
Записки научных
семинаров ПОМИ

Том 475, 2018 г.

A. A. Lialina

ON THE COMPLEXITY OF UNIQUE CIRCUIT SAT

Abstract. We consider the Circuit SAT problem for a circuit with
at most one satisfying assignment. We present an algorithm running
in time O(2.374589m), where m is the number of internal gates of
the circuit. In order to make the exposition self-contained, we also
describe the algorithm for the general case of Circuit SAT with
running time O(2.389667m) obtained by Savinov in [10].

§1. Introduction

The Boolean circuit satisfiability problem (Circuit SAT), along with its
particular case of satisfiability of a Boolean formula in CNF (SAT), are
among the central problems of theoretical computer science. Many upper
bounds for various cases of SAT have been proven; however, no approaches
are known for proving Circuit SAT upper bounds of the form cn, where n
is a number of variables and c < 2 is a constant.

The first nontrivial upper bounds for SAT have been proved using
branching heuristics, which we also apply in our algorithm. This approach
was widely used in “moderately exponential” time algorithms: Kullmann
and Luckhardt proved the O(2m/3) and O(2l/9) bounds [5], where l is the
number of literals and m is the number of clauses. Both these bounds were
improved by Hirsch in [3] to O(2.30897m) and O(2.10299l). Later the second
bound was improved to O(2.0926l) in [13].

Despite the success of exact algorithms for SAT and especially k-SAT,
where nontrivial upper bounds are known since [6] and [1], there are few
works studying the (exponential) time complexity of Circuit SAT for more
general circuit classes. In [9] Santhanam considers cn-size arbitrary depth
formulas over the basis U2 = B2\{⊕,≡}, where B2 is the set of all binary

Boolean functions. He shows the bound |C|2(1−1/cO(1)). Later Seto and
Tamaki extend his result to the basis B2 [11]. They get the bound 2(1−µc)n

for formulas of size at most cn, where µc > 0 is a constant only depending

on c (roughly µc = 2−Θ(c3)). An exponential-time #SAT-algorithm over

Key words and phrases: unique circuit SAT, circuit SAT, branching heuristics.
This research is supported by Russian Science Foundation (project 18-71-10042).

122

ON THE COMPLEXITY OF UNIQUE CIRCUIT SAT 123

U2 and B2 has been recently presented in [2], this algorithm works faster
than 2n for “small” circuits; however, no such algorithms for arbitrary large
circuits are known.

Unique k-SAT is the variant of k-SAT problem where the input CNF
formula has a unique or no satisfying assignment. Valiant and Vazirani [12]
give a randomized polynomial-time reduction from SAT to its instances
of with unique solutions, which demonstrates that faster algorithms for
Unique SAT give faster algorithms for the general case. Although their
reduction is not enough to give an improvement in the case of exponential-
time algorithms, still it demonstrates that solving the unique case of SAT
is also important. Some exponential-time algorithms for the case of unique
solutions are known: for example, a randomized algorithm for Unique 3-
SAT that runs in time O(2.386n) was presented in [8], where n is the number
of variables of the formula, and it is still much simpler than the treatment
of the general case.

If the size of the circuit is relatively small compared to the number of
variables, then one is naturally interested in upper bounds of the form cm,
where m is the size of the circuit (that is, the number of internal gates). In
[7] Nurk presents a branching algorithm, which achieves an upper bound
O(2.4058m). Some of the circuit transformations we apply in our algorithm
originate from [7], they are described in Section 3. Some of the branching
rules originate from the master thesis of Savinov [10], we explain them in
Section 4. In Section 5 we present Savinov’s algorithm, which improves
Nurk’s bound to O(2.389667m). The main result for Unique Circuit SAT is
presented in Section 6.

§2. Preliminaries

A circuit is an acyclic directed graph, in which the incoming degree of
every node is equal to two or zero. The nodes of incoming degree zero are
called inputs or variables and are labeled by Boolean variables. We denote
the number of variables by n. The internal nodes are called gates and are
labeled by one of the sixteen Boolean functions f : {0, 1}×{0, 1} → {0, 1}.
The function in every gate G is applied to the values obtained in G’s
parents. One gate of outdegree zero is designated as the output. We will
always identify the gate name with its output. The size of a circuit is the
number of internal gates (denoted by m). We say that a Boolean circuit
has a satisfying assignment if there exists a substitution of the inputs by
constants that forces the circuit to output the value one.

