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Abstract. We study the symmetric six-vertex model on a finite
square lattice with the partial domain wall boundary conditions.
We use the known connection of the model with the off-shell Bethe
states of the Heisenberg XXZ spin chain. We obtain various formulas
for the partition function, and also discuss the model in the limit of
semi-infinite lattice.
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§1. Introduction

Possibly the most intriguing results obtained in the study of vertex
models with fixed boundary condition are expressions in terms of determi-
nants for their partition functions. Examples include the six-vertex model
with domain wall boundary conditions [1–3] as well as with their various
modifications closely related to symmetry classes of alternating-sing ma-
trices [4–6]. A nice determinant formula for the partition function is also
known for the five-vertex model with the fixed boundary conditions which
describe a scalar product of two off-shell Bethe states [7–10].

Under certain restrictions on the vertex weights, some determinant for-
mulas can be derived for the six-vertex model with the so-called partial
domain wall boundary condition [11, 12]. These boundary conditions are
interesting because they are a mixture of fixed and open boundary conditi-
ons. In [11,12], these formulas were obtained in the limit where the values
of a subset of spectral parameters of the six-vertex model with domain
wall boundary conditions are sent to infinity; the limit is possible either
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in the case of the rational weights or in the case of trigonometric weights
with a non-vanishing asymmetry (external field).

From the point of view of the phase diagram of the six-vertex model
these cases fall into the region of the ferroelectric phase (∆ > 1). At the
same time, it is well-known that the most interesting physics (and mathe-
matics) the six-vertex model demonstrates with the weights corresponding
to the disordered (|∆| < 1) and anti-ferroelectric (∆ 6 −1) phases. For
example, it is well known that in these phases in the case of domain wall
boundary conditions the six-vertex model demonstrates phase separation
phenomena (see, e.g. [13–16] and references therein). Recent numerical
studies show that these phenomena also present in the partial domain-wall
case [17]. It is therefore interesting to study in more detail the six-vertex
model with partial domain wall boundary conditions with generic weights.

In the present paper we address the problem of calculation of the par-
tition function of this model with arbitrary symmetric weights. We rely
on the known connection of the model with the off-shell Bethe states of
the Heisenberg XXZ spin chain; specifically, we use their coordinate repre-
sentation. We obtain various formulas for the partition function and also
discuss the model in the limit of semi-infinite lattice. In particular, we
show that in this limit the partition function admits the representation in
terms of a pfaffian.

§2. Partial domain wall boundary conditions

We consider the six-vertex model in its standard formulation in terms of
arrows placed on edges of a square lattice (see, e.g., [18]). The six allowed
configurations of arrows around a vertex are shown in Fig. 1, together with
their Boltzmann weights. We consider here only the case of symmetric
model (zero external field), in which the Boltzmann weights of vertices
are invariant under reversal of all arrows. Hence, there are three weight
functions: a, b, and c. The parameter

∆ =
a2 + b2 − c2

2ab
(1)

plays an important role in physics of the model. For real positive weights,
∆ ∈ R.

The partial domain wall boundary conditions mean that the model is
considered an s × N lattice (i.e., the square lattice obtained by intersec-
tion of s horizontal and N vertical lines), s 6 N , and the arrows on the
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a a b b c c

Figure 1. The six vertices and their weights.

Figure 2. The N × s lattice with the partial domain-wall
boundary conditions; here N = 9 and s = 4.

external edges are fixed as follows. On the horizontal lines at the left and
right boundaries they are outgoing, while on the vertical ones at the top
boundary they are incoming. On the vertical lines at the bottom bound-
ary the arrows are not fixed, see Fig. 2, where the empty edges denote the
sums over possible orientation of arrows on these edges. In the special case
s = N the only possible configuration of arrows at the bottom boundary
is with all the arrows being incoming, and hence in total the boundary
conditions are exactly the domain wall ones.

We denote the partition function of the model as ZN,s. It is defined as
the sum over all possible configurations

ZN,s =
∑

arrow configurations

anabnbcnc . (2)

Here, na, nb, nc are the number of the vertices with weights a, b, c, respec-
tively, na + nb + nc = sN .

