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ASYMPTOTICS OF INTEGRALS OF SOME FUNCTIONS

RELATED TO THE DEGENERATE THIRD PAINLEVÉ

EQUATION

Аннотация. It is shown how to calculate asymptotics of integrals
over the positive semi-axis of two functions related to the Degenerate
Third Painlevé Equation (dP3). As an example, the corresponding
results for the meromorphic solution of the dP3 vanishing at the
origin are presented.
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§1. Introduction

The degenerate third Painlevé equation can be written in the following
form [1, 2],

u′′ =
(u′)2

u
− u′

τ
+

1

τ
(−8ǫu2 + 2ab) +

b2

u
, (1)

where u = u(τ), the primes denote differentiation with respect to τ ,
a ∈ C and b > 0 are parameters, and ǫ = ±1. In most instances, the
τ dependencies are suppressed; e.g., the notation u connotes u = u(τ).

There is another form of Equation (1), namely,

b2τ2
(
f ′′ − 2b2

)2
+ (8f + iǫb(2ai− 1))

2 (
(f ′)2 − 4b2f

)
= 0, (2)

where i2 = −1. Equation (2) coincides with the one given in [1] via the re-
scalings f → iǫbf/2 and a → a− i. It occurs because of a slight difference
in the definition of the function f ; more precisely, for any solution u of
Equation (1), define the functions (see [1], p. 1198)

u+ =
iǫb

8u2
(τ(−u′ − ib)− (2ai− 1)u) (3)
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and

u− =
iǫb

8u2
(τ(u′ − ib)− (2ai+ 1)u) ,

which solve Equation (1) for a = a+ := a + i and a = a− := a − i,
respectively. One proves that the function f = u+u solves Equation (2),
whilst the function iǫbuu−/2 solves the equation for the function f presen-
ted on p. 1168 of [1]. Conversely, suppose that f is a solution of Eq. (2);
then,

u =
f ′

2ib
− ǫτ(f ′′ − 2b2)

2(8f + iǫb(2ai− 1))
(4)

solves Equation (1), and u+ = u− f ′/(ib).
Due to the works [3, 4], there’s another well-known class of equations

that are quadratic with respect to the second derivative, that are equivalent
to the Painlevé equations, namely, the so-called σ-forms of the Painlevé
equations, which are related with their Hamiltonian structures and the
τ -functions. In this paper, the σ-forms of Equation (1) are not discussed.

The equation that is equivalent to Equation (1) is specified in the
work [5] (see p. 75 of [5]) as SD-III.b (5.66) under the conditions (5.68)
and denoted by SD-III.A. One learns from this work that Equation (1)
was first discovered by F. Bureau [6] via the direct Painlevé analysis: he
also found a relation of this equation with Equation (1), which is, without
interpreting the functions u± as Bäcklund transformations, equivalent to
our formulae. The transformation (4) may, in fact, be new. It should be
noted that the derivation of Equation (2) in [1] is based on the Hamiltonian
structure of Equation (1) and, indirectly, its isomonodromy deformations.

The definition of the function f can be re-written as

f = u+u = −τ
iǫb

8

(
u′

u
− 1

τ
+ i

(
2a

τ
+

b

u

))
;

equivalently,

f = − iǫb

8
τ
d

dτ
lnA(τ), A(τ) :=

u

τ
eiϕ, ϕ′ :=

2a

τ
+

b

u
, (5)

where the functions A and ϕ are introduced in Proposition 1.2 of [1] in
connection with isomonodromy deformations. Integrating along a contour
L(τ0, τ) connecting points τ0 to τ , one arrives at, from the third equation
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in (5), and, after division by τ , the first equation in (5),
∫

L(τ0,τ)

(
2a

τ̃
+

b

u(τ̃)

)
dτ̃=ϕ|L(τ0,τ),

∫

L(τ0,τ)

f(τ̃ )

τ̃
dτ̃=

ǫb

8

(
ϕ−i ln

u

τ

)∣∣∣
L(τ0,τ)

. (6)

The main goal of this paper is to explain how one can evaluate these
integrals. Towards this end, one has to explain how to calculate the deviati-
on of the functions ϕ and u along L(τ0, τ). In this paper, the aforemen-
tioned problem is considered asymptotically, that is, when the limits of
integration belong to small neighbourhoods of the singular points, 0 and
∞, of Equation (1). For this purpose, one requires asymptotics of the
functions u and ϕ.