124 A. A. LIALINA

Among the Boolean functions of two variables there are two constant
functions and four functions that depends only on one of the two variables.
We can get rid of such functions by substituting a constant (or the identity
function or the negation) to the descendants of the corresponding gate.
Hence, we can assume that a function in a gate can be represented in one
of the two following ways: f(x, y) = (a⊕ x)(b ⊕ y)⊕ c for some constants
a, b, c ∈ {0, 1} or f(x, y) = x ⊕ y ⊕ a for some constant a ∈ {0, 1}. In
the former case, we say that a gate which computes such function is of
∧-type. In the latter case, the corresponding gate is called a ⊕-type gate.
We will say that a circuit C can be simplified if it is possible to construct
a smaller circuit C′ in polynomial time, the new circuit satisfying the
following conditions:

• The number of satisfying assignments of C′ does not exceed the
number of satisfying assignments of C.

• C′ does not have a satisfying assignment only if C does not have
any satisfying assignments.

• We can construct a satisfying assignment for C in polynomial time,
knowing any satisfying assignment for C′.

Algorithms presented in this paper are based on the branching heuristic.
The idea of this method is to choose a variable or gate and substitute it
with 0 and 1. After such substitution we get two branches of the algorithm:
two subcircuits (hopefully with much fewer gates). This substitution is
called splitting and is denoted by {C[x = 0], C[x = 1]}, where x is a
variable or gate chosen for substitution and C is the initial circuit. Finding
a satisfying assignment for at least one of them solves the problem for the
initial circuit as well.

For real numbers a, b, c, we say that splitting is not worse than {a, b} if
the given substitution splits our circuit of size c into two circuits: one that
has the size at most c− a and the other that has the size at most c− b.

Let A be the output gate. When we say that we substitute some gate G
with a constant c it means that we add input xG and reattach all outgoing
wires of G to xG. After that we add gate G′ to our circuit computing the
function (G ≡ c)∧A and mark it as a new output gate (as we always have
only one output gate, A is no longer an output gate). Then we substitute
xG to c. Note, that this substitution increases the number of gates by one.

We apply multiple splitting in some cases of the algorithms. That means
that we substitute n variables or gates at once, which gives us 2n branches.
For example, we make splittings C[x1 = 0], C[x1 = 1] and

ON THE COMPLEXITY OF UNIQUE CIRCUIT SAT 125

C[x2 = 0], C[x2 = 1]. It is obvious that the result does not depend on the
order of these splittings, so to estimate the multiple splitting we can as-
sume that we first split by the variable x1 and then by x2. If the splitting
by x1 is not worse than {a1, b1} and the splitting by x2 is not worse than
{a2, b2} we say that the multiple splitting by x1 and x2 is not worse than
{a1, b1} ∗ {a2, b2}.

§3. Simplification rules and circuit transformations

In order to work with a circuit, we are going to formulate several trans-
formation rules that we will apply at every step of the algorithm. Most of
these rules are commonly used in circuit algorithms and their correctness
is clear from the description, so we will not provide all formal proofs.

Rule (1). If G has no outgoing edges and is not marked as the output,

then it can be removed.

Rule (2). If G computes a constant operation a, we can remove G and

“embed” this constant to the descendants of G changing the function com-

puted in them.

Rule (3). If there is a gate G that computes an operation depending only

on one of its inputs, it is possible to remove G by reattaching its outgoing

wires to that input. If G computes the negation, we also change the function

f(x, y) in its descendant to f(x̄, y).

Lemma (4). If G (where G is a gate or an input of the circuit) has exactly

two descendants G1 and G2 then either G1 has a descendant different from

G2 (and vice versa) or we can simplify the circuit.

