result also holds for d-dimensional cones of the form Cn =
pos(vn1, . . . , vnd) in R

m(n) with m(n) > d. Indeed, the solid angles αd(Cn)
depend on the Gram matrix only and do not depend on the ambient space.

5.2. Bounds on the sum of the solid angles of a simplex. A simplex
is called nondegenerate if its interior is nonempty.

Proposition 5.4. For each nondegenerate simplex S ⊂ R
d with d > 3,

we have

0 < γd(S) <
1

2
. (13)

Moreover, for each h ∈ (0, 1/2) there exists a nondegenerate simplex S
such that γd(S) = h.

This fact must be well-known, but we could not find a proper reference.
For the reader’s convenience, we present a proof here. The idea of the proof
is due to Sergei Ivanov [4].

Proof. First, we show that (13) holds. The lower bound on γd(S) is trivial.
Let us prove the upper one.

Any nondegenerate d-dimensional simplex is the intersection of d + 1
closed half-spaces in R

d. In our case, this means that there exist vec-
tors y0, . . . , yd ∈ R

d and closed half-spaces H+
0 , . . . , H+

d with boundaries
H0, . . . , Hd passing through the origin such that

S =

d
⋂

i=0

(yi +H+
i ).

For k = 0, . . . , d, we denote by H−
k the half-space complementary to H+

k ,

that is, the closure of Rd \H+
k .

Since S is nondegenerate, it follows that the linear hyperplanes H0,. . .,Hd

are in general position, that is, any d of them have linearly independent
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normal vectors. By Schläfli’s formula [8], the hyperplanes divide R
d into

m polyhedral cones D1, . . . , Dm, where

m = 2d+1 − 2. (14)

By construction, we have

IntDl ∩ IntDl′ = ∅ for l 6= l′, (15)

where IntDl denotes the interior of Dl. Therefore,
m
∑

l=1

αd(Dl) = 1. (16)

We introduce the following notation:

Dǫ :=
d
⋂

i=0

Hǫi
i , where ǫ = (ǫ0, . . . , ǫd) ∈ {+,−}d+1.

For each l ∈ {1, . . . ,m}, we have Dl = Dǫ for some ǫ ∈ {+,−}d+1. Besides,
if Dǫ 6= {0} for some ǫ ∈ {+,−}d+1, then Dǫ = Dl for some l.

For k = 0, . . . , d, we denote by xk the vertex of S opposite to the face
contained in yk +Hk, and let Ck be the internal cone at xk:

Ck := pos(x0 − xk, . . . , xd − xk).

In terms of the half-spaces, Ck is represented as follows:

Ck =
⋂

i : i6=k

H+
i .

Since Ck ⊂ H−
k , we have

Ck = D(+,...,+,−,+,...,+),

where the kth entry of the upper index is “−” and all of its other entries
are “+”. Similarly, we have

−Ck = D(−,...,−,+,−,...,−).

Thus it follows from (4) and (16) that

γd(S) =

d
∑

i=0

αd(Ci) =
1

2

d
∑

i=0

(αd(Ci) + αd(−Ci)) <
1

2

m
∑

l=1

αd(Dl) =
1

2
.

The inequality here is strict because (14) implies that m > 2d+2 for d > 3,
which means that there exists Dl (with αd(Dl) > 0) such that Dl 6= Ci

and Dl 6= −Ci for all i = 0, . . . , d.
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Now, let us prove the second part of Proposition 5.4. Let e1, . . . , ed be
the standard orthonormal basis in R

d. We consider the simplex

S0 := conv(0, e1, . . . , ed)

together with the following two families of simplices indexed by t ∈ [0, 1):

S1(t) := conv
(

0, e1, . . . , ed−1, (1− t)ed + t(e1 + . . .+ ed−1)
)

and

S2(t) := conv
(

0, e1 − t · e1 + · · ·+ ed
d

, . . . , ed − t · e1 + · · ·+ ed
d

)

.

We have S1(0) = S2(0) = S0 and

lim
t→1−

γd(S1(t)) = 0, lim
t→1−

γd(S2(t)) =
1

2
.

Pasting these families together, we obtain a continuous family of simplices
whose angle sums change from 0 to 1/2. By continuity (see Section 5.1),
this completes the proof. �
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