To study it, we consider here more general model with the weights
inhomogeneous along the vertical direction, with the condition that the
parameter (1) is independent of the position of the vertex. Denote the
weights of the jth horizontal line (counted, say, from the top, j = 1, . . . , s),
by aj , bj, cj . The inhomogeneity can be described, for example, by the
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variables

tj =
bj
aj

, j = 1, . . . , s.

As functions of tj and ∆, the weights read

aj = 1, bj = tj , cj =
√
1− 2∆tj + t2j , (3)

where the specific normalization is chosen for a later convenience. The
partition function of this model is

ZN,s(t1, . . . , ts) =
∑

arrow configurations

s∏

j=1

t
νj
j

(
1− 2∆tj + t2j

)µj/2
, (4)

where νj and µj are the numbers of the b- and c-weight vertices in the jth
line, respectively. In what follows we mostly work with (4), which, where
no confusion may arise, will be denoted simply as ZN,s; we will call (2) as
ZN,s in the homogeneous limit: tj → t, j = 1, . . . , s.

We end up this section by mentioning a simple property of ZN,s. For
this purpose it is useful to note that the six-vertex model with the arrow re-
versal symmetry additionally possess the the so-called crossing symmetry,
which means the invariance of the vertices under reflection with respect to
the vertical (or horizontal) axis and simultaneous exchange of the weight
functions a and b, a ↔ b, see Fig. 1. Hence,

ZN,s(t1, . . . , ts) =

(
s∏

j=1

tNj

)
ZN,s(t

−1
1 , . . . , t−1

s ), (5)

that can be obtained by noticing the symmetry of the lattice and boundary
conditions of Fig. 2 under reflection with respect to the vertical axis.

§3. Relation with the off-shell Bethe states

We first briefly review formulation of the model in terms of the quantum
inverse scattering method, and next pass to the formulation in terms of
the off-shell Bethe states.

We shall follow paper [19], slightly reverting conventions to fit into the
standard interpretation of operators. We define the down and left arrows
to be associated with the spin up states |↑〉, and the top and right arrows
with the spin down states |↓〉. Let us assign the local quantum spaces to
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the vertical lines of the lattice. Then the boundary conditions on the top
boundary correspond to the all-spins-up state

|⇑N 〉 = ⊗N
j=1|↑j〉.

Similarly, the open boundary conditions on the bottom boundary corre-
spond to the state

|mN 〉 = ⊗N
j=1(|↑j〉+ |↓j〉).

Fixing the convention that the operators act from top to bottom, one finds
that the partition function (4) can be written as the matrix element

ZN,s(t1, . . . , ts) = 〈mN |B(λs) · · ·B(λ1)|⇑N 〉, (6)

where the spectral parameters λj , j = 1, . . . , s, are related to the variables
tj by

tj = t(λj) :=
sin(λj − η)

sin(λj + η)
, ∆ = cos 2η,

and the operator B(λ) is the top-right element of the quantum monodromy
matrix:

T (λ) = LN(λ) · · ·L1(λ) =

(
A(λ) B(λ)
C(λ) D(λ)

)
.

Here, Ln(λ), n = 1, . . . , N , are quantum L-operators

Ln(λ) =

(
1+t(λ)

2 + 1−t(λ)
2 σz

n c(λ)σ−
n

c(λ)σ+
n

1−t(λ)
2 + 1+t(λ)

2 σz
n

)
,

where σ±,z
n are Pauli spin operators of the nth local quantum space, and

c(λ) = sin 2η/ sin(λ+ η).

As it is well known, the commutation relations of the operators-elements
of the monodromy matrix—are described by the trigonometric R-matrix,
which obeys the Yang–Baxter relation, see, e.g., [20, Chap. VI]. Among
these commutation relations is the commutativity property

[B(λj), B(λk)] = 0.

Hence, (6) implies that ZN,s(t1, . . . , ts) is totally symmetric with respect
permutations of the variables t1, . . . , ts.

To explore further ZN,s(t1, . . . , ts), we shall use another formulation
which is closely related to (6). In [19], while studying correlation functions
of the six-vertex model with domain wall boundary conditions on an N×N
lattice, it was noticed that somewhat fundamental role in their calculation
plays the decomposition on two partition functions Ztop

r1,...,rs and Zbot
r1,...,rs .
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r1r2r3r4

Figure 3. Definition of the partition function Ztop
r1,...,rs : the

up arrows at the bottom boundary are fixed at the posi-
tions 1 6 r1 < · · · < rs 6 N , counted from the right.
Here, as in Fig. 2, N = 9, s = 4, and r1 = 2, r2 = 3,
r3 = 5, r4 = 9.