Proof. Assume that G1 is the only descendant of G2, and denote the
other parent of G2 by H . The result computed in G2 affects only gate G1,
which computes a function of G and H . Hence we can replace G1, G2 with
a single gate computing this function. �

Lemma (5). If the input x feeds exactly one gate G, and G has type ⊕,

then the circuit can be simplified.

Proof. The input x affects only gate G and we can obtain any value in G
regardless of the other parent of G. Therefore, we can reduce the number
of gates by replacing G with a new input. �

126 A. A. LIALINA

Lemma (6). If there exists an input x with exactly two descendants of

type ⊕, then the circuit can be transformed into another circuit with fewer

such inputs and the same or smaller number of gates.

Proof. This transformation was originally described in [7]. Denote two
descendants of x by P0 and R0. Let us build two chains P and R. At the
first step we add gate P0 to P , after that we add a gate to P only if it is
the only descendant of a previously added gate and has type ⊕. The same
we do for R and R0. We get two chains P0, . . . , Pp and R0, . . . , Rr. Denote
by L0, . . . , Lp and T0, . . . , Tr the parents of gates in P and R respectively.

Suppose that P and R do not intersect. Assume without loss of gen-
erality that there is no directed path from Rr to Pp. Clearly Pp = x ⊕
L0 ⊕ · · · ⊕ Lp ⊕ a. Hence x = Pp ⊕ L0 ⊕ · · · ⊕ Lp ⊕ a. Now we reverse all
the edges in P , make Pp the new input and x the new gate. Before apply-
ing the transformation Pp could not have exactly one descendant of type
⊕ (otherwise we would extend the chain). Therefore, after applying this
transformation Pp cannot have exactly two descendants of type ⊕. Hence
we decreased the number of inputs from the lemma statement.

Suppose now that Pk = Rm for some 0 6 k 6 p and 0 6 m 6 r. It is easy
to see that Pk = x⊕L0⊕· · ·⊕Lk−1⊕a⊕x⊕T0⊕· · ·⊕Tm−1⊕b. Therefore, x
can be eliminated because it does not affect the output. Hence we decreased
the number of inputs with exactly two descendants of type ⊕. �

Suppose we have found a chain of gates S in our circuit. It starts with
gate G that is the most remote from the output gate (the longest path
between this gate and the output is the longest possible one). Suppose G
has two parents x and y, which are both the inputs of the circuit. Then
at every step we add a gate to S only if it is the only descendant of a
previously added gate and has type ⊕.

Lemma (7). If there is a gate from S that has a parent, which is an

internal gate and does not belong to S, then either the circuit can be im-

mediately satisfied or the initial circuit C can be transformed into another

circuit C′ satisfying the following conditions:

• The set of parents of any chain in C constructed as described above

consists on inputs and gates from this chain.

• The depth of C′ is larger than the depth of C.

• The number of gates in C′ does not exceed the number of gates

in C.

ON THE COMPLEXITY OF UNIQUE CIRCUIT SAT 127

• The number of inputs that have exactly two ⊕-type descendants

in C′ does not exceed the number of such inputs in C.

Proof. Denote by Gl the first gate in S that has a parent A, which is an
internal gate and does not belong to S. We swap A and y, as all gates in
chain S have type ⊕ and we can always change the order of summation.
This increases the depth of the circuit. We apply this transformation as
long as there exist a chain dissatisfying the first condition. If the depth
of the circuit becomes equal to its size, the circuit can be immediately
satisfied. Obviously, the third and the fourth conditions hold after every
such transformation. �

§4. Splitting cases

In this section we describe splittings which we apply if the circuit satis-
fies certain conditions. These splittings were suggested by Savinov in [10].
They are applied recursively in both algorithms.

Case (1). The circuit contains a variable x feeding more than two gates.
Then we make the splitting {C[x = 0], C[x = 1]}. In any case all x’s
descendants will be eliminated, therefore our splitting is not worse than
{3, 3}.

Case (2). The circuit contains a variable x feeding exactly two gates G1

and G2 of type ∧.
We will call a descendant of x zero-type if it becomes constant by assigning
x to 0 and one-type otherwise.
Note that if either G1 or G2 is the output gate, we can immediately satisfy

the circuit or learn the value of x depending on the output type.