Asymptotics of the function u were studied in [1, 2]: the corresponding
asymptotics for the function ϕ can also be extracted from these papers.
In order to do so, recall that in Proposition 1.2 of [1] there was one more
function:

B(τ) = −u

τ
e−iϕ;

therefore, the function ϕ can be presented as

ϕ = − i

2
ln

(
−A

B

)
= −i ln

(√
−AB

B

)
. (7)

The final transformation of the above equation is necessary because it
is for the functions

√
−AB and B that asymptotic results are given in

Proposition 4.3.1, Corollary 4.3.1, and Propositions 5.5 and 5.7 of [1]. It
is important to note that in Appendix B of the subsequent paper [2],
inconsistencies in the paper [1] were located and rectified. Furthermore, as
explained in Section 7 of [7], due to the discrepancy in the definition of
the canonical solutions and the corresponding linear ODE, one has to add
to the asymptotics of the function ϕ, obtained with the help of the results
in [1, 2], the term a ln τ .

The integral analogous to the first one in (6), but for the second Painlevé
equation, was calculated in [8]; in the latter case, however, the analogue
of Equation (2) does not exist.

§2. Meromorphic solution vanishing at the origin

In the previous section, the general scheme allowing one to calculate
the integrals (6) was presented; however, for every particular solution and
contour of integration, there are special questions that must be addressed.
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Here, one simple, yet interesting, example of such a calculation is conside-
red. Note that in this section ǫ = +1.

It is proved in [7] that for all a ∈ C \ iZ, there exists the unique odd
meromorphic solution of Equation (1) such that u(0) = 0. The asymptotic
calculation of the integrals for this solution is considered by taking the
simplest contour, L(0, τ) = [0, τ ], τ ∈ R+, τ → +∞.

Consider the case a ∈ R \ {0}. For a = 0, the solution holomorphic in a
neighbourhood of τ = 0 and vanishing at τ = 0 does not exist. For a > 0,
such a solution has an infinite number of poles on the real axis, which
can be deduced from the results of [2]. Therefore, only the case a < 0 is
considered below. Henceforth, by u(τ) is meant only this special solution.

It is proved in [7] that u(τ) has neither poles nor zeros on the real axis,
except at the origin, where, by definition, u(0) = 0. It is easy to establish
from Equation (1) that u(τ) is real for real τ , and u′(0) = −b/2a. In this
case, b > 0 and a < 0, so that it is obvious that u(τ) > 0 for τ > 0 and
u(τ) < 0 for τ < 0, since it is an odd function. Using the Taylor expansion
for the function u(τ) (see Equation (23) of [7]), one finds that

lim
τ→0

(
2a

τ
+

b

u

)
= 0;

therefore, the integral of the function 2a/τ+b/u exists on the real segment
[0, τ ].

Since the function u is real, the functions u± are complex conjugates,
u+ = ū−; moreover, Equation (3) implies that u+ does not have poles on
the real axis. The function f(τ)/τ vanishes as τ → 0, since u(0) = u+(0) =
0. Therefore, the integral of the function f(τ)/τ is properly defined on the
real segment [0, τ ].

Now, using Equation (7) and Proposition 4.3.1 of [1] (with the correc-
tions indicated above), one finds that

ϕ(τ) =
τ→+∞

3b1/3τ2/3 + 2a ln(τ2/3)− ln(2 +
√
3)

π
ln
(
1− e2πa

)

+ 2a ln 2− a ln(b1/3) + π + i ln
(
g211

(
1− e2πa

))
+ o(τ−δ), (8)

where g11 is the monodromy parameter introduced in [1] (in this context,
it might be viewed as the constant of integration), and δ>0. Equation (7)
and Proposition (5.5) of [1] (with the additive correction term a ln τ) give
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rise to the following result:

ϕ(0) =
3π

2
− a ln b+ 2a ln 2 + 2Arg(Γ(1 + ai)) + i ln

(
g211

(
1− e2πa

))
, (9)

where Γ(·) is the Gamma-function [9]. Subtracting Equation (9) from
Equation (8), one arrives at

τ∫

0

(
2a

τ̃
+

b

u(τ̃ )

)
dτ̃=3b1/3τ2/3 + 2a ln(b1/3τ2/3)− ln(2 +

√
3)

π
ln
(
1−e2πa

)

− π

2
− 2Arg(Γ(1 + ai)) + o(τ−δ). (10)

One recalls that the function Arg(Γ(1 + ai)) is defined as a continuous
function of a, such that Arg(Γ(1 + ai)) = arg(Γ(1 + ai)) for a ∈ (−3 −
π/2, 0): when a decays from 0 to −3− π/2, both arguments decay from 0
to −π; for a = −3 − π/2, the function arg suffers a jump discontinuity of
2π (from −π to +π), and then continues to decay, whilst Arg continues to
decay without this jump.