They are defined such that Ztop
r1,...,rs (respectively, Zbot

r1,...,rs) gives the par-
tition function of the model on the top (bottom) portions of the lattice of
the size s×N ((N − s)×N) with the up arrows located at the positions
r1, . . . , rs on the bottom (top) boundary, see Fig. 3.

It is clear, that ZN,s can be represented as the sum

ZN,s =
∑

16r1<...<rs6N

Ztop
r1,...,rs . (7)

Similarly to (6), one may write

Ztop
r1,...,rs = 〈0|σ+

r1 · · ·σ
+
rsB(λs) · · ·B(λ1)|0〉.

This formula means that Ztop
r1,...,rs is a component of the off-shell Bethe

s-particle state. Furthermore, using the correspondence between the alge-
braic and coordinate versions of Bethe Ansatz [21] (see also [20, Chap. VII,
App. 2]), one may directly write Ztop

r1,...,rs in the coordinate form [19]:

Ztop
r1,...,rs =

s∏

j=1

cj
∏

16j<k6s

1

tk − tj

×
∑

σ∈Ωs

(−1)[σ]
s∏

j=1

t
rj−1

σ(j)

∏

16j<k6s

(1− 2∆tσ(j) + tσ(j)tσ(k)). (8)

Here cj ≡ (1−2∆tj+t2j)
1/2, see (3). The sum is performed over elements of

the symmetric group Ωs, i.e., permutations σ : 1, . . . , s 7→ σ(1), . . . , σ(s),
and [σ] denotes parity of σ.
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§4. Some results for the partition function

Let us study ZN,s using (7) and (8). Apparently, from these formulas it
follows that ZN,s(t1, . . . , ts), modulo factor c1 · · · cs, see (3), is a symmetric
polynomial in its variables. Furthermore, in addition to the relation (5)
expressing the crossing symmetry, one can notice the reduction formula

ZN,s(t1, . . . , ts)
∣∣
ts→0

= ZN−1,s−1(t1, . . . , ts−1),

where, due to the symmetry, ts can be replaced by any of t1, . . . , ts−1.
To get more information about the structure of ZN,s, let us consider

the summation in (7). Let us denote

Σs = Σs(t1, . . . , ts) :=
∑

16r1<r2<...<rs6N

s∏

j=1

t
rj−1
j . (9)

We have, for example,

Σ1 =
1

1− t1
−

tN1
1− t1

,

Σ2 =
t2

(1 − t2)(1− t1t2)
−

tN2
(1 − t1)(1− t2)

+
tN1 tN2

(1 − t1)(1− t1t2)
,

Σ3 =
t2t

2
3

(1 − t3)(1− t2t3)(1− t1t2t3)
−

t2t
N
3

(1− t2)(1 − t3)(1 − t1t2)

+
tN2 tN3

(1− t1)(1− t2)(1 − t2t3)
−

tN1 tN2 tN3
(1− t1)(1− t1t2)(1− t1t2t3)

.

Inspecting these expressions it is not difficult to write out the result in the
general case.

Lemma 1. For the quantities Σs defined in (9), the following formula is

valid:

Σs =

s∑

j=0

(−1)j
s−j∏

k=1

tk−1
k

1−
s−j∏
l=k

tl

s∏

k=s−j+1

tNk

1−
k∏

l=s−j+1

tl

. (10)

Clearly, a proof can be given by induction in s; we skip the proof since
it is purely technical.
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Having in mind the expression (10) for Σs, we can write the following
representation:

ZN,s =

s∏

j=1

cj
∏

16j<k6s

1

tk − tj

∑

σ∈Ωs

(−1)[σ] Σs(tσ(1), . . . , tσ(s))

×
∏

16j<k6s

(1− 2∆tσ(j) + tσ(j)tσ(k)).

(11)

We have, for example,

ZN,1 =
c1

1− t1

(
1− tN1

)
,

ZN,2 =
c1c2

(1− t1)(1− t2)(1 − t1t2)

×

{
1 + (1 − 2∆)t1t2 − (1− 2∆+ t1t2) t

N
1 tN2

− (1− t1t2)
(1 + t1t2)(t

N
2 − tN1 )− 2∆(t1t

N
2 − t2t

N
1 )

t2 − t1

}
.