Case (2.1). G1 and G2 are of different types.
Then we make the splitting {C[x = 0], C[x = 1]} which is not worse than
{3, 3} because in any case we eliminate G1, G2, a descendant of zero-type
gate (in case x = 0) or a descendant of one-type gate (in case x = 1).

Case (2.2). G1 and G2 are of the same type.

Case (2.2.1). The set consisting of G1, G2 and all their descendants con-
tains at least four elements.

Then we make the splitting {C[x = 0], C[x = 1]} which is not worse
than {2, 4}. In one case we learn the value of G1 and G2, therefore we can
eliminate them and their descendants. In the other case we eliminate just
two gates G1 and G2.

128 A. A. LIALINA

Case (2.2.2). G1 and G2 feed only one common gate H .
Then we make the splitting {C[x = 0], C[x = 1]} which is not worse than
{2, 4}. In one case we learn the value of G1, G2 and also the value of H ,
therefore we eliminate them and at least one descendant of H . In the other
case we eliminate just two gates G1 and G2.
Note that if H is the output gate, then in one case we determine the output

of the circuit.

Case (3). There is ∧-gate G fed by two inputs x and y.

Case (3.1). G is the only descendant of x and y.
Then by substituting some constant for the variables x and y, we can
obtain any value in G. Therefore, we can replace G by a new input and
eliminate x and y.

Case (3.2). x and y both have exactly two descendants: H of type ⊕
and G.
Then we make the splitting {C[G = 0], C[G = 1]} which is not worse than
{3, 3}. In one case we learn the values of x and y, therefore, we eliminate
G, H and the descendant of G. In the other case we can obtain in H any
value (by Lemma 5), thus H can be replaced by a new variable. It means
that we can eliminate at least three gates: G, H and the descendant of G.
Although we split by a gate we do not need to add any extra gates to our
circuit because parents of G do not affect any gates after this simplification.

Case (3.3). x and y together have two different descendants (except G)
of type ⊕.

Then we make the splitting {C[x = 0], C[x = 1]} which is not worse
than {2, 4}. In one case we eliminate two descendants of x, a descendant
of G and ⊕-type descendant of y (by Lemma 5). In the other case we
eliminate just two descendants of x.

Case (3.4). x has two descendants: H of type ⊕ and G; y has outdegree 1.
We make the splitting {C[G = 0], C[G = 1]} which is not worse than {3, 3}.
In one case we learn the values of x and y, therefore, we eliminate G, H and
the descendant of G. In the other case we can assume that the value of G
depends only on y, therefore, we eliminate H , G and the descendant of G.
We do not add any extra gates to the output similarly to the Case 3.2.

Case (4). The circuit contains a variable x feeding two gates: G of type
∧, A of type ⊕. Another parent of G denoted by H has outdegree 1.
Then we make the splitting {C[x = 0], C[x = 1]} which is not worse than

ON THE COMPLEXITY OF UNIQUE CIRCUIT SAT 129

{2, 4}. In one case we eliminate G and A. In the other case we learn the
value of G, therefore, we eliminate G, A, H , and the descendant of G.

Case (5). The circuit contains a variable x feeding two gates: G of type
∧, A of type ⊕. Gate G has outdegree more than one.

Case (5.1). G has at least two descendants different from A.
Then we make the splitting {C[x = 0], C[x = 1]} which is not worse than
{2, 4}. In one case we eliminate G and A. In the other case we learn the
value of G, therefore, we eliminate G, A and at least two descendants of
G.

Case (5.2). G has two descendants, one of them is A.
Again we make the splitting {C[x = 0], C[x = 1]} which is not worse than
{2, 4}. In one case we eliminate G and A. In the other case G becomes
trivialized, therefore, we eliminate G, A, another descendant of G and at
least one descendant of A.