To calculate the second integral, one needs the following results:

lim
τ→0

ln
(u
τ

)
= ln b− ln(−a)− ln 2, (11)

ln
(u
τ

)
=

τ→+∞
−2

3
ln τ +

2

3
ln b− ln 2 +O(τ−1/3). (12)

With the help of these estimates and Equations (6), one deduces that

Re

τ∫

0

f(τ̃ )

τ̃
dτ̃ =

b

8

τ∫

0

(
2a

τ̃
+

b

u(τ̃)

)
dτ̃ , (13)

Im

τ∫

0

f(τ̃ )

τ̃
dτ̃ =

b

8

(
ln(b1/3τ2/3)− ln(−a)−O(τ−1/3)

)
. (14)

In Equation (14) a minus sign is indicated in the O-estimate in order to
stress that it is exactly the same function as in Equation (12). The results
derived in [1] allow one to obtain the O(τ−1/3) terms in Equations (12)
and (14) explicitly; in particular, let

x = 31/2b1/3τ2/3 (> 0) and q =

√
− ln(1− e2πa)

2π
(> 0);
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then,

O(τ−1/3) = − 2q√
x

cos
(
3x+ q2 ln(3x) + φ0 + o(τ−δ)

)
,

φ0 = a ln(2 +
√
3) + q2 ln(12)− π

4
− arg

(
Γ
(
iq2

))
,

(15)

where δ > 0. This formula is an immediate consequence of the second
Equation (6) and Equation (179) of [7].

§3. Numerical examples

In this section, several features of the results obtained in the previous
section are illustrated.

It is know [1] that u(τ) is, in fact, oscillating about the parabola in
Fig. 1; however, this oscillatory structure is too fine to be observed for
a < −1.

For the calculation of asymptotics, via Equation (10), in Fig. 2 it is
important to note that Arg (Γ(1− 8i)) = arg (Γ(1 − 8i))− 2π.

According to Equation (13), the plots in Figures 2 and 5 for Re
τ∫
0

(
f(τ̃)
τ̃

)
dτ̃

coincide modulo the numeric factor b/8.
The correction term (15) is not observable in Figure 3: this is the general

situation for all values a < −1; it is obviously related with the analogous
situation for u(τ).

For −1 < a < 0, oscillations of the solution (which are “hidden” for
smaller values of a) are clearly seen.

Oscillations that are seen in Figure 4 are not observable in Figure 5,

and, consequently, for Re
τ∫
0

(f(τ̃ )/τ̃) dτ̃ .

Figures 6 and 7 illustrate, for −1 < a < 0, the importance of the

correction term (15) for Im
τ∫
0

(f(τ̃)/τ̃ ) dτ̃ .

Note that the value of the parameter b > 0 is not important for observing
the oscillations; for larger values of b, the oscillations become faster. The
value b = 1/100 is chosen only for the purpose of obtaining clearer figures.



200 A. V. KITAEV, A. VARTANIAN

Рис. 1. Numerical plot of u(τ) for a = −8 and b = 1/100.

Рис. 2. Plot of
τ∫
0

(2a/τ̃ + b/u(τ̃)) dτ̃ for a = −8 and b =

1/100. The upper line is the asymptotics and the lower
line is the numerical plot of the integral.
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Рис. 3. Plot of Im
τ∫
0

(f(τ̃)/τ̃ ) dτ̃ for a = −8 and b =

1/100. The upper line is the numerical plot of the integral
and the lower line is the plot of its asymptotics (14).

Рис. 4. Numerical plot of u(τ) for a = −1/8 and b = 1/100.
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Рис. 5. Plot of
τ∫
0

(2a/τ̃ + b/u(τ̃)) dτ̃ for a = −1/8 and

b = 1/100. The asymptotic and numerical values of the
integral practically coincide for τ > 5.

Рис. 6. Plot of Im
τ∫
0

(f(τ̃)/τ̃ ) dτ̃ for a = −1/8 and b =

1/100. One sees oscillation of the numerical plot about
the asymptotic line (14) without the correction term (15).
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Рис. 7. Plot of Im
τ∫
0

(f(τ̃ )/τ̃) dτ̃ for a = −1/8 and

b = 1/100. One notes that the numerical plot practically
coincides with the asymptotic plot with the correction
term (15).
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