The expression in the s = 3 case is already too bulky to be given here.
Nevertheless, studying this and other cases (with the help of symbolic ma-
nipulation software) we have observed rather intriguing property of ZN,s.
Namely, it turns out that there is a nontrivial interplay between the factors
standing in the denominator in (10) and the sum over permutations and
double product in (11), so that the resulting expression for ZN,s contains
only single and double products in the denominator.

To make this property more transparent, let us consider the sum over
permutations in (11) but with Σs replaced by the expression

Σ̃s(t1, . . . , ts;x1, . . . , xs) =

s∑

j=0

(−1)j
s−j∏

ℓ=1

tℓ−1
ℓ

1−
s−j∏
k=ℓ

tk

×
s∏

ℓ=s−j+1

xℓ

1−
ℓ∏

k=s−j+1

tk

,

(12)

where x1, . . . , xs are dummy variables. Our observation is the following.
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Conjecture 1. The sum over permutations with the function Σ̃s defined

in (12) has the form

∑

σ∈Ωs

(−1)[σ] Σ̃s(tσ(1), . . . , tσ(s);xσ(1), . . . , xσ(s))

×
∏

16j<k6s

(1− 2∆tσ(j) + tσ(j)tσ(k))

=

s∏

j=1

1

1− tj

∏

16j<k6s

1

1− tjtk
As(t1, . . . , ts;x1, . . . , xs),

where As(t1, . . . , ts;x1, . . . , xs) is a polynomial of all its arguments, totally

antisymmetric with respect to permutations of pairs (t1, x1), . . . , (ts, xs),
which possesses the property

As(t1, . . . , ts; t
N
1 , . . . , tNs ) =

∏

16j<k6s

(tk − tj)PN,s(t1, . . . , ts).

Here, PN,s(t1, . . . , ts) is a symmetric polynomial, which has simple zeros

in each variable tj, j = 1, . . . , s, at the points

tj = t−1
1 , . . . , t−1

j−1, 1, t
−1
j+1, . . . , t

−1
s .

Apparently, the polynomial PN,s essentially determines the partition
function; we thus have

ZN,s =

s∏

j=1

cj
1− tj

∏

16j<k6s

1

1− tjtk
PN,s(t1, . . . , ts). (13)

It is very plausibly that this polynomial can be written in some determi-
nant form. In the general situation which we considered so far, existence
of such a form remains open, but for some values of the parameters this is
indeed the case. In the remaining part of this section we list such cases.

We start with the technically simplest case ∆ = 0, in which a deter-
minant representation usually exists due to the free-fermion nature of the
six-vertex model at this point. In this case,

Z∆=0
N,s =

s∏

j=1

cj
1− tj

∏

16j<k6s

1+tjtk
(1−tjtk)(tk−tj)

det
16j, k6s

[
tj−1k −tN+s−j

k

]
. (14)

This formula can be proven, e.g., using the technique of Schur functions[22].
Indeed, in this case the double product in (11) is symmetric and thus can
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be moved out of the sum over permutations, so one may use for Σs its
definition (9).

Much less trivial and very interesting case is ∆ = 1, which was studied in
[11,12]. In the framework of our approach, the polynomial PN,s(t1, . . . , ts)
arising in this case factorizes on the double product exactly that standing
in the denominator in (13), and a factor which clearly has the form of a
determinant, so the result reads

Z∆=1
N,s =

s∏

j=1

cj
1−tj

∏

16j<k6s

1

tk−tj
det

16j, k6s

[
(1−tk)

s−j
(
tj−1
k −tNk

)]
. (15)

This formula seems to be new. In fact, it can be proven using the result
obtained in [11]; we will give the details of this calculation elsewhere.

The remaining cases are closely related to each other and they are where
s = N − 1 and s = N , for arbitrary ∆. In fact these two cases are just
the case of domain wall boundary conditions, the former case being a
particular generating function for the boundary correlation function of
this model [23, 24]. The partition of function at s = N − 1 is related to
that at s = N as follows

ZN,N−1(t1, . . . , tN−1) =
ZN,N(t1, . . . , tN )

cN

∣∣∣∣
tN→1

. (16)

Thus the determinant formula for ZN,N−1 can obtained from that for
ZN,N . Since the last case is well-known, we do not discuss it here but
give the details in appendix.