Case (6). In this case we will build a chain S. It starts with gate G that
is the most remote from the output gate (the longest path between this
gate and the output is the longest possible one). We denote G’s parents by
x and y, they are both the inputs of the circuit, therefore, G is of type ⊕,
otherwise Case 3 would occur. Then at every step we add a gate to S only
if it is the only descendant of a previously added gate and has type ⊕.
The set of parents of all the gates in S consists on the inputs and gates
from S by Lemma 7. We denote the gates in S by G1, . . . , Gk and their
input parents by x1, . . . , xk, where G1 = G and x0 = y, x1 = x.

Case (6.1). A descendant of the last gate in S marked as the output.

Case (6.1.1). The output gate has type ∧.
Depending on the output type, we can immediately satisfy the circuit or
learn the value of the output’s parents. This means that we can eliminate

Gk (the last added gate in S). Since Gk is fed by xk and
⊕k−1

i=1 xi + a we

can substitute xk with
⊕k−1

i=1 xi + b.

Case (6.1.2). The output gate has type ⊕.
Then the other parent of H is a variable, because otherwise we could apply
Lemma 7. Therefore the output is equal to x0 ⊕ · · · ⊕ xk ⊕ xk+1, where
xk+1 is a parent of H . Hence the circuit has a satisfying assignment.

130 A. A. LIALINA

Case (6.2). Gk has at least two descendants.

Gate Gk is fed by xk and
⊕k

i=1 xi + a. We make the splitting

{C[Gk = 0], C[Gk = 1]}

which is not worse than {3, 3}. In other words, we substitute xk with
⊕k−1

i=1 xi + b which eliminate Gk and at least two its descendants.

Case (6.3). Gk has one descendant H . It follows that H has type ∧,
otherwise we would include H to S.

Case (6.3.1). H has at least two descendants.
We make the splitting {C[Gk = 0], C[Gk = 1]} which is not worse than
{2, 4}. In one case we eliminate H and Gk (Gk by substituting xk with
⊕k−1

i=1 xi + b). In the other case we learn the value of H , therefore, we
eliminate H , Gk, and two descendants of H .

Case (6.3.2). H has exactly one descendant. Parents of H are Gk ∈ S
and the circuit input z with exactly one descendant.
We make the splitting {C[H = 0], C[H = 1]} which is not worse than
{3, 3}. In one case we eliminate H , its descendant, and Gk (the latter, by

substituting xk with
⊕k−1

i=1 xi+b). In the other case we eliminate H , its de-
scendant, and all gates in S, because H computes an operation depending
only on z.

Case (6.3.3). H has exactly one descendant. The input z feeds H and A.
Then the splitting C[z = 0], C[z = 1] will work not worse than {2, 4}. In
one case we eliminate A and H . In the other case we eliminate A, H , its
descendant, and also Gk like in the previous case. Note that Gk 6= A by

Lemma 4.

Case (6.3.4). H has exactly one descendant. Parents of H are Gk ∈ S
and gate F with exactly one descendant.
We make the splitting {C[Gk = 0], C[Gk = 1]} which is not worse than
{2, 4}. In one case we eliminate Gk and H . In the other case we eliminate
Gk, H , its descendant and F .

§5. Circuit SAT algorithm

In this section we present an algorithm solving Circuit SAT in time
O(2.389667m). This algorithm was suggested by Savinov [10]. We present it
for completeness as we use parts of it in our algorithm for Unique Circuit
SAT in Section 6.

ON THE COMPLEXITY OF UNIQUE CIRCUIT SAT 131

The algorithm gets circuit C as its input and outputs a satisfying as-
signment if it exists or says “No” if it does not.

Step (0). If the size of the circuit is less than some constant c then we
check all the possible assignments in order to find one that satisfies the
circuit.

Step (1). Simplify the circuit using Rules 1–3 and Lemmas 5–7 if possible.

Step (2). Go through all the cases listed in a Section 4 and exhaustively
apply the first case satisfying the current situation.

Step (3). If none of the cases applies to our circuit, then there is a chain
S consisting of ⊕-type gates G1, . . . , Gk. Let xi be a circuit input feeding
Gi. We denote by Fi the other descendant of xi. Such gate Fi exists and
has type ∧ for every i, otherwise we could apply Lemma 5 or Lemma 6.
Gate H is the descendant of the last gate in S, has type ∧ and exactly
one descendant T , otherwise we could apply Case 6.2, Case 6.3 or add it
to S. We denote by A the other parent of H (which is not in S). We will
also denote by Li the unique descendant of Fi (it is the only descendant
because otherwise Case 5 would occur).
Then the following is true:

• Fi 6= Fj for i 6= j or we would apply Case 3.
• Fi 6= Lj or we would apply Case 4.
• H 6= Fi for all i or we would apply Case 6.3.2
• H 6= Li for all i or we would apply Case 6.3.3

Now we should divide our strategy between the two following cases, we
will explain the motivation for this later.

Case (k 6 4). In this case we make multiple splitting by xk, xk−1,
. . . , x0. The splitting C[xi = 0], C[xi = 1] by itself is no worse than {2, 3},
because in both of these cases we eliminate Gi, Fi and in one of these
cases Li. Furthermore, in any case we will still get a similar chain, just of
length i− 1.

After we make the splittings for all xi except x0 all gates in chain S
will be eliminated. Therefore we will be able to apply Case 2 which is not
worse than {2, 4}. Hence, the whole multiple splitting is not worse than
{2, 3}k ∗ {2, 4}.

Case (k > 4). We make the splitting {C[A = 0], C[A = 1]}. In one case
we eliminate two descendants of A (they exists because otherwise we would

132 A. A. LIALINA

apply Case 6.3.4). However, in the other case we eliminate two descendants
of A, T and all the gates G1, . . . , Gk, because they do not affect the value
of H anymore. Note that we should add one gate to the circuit output
because we split by gate. Hence, the splitting is not worse than {1, k+2}.

Now to find the running time of the algorithm we use the method of ana-
lyzing recursive branching algorithms. Let us denote by l(m) the maximum
number of leaves in the tree of recursive calls of the described algorithm
among all the circuits of size m. The splitting {a1, a2} brings us to the
following recurrence relation:

l(m) 6 l(m− a1) + l(m− a2).

To estimate l(m) we use the method suggested by Kullmann and Luckhardt
([4, 5]). Let us construct an equation which corresponds to the recurrence
relation above:

1/xa1 + 1/xa2 = 1.

It always has a single positive root. Then following [4] and [5] we get the
bound l(m) 6 poly(m)τm, where τ is the biggest positive root among all
the splittings we make in our algorithm.

Now let us explain the motivation to divide our strategy between these
two cases.

Theorem 1. The number of leaves in the tree of recursive calls of the

splitting {2, 3}k ∗ {2, 4} increases with k.

Proof. Denote f(k, x) = (1
x2 + 1

x3)
k(1

x2 + 1
x4), k > 0. This expression for

estimating multiple splitting is explained in [5]. Let a(k) be the maximal
root of the equation f(k, x) = 1. If x > 1 then (1

x2 + 1
x4) < (1

x2 + 1
x3),

therefore, (1
a(k)2 + 1

a(k)2) > 1. Hence, f(k + 1, a(k)) > 1. The function

f(k+1, x) is continuous and approaches 0 as x approaches infinity. There-
fore, a(k + 1) > a(k). �

Theorem 2. The maximum number of leaves in the tree of recursive calls

of the splitting {1, k + 2} decreases with k.

Proof. Denote g(k, x) = 1
x + 1

xk , k > 0. Let a(k) be the largest root of
equation g(k, x) = 1. If a > 1 then g(k + 1, a(k)) < g(k, a(k)). Function
g(k, x) decreases monotonely with x > 1. Therefore, a(k + 1) < a(k). �

Now it is easy to check that k = 4 is the best value to change the
strategy at. The largest root we get solving the corresponding equation is

ON THE COMPLEXITY OF UNIQUE CIRCUIT SAT 133

⊕
G1

x1 x0

∧
F1

L1

∧
F0

P0

N0

L0

⊕
G2

x2

∧
F2

P1

L2

⊕
Gk

xk

∧
Fk

Pn

Nn

Lk

∧
H

A

R

T

Figure 1. Unique Circuit SAT algorithm: Step 3.