§5. Homogeneous limit and number of configurations

Let us consider the model in the homogeneous limit, tj → t, j = 1, . . . , s.
In [19], it was shown that in this case Ztop

r1,...,rs admits the representation
in terms of a multiple contour integral:

Ztop
r1,...,rs =

cs

(2πi)s

∮

Ct

. . .

∮

Ct

s∏

j=1

z
rj−1
j

(zj − t)s

×
∏

16j<k6s

[(zj − zk)(1− 2∆zj + zjzk)] dz1 · · · dzs.

Here, Ct denotes a simple closed contour enclosing the point z = t, and
c ≡ (1− 2∆t+ t2)1/2, see (3).
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Correspondingly, for the partition function ZN,s, we can write

ZN,s =
cs

(2πi)s

∮

Ct

. . .

∮

Ct

Σs(z1, . . . , zs)

s∏

j=1

1

(zj − t)s

×
∏

16j<k6s

[(zj − zk)(1− 2∆zj + zjzk)] dz1 · · · dzs,

(17)

where Σs is given by (10).
The practical meaning of (17) is that it can be used, for example, for

computing the number of configurations. Let us denote this number by
KN,s. It is given by the partition function for t = c = 1, that is

KN,s = Z
∆=1/2
N,s

∣∣
t=1

.

For generic N and first few values of s, we find:

KN,1 = N,

KN,2 =

(
N

2

)
N + 4

3
,

KN,3 =

(
N + 1

4

)
N2 + 14N + 54

15

KN,4 =

(
N + 1

5

)
(N + 6)(N + 8)

(
N3 + 21N2 + 128N − 30

)

2520
,

KN,5 =

(
N + 2

7

)
N

907 200

(
N7 + 67N6 + 1897N5 + 28 525N4

+ 234 724N3 + 937 468N2 + 786 498N − 3 753 180
)
.

These numbers may have a combinatorial meaning. Note that

Ks,s−1 = Ks,s = As, (18)

where As is the number of s×s alternating-sign matrices, A1 = 1, A2 = 2,
A3 = 7, A4 = 42, A5 = 429, and, in general,

As =

s−1∏

j=0

(3j + 1)!

(s+ j)!
.

In (18) the first equality is due to (16), while the second one is due the
well-known connection of the alternating-sign matrices with the six-vertex
model with domain boundary conditions [25].
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§6. The case of semi-infinite region

As it is follows from (10), the quantities Σs simplify significantly if
tNj → 0, j = 1, . . . , s. This can be achieved in the limit N → ∞ under the
condition that, if all tj ’s are all real and positive,

0 6 tj < 1, j = 1, . . . , s. (19)

If they need to be complex, then one has to require that |tj | < 1, j =
1, . . . , s.

From the point of view of the six-vertex model with partial domain wall
boundary conditions, the limit N → ∞ means that the left boundary goes
to infinity, so that the lattice is semi-infinite, with s rows. The bound-
ary conditions on the left boundary are now effectively vanishing, that
is guaranteed by (19). Note, that the condition (19) breaks the crossing
symmetry.

To study the partition function of this model, it is useful to start from
the particular cases, and next turn to the general case.

We first consider the case ∆ = 0. In the limit N → ∞ the determinant
in (14) can be readily evaluated, that yields

Z∆=0
∞,s =

s∏

j=1

cj
1− tj

∏

16j<k6s

1 + tjtk
1− tjtk

.

This expression remains finite as far as the condition (19) is fulfilled. Using
that in the present case cj = (1+ t2j )

1/2, in the homogeneous limit tj → t,
j = 1, . . . , s, we get

Z∆=0
∞,s =

(
1 + t2

1− t2

)s2/2 (
1 + t

1− t

)s/2

.

Since the leading term of logZ∆=0
∞,s is O(s2) as s → ∞, one may conclude

that the model behaves just like it would be defined on an s× s lattice.
Let us now consider the case ∆ = 1. Evaluating the determinant in (15),

we obtain

Z∆=1
∞,s =

s∏

j=1

cj
1− tj

= 1,

where we have used that, due to (19), cj = 1−tj in this case. The obtained
result has a simple probabilistic meaning, as the normalization condition of
a total probability. Indeed, the relation cj+tj = 1 reflects the stochasticity
property of the six-vertex model at ∆ = 1 [26].
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As for arbitrary ∆, it turns out that Z∞,s can be given in terms of a
pfaffian, due to the following statement1.