1.31009. Hence, the algorithm decides Circuit-SAT in time O(2.389667m),
where m is the number of gates of the input circuit.

§6. Unique Circuit-SAT

In this section we present an algorithm that decides Circuit SAT for a
circuit with at most one satisfying assignment.

Proposition (1). If the initial circuit has at most one satisfying assign-

ment, then the number of satisfying assignments in every branch of the

algorithm does not exceed one.

Proof. Indeed when we make a splitting we get several subcircuits. And
any subcircuit of Unique Circuit also has at most one satisfying assignment.

�

134 A. A. LIALINA

Algorithm gets as input circuit C with at most one satisfying assignment
and outputs the satisfying assignment if it exists, or the message that the
given circuit cannot be satisfied in the opposite case.

Step (0). If the size of the circuit is less than some constant c then we
check all the possible assignments in order to find one that satisfies the
circuit.

Step (1). Simplify the circuit using Rules 1–3 and Lemmas 4–7 if possible.

Step (2). Go through all the cases listed in a Section 4 and exhaustively
apply the first splitting satisfying the current situation.

Step (3). We will use all the definitions we gave in the algorithm for
Circuit SAT. Additionally, let us denote by P1, . . . , Pn all parents of F -
gates that are different from xi.

Note that some of F -gates can share a common parent, so n is not
necessarily equal to k, where k is the size of chain S. We denote by Ni

the other descendant of Pi (it exists because Case 4 does not occur). This
construction is shown in Figure 1.

Again we have two different strategies depending on k. We will say that
gate M kills ∧-type gate N in some branch of the algorithm if M feeds N
and takes a value according to this branching which uniquely defines the
value of N .

Case (k = 1). In this case we make a multiple splitting exactly like in Cir-
cuit SAT algorithm: C[x1 = 0], C[x1 = 1] and C[x0 = 0], C[x0 = 1]. Hence
we get a bound no worse than {2, 3} ∗ {2, 4}.

Case (k > 1). This case is the main difference between the two algorithms.
We make the splitting {C[A = 0], C[A = 1]} (again adding one extra gate
to the output). In one case we eliminate two descendants of A. However,
in the other case we get a lot more trivialized gates. Gate H now depends
only on the value of A. Hence, we can eliminate at least one descendant of
H (T), two descendants of A (H , R), all gates G1, . . . , Gk, because they
do not affect the output anymore. It is only k + 2 gates, so no difference
from the previous algorithm so far. Now let us consider two cases.

Case (A 6= Pi for any i). What happens if at least one of the gates
P0, . . . , Pn kills its descendant Fi? The circuit input xi does not affect
values of its descendants. Hence the number of satisfying assignments in
the current branch either equals zero or exceeds one. In the case of Unique

ON THE COMPLEXITY OF UNIQUE CIRCUIT SAT 135

Circuit SAT it means that in this branch we will not get a solution, so
we can drop it. Therefore, we additionally get the information about all
values of P0, . . . , Pn. Now we can eliminate k+1 F -gates, but the price for
it is n gates that we must add to the output to make sure that we have
chosen the values of P -gates correctly.

Now let us denote the number of P -gates that feed exactly one F -gate
by s. For any of these gates there exists another descendant Ni, because
Case 4 does not occur. (If for some i and j gate Ni coincide with gate Nj or
another eliminated gate, we know the values of both Ni’s parents. Hence
we can eliminate at least one descendant of Ni. Therefore, we can assume
that for every such Pi we can find its own Ni.) On the other hand, the
number of gates Pi feeding more than two F -gates is equal to n−s. Hence,
k + 1 > 2(n− s) + s. Therefore, ⌊k+1

2 ⌋ > n. Consequently, the number of
the eliminated gates (all F-gates and all N-gates) minus the number of the
added ones is at least k + 1 + s − n > k + 1 − n > ⌈k+1

2 ⌉. Therefore, the

splitting is not worse than {1, k + 2 + ⌈k+1
2 ⌉}.

Case (A = Pi). Let A feed H and Fi. If H and Fi have the same type,
i.e., they become trivial together when substituting some constant to A,
then the value of A is fixed. Because if A kills both H and Fi, the input
xi does not affect value of its descendants. Hence the number of satisfy-
ing assignments in the current branch either equals zero or exceeds one.
Therefore, we can assume that the “right” value of A is known and simplify
the circuit without splitting (by eliminating at least two A’s descendants
and adding one more gate to the output).

If H and Fi have different types, then we learn the values of all Pi, be-
cause now they cannot kill their F -descendants or we get the same zero-or-
more-than-one situation. Therefore, we can assume that the “right” values
of all Pi’s are known and simplify the circuit without splitting.

Theorem 3. The algorithm described above decides Unique Circuit-SAT

in time O(2.374589m), where m is the number of gates in the input circuit.

Proof. We split our strategy in the two cases using the same logic as in
the Circuit SAT algorithm above. In the case k = 1 we make the splitting
{2, 3} ∗ {2, 4}, which gives the root 1.29647. In the case k > 1 we make the
splitting {1, k+2+⌈k+1

2 ⌉}, in which the maximum number of leaves in the
tree of recursive calls decreases by k. In the worst case of k = 2 it turns into
{1, 6} with the root 1.2852. Then the largest root is 1.29647. Therefore,
after applying the logarithm we get the upper bound O(2.374589m). �

136 A. A. LIALINA

References

1. E. Ya. Dantsin, Two tautologihood proof systems based on the split method. — Zap.
Nauchn. Sem. LOMI 105 (1981), 24–44.

2. A. Golovnev, A. S. Kulikov, A. V. Smal, S. Tamaki, Circuit Size Lower Bounds

and #SAT Upper Bounds Through a General Framework. — In: Proceedings of
41st International Symposium on Mathematical Foundations of Computer Science
(MFCS 2016). LIPIcs 58, Schloss Dagstuhl – Leibniz–Zentrum fuer Informatik, pp.
45:1–45:16, (2016).

3. E. A. Hirsch, New worst-case upper bounds for SAT, J. Automated Reasoning 24,
No. 4 (2000), 397–420.

4. O. Kullmann, New methods for 3-SAT decision and worst-case analysis. — Theor.
Computer Sci. 223 No. 1-2 (1999) 1–72.

5. O. Kullmann, H. Luckhardt, Deciding propositional tautologies: Algorithms and

their complexity. Technical report, Fachbereich Mathematik, Johann Wolfgang
Goethe Universität 1997.

6. B. Monien, E. Speckenmeyer, 3-satisfability is testable in O(1.62r) steps. Bericht Nr.
3/1979, Reihe Theoretische Informatik, Universität-Gesamthochschule-Paderborn,
1979.

7. S. Nurk, An O(2.4058m) upper bound for Circuit SAT PDMI Preprint, 2009.
8. R. Paturi, P. Pudlák, M. E. Saks, F. Zane, An improved exponential-time algorithm

for k-SAT. — J. ACM 52, No. 3 (2005), 337–364.
9. R. Santhanam, Fighting perebor: New and improved algorithms for formula and

QBF satisfiability. — In: Proceedings of the 51th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), (2010), 183–192.

10. S. V. Savinov, Upper bound for Circuit SAT, MSc Thesis. St. Petersburg Academic
University RAS, 2014.

11. K. Seto, S. Tamaki, A satisfiability algorithm and average-case hardness for for-

mulas over the full binary basis. — Comput. Complexity 22, No. 2 (2013), 245–274.
12. L. G. Valiant, V. V. Vazirani, NP is as easy as detecting unique solutions. — Theor.

Computer Sci. 47 (1986), 85–93.
13. M. Wahlström, An algorithm for the SAT problem for formulae of linear length.

— In: Proceedings of the 13th Annual European Symposium on Algorithms, ESA
2005, volume 3669 of Lecture Notes in Computer Science (2005), 107–118.

Поступило 5 декабря 2018 г.С.-Петербургское отделение
Математического института
им. В. А. Стеклова РАН;
С.-Петербургский государственный университет,
С.-Петербург, Россия

E-mail : lyalina.albina@mail.ru