Proposition 1 (L. Cantini [27]). For τ ∈ C, the following identity holds:

∑

σ∈Ωs

(−1)[σ]
s∏

j=1

1

xj
σ(j)

(
1−

j∏
k=1

xσ(k)

)
∏

16j<k6s

(1 + τxσ(k) + xσ(j)xσ(k))

= (−1)s(s−1)/2
s∏

j=1

1

xs
j(1− xj)

∏

16j<k6s

(xj + xk + τxjxk)

× Pf
16j<k6g

[
(xk − xj) (1 + (1 + τ)xjxk)

(1− xjxk)(xj + xk + τxjxk)

]
,

where g = s, if s is even, and g = s+ 1, with xs+1 ≡ 1, if s is odd.

Clearly, to apply this result to Z∞,s one has to set τ = −2∆ and
xj = ts−j+1, j = 1, . . . , s. Hence,

Z∞,s =

s∏

j=1

cj
1− tj

∏

16j<k6s

tj + tk − 2∆tjtk
tk − tj

× Pf
16j<k6g

[
(tk − tj) (1 + (1 − 2∆)tjtk)

(1 − tjtk)(tj + tk − 2∆tjtk)

]
. (20)

Here, g is the same as defined above, and ts+1 ≡ 1, in the case of s odd.
Apparently, just like for finite N , see (13), the partition function at

N = ∞ has the structure

Z∞,s =

s∏

j=1

cj
1− tj

∏

16j<k6s

1

1− tjtk
P∞,s(t1, . . . , ts),

where P∞,s(t1, . . . , ts) ≡ limN→∞ PN,s(t1, . . . , ts). The representation (20)
essentially determines this symmetric polynomial, but in practical calcula-
tions one may prefer more to deal with a determinant rather than with a
pfaffian. For example, finding the homogeneous limit of (20) is an awkward
task.

Addressing the problem of a determinant form for P∞,s(t1, . . . , ts), we
have discovered that at least in the case ∆ = 1/2 it indeed admits a
desirable solution.

1We are grateful to F. Colomo for informing us about this result by L. Cantini.
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Conjecture 2. At ∆ = 1/2 the polynomial P∞,s(t1, . . . , ts) is a polyno-

mial in the variables uj = tj(1− tj), j = 1, . . . , s, and reads

P∆=1/2
∞,s (t1, . . . , ts) =

∏

16j<k6s

1

uk − uj
det

16j,k6s

[
uj−1
k (1− uk)

3[ s−j
2

]
]
, (21)

where [ s−j
2 ] denotes the integer part of s−j

2 .

We have obtained this result inspecting (for up to s = 7) the polyno-
mials P∞,s(t1, . . . , ts) arising after evaluation the sum over permutations
in (11), taking for Σs just single term contributing in the N → ∞ limit
(one may prefer instead to use (20) and the specially designed routine for
pfaffians [28]). Proof of (21) remains open.

The authors are grateful to F. Colomo for useful discussions.

Appendix §A. The case of domain wall boundary

conditions

In the case of s = N , the partial domain wall boundary conditions
essentially are the domain wall ones. The partition function ZN,N is given
by the Izergin-Korepin determinant in which the spectral parameters of one
of the two sets (see [2, 3] or [24]) are set to zero. Namely, in our present
notation the result has the following form.

Define functions fn(t), n = 1, 2, . . ., recursively by

fn(t) =
t

n
∂t
(
t+ t−1 − 2∆

)
fn−1(t), f0(t) = 1.

This definition originates from the formulas

fn(t) =
1

n!ϕ(λ)
∂n
λϕ(λ), ϕ(λ) =

1

sin(λ− η) sin(λ+ η)
,

where, as we have already used in the main text,

t = t(λ) =
sin (λ− η)

sin(λ+ η)
, ∆ = cos 2η.

Then,

ZN,N =
N∏

j=1

cj
∏

16j<k6s

1

tk − tj
det

16j,k6N

[
tN−1
k fj−1(tk)

]
.
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