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CONFORMAL LIMIT FOR DIMER MODELS ON THE
HEXAGONAL LATTICE

ABSTRACT. In this note we derive the asymptotical behavior of local
correlation functions in dimer models on a domain of the hexagonal
lattice in the continuum limit, when the size of the domain goes to
infinity and parameters of the model scale appropriately.

Dedicated to the 70-th birthday of M. Semenov-Tian-Shansky

§1. INTRODUCTION

In this note we study the asymptotics of local correlation functions for
dimer models on special domains of the hexagonal lattices. The main result
is a formula for the asymptotics of the inverse to the Kasteleyn operator
computed in two different ways: from the integral formula and from the
definition. This note is a research report. Missing details will be completed
in an extended version which will be also posted on the ArXiv.

Asymptotical formulae for local correlation functions of height functions
in dimer models were computed in a number of papers for various regions
and lattices, see for example [1-3].

Here we emphasize the relation to Dirac fermions, rather than to a
Gaussian field as it was done, for example, in [1-3]. Dirac fermions can be
written in terms of Gaussian field due to the Bose—Fermi correspondence in
space one dimension, but the resulting expression is non-local. However, in
many ways it is preferable to think of Dirac fermions as more fundamental
objects.

Here is the plan of the paper. The first section is the introduction. In the
second section we recall basic facts about dimer models on the hexagonal
lattice. We compute the asymptotic of correlation functions for special
domains using the integral representation in the third section. In section 5
we compute the same asymptotic using the definition of the inverse to the
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equation, conformal correlation functions.
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Kasteleyn operator in terms of the difference equation. In the fifth section
we state the asymptotical behavior of Kastelyn fermions in the continuum
limit. The details will be given in an extended version of the paper.

§2. DIMERS ON THE HEXAGONAL LATTICE AND THE KASTELEYN
OPERATOR

2.1. Dimer models on the hexagonal lattice. Let H be the hexagonal
lattice with the bipartite structure shown on Fig. 1 and I' C H be a finite
subgraph which is a connected, simply-connected domain in H without
1-valet vertices. In other words I' is a connected, simply-connected domain
assembled from elementary hexagons.

Figure 1. Hexagonal lattice with bipartite structure.

A dimer configuration on D is a perfect matching on vertices connected
by edges. In other words, it is a partition of edges into two groups, occupied
by a dimer and not occupied, such that each vertex should be occupied
by a dimer and two dimers never share a common vertex. The Boltzmann
weight of a dimer configuration is

w(D) = ] w(e),
eeD

where the product is taken over edges occupied in the dimer configuration
D, and w(e) > 0 are weights of edges which should be fixed in order to
define the model.
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Boltzmann weights define the probability distribution on dimer config-
urations on I' with

)

Prob(D) = @

where Z is the partition function

Z=> w(D)
DCT
The characteristic function of an edge e on the space of dimer configu-
rations is the function o, which has value on D of 1 when the e is occupied
and 0 when e is not occupied. Local correlation functions for dimer models
are expectation values of products of characteristic functions

n
E(e1,...,en) = Z Prob(D) H T, -
DCr i=1

It is clear that the dimer probability distribution and therefore local
correlation functions are invariant with respect to transformations w(e) —
s(eq)w(e)s(e—) where s is any function on vertices with positive values
and e4 are endpoints of e.

For the hexagonal lattice (our terminology will match Fig. 1) this means
that we can choose weights of tilted NW-SE edges and of the horizontal
edges to be 1. And we will denote remaining weights of SW-NE edges by

x(e).

2.2. The Kasteleyn operator. As it was discovered in the 1960’s the
partition function and correlation functions of dimer models can be com-
puted in terms of determinants. For details see original references [4,5] and
an expository part of [6].

To define such determinantal solution we should choose a special orien-
tation of edges, a Kasteleyn orientation. On the hexagonal lattice it can
be chosen as it is shown on Fig. 2. In order to have determinants, not
Pfaffians, one should choose an identification of black and white vertices.
We assume that they are identified by horizontal edges.

Choose an embedding of the hexagonal lattice in a square grid as is
shown on Fig. 2. We will denote coordinates of centers of horizontal edges
as (t,h). Here h € 3Z and t € Z. Let D C Z x Z be a domain in the
hexagonal lattice embedded imbedded in the square grid.

The Kasteleyn operator is a linear operator (a difference operator) act-
ing on vertices of the graph. After the identification of black and white
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Figure 2. Hexagonal lattice with the Kasteleyn orienta-
tion which we use and with coordinates of horizontal edges
which are identified with adjacent vertices.

vertices by horizontal dimers it becomes a difference operator on a domain
in a square grid with coordinates (¢, h) € D acting as

(KﬁMJ%:ﬂLM—fG—Lh+%)+xG—%J0fG—Lh—%)(U

It is convenient to think about such functions as functions on an extended
domain D where we add edges with 1-valent vertices to boundary vertices
and define f(v) = 0 for each 1-valet vertex v. According to the Kasteleyn
theorem, the partition function Z is the absolute value of the determinant
of K and local correlation functions can be computed in terms the inverse
to K.

Let R(t, h|t’,h') be kernel of the inverse to the Kasteleyn operator on
DCZx %Z. That is if

Kf=g
then
ft,h)y =Y Rt B)gt' ).
(t’",h)eD
We have

R@mWJw—RQ—Lh+%WmQ+xQ—%JQR@—Lh—%Wﬁ)
=4(t,t")o(h, 1).

(2)
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with boundary conditions R(t, h|t’,h’) = 0 when (h,t) correspond to a
1-valent vertex. When the domain D is noncompact one should impose
boundary conditions when (t,h) — oo but we will not go into details of
this here.

Consider horizontal edges with coordinates x = (¢, hi). Then for the
local correlation function we have the following formula

E(xl,.. .,In) = det(R(tk,hk|tl,hl))2)l:1. (3)

Note that Kasteleyn operators can be defined for non-compact domains
as well, but that should be supplemented by appropriate boundary condi-
tions.

2.3. Kasteleyn formions. The Kasteleyn solution of dimer models (the
determinant formulae above) can be written in terms of Grassman integral.
Let Vp be the real vector space where the basis is enumerated by vertices
in the region D. Choose an element I € AN Vp. It defines the Grassman

integral over A®*Vp as
/ f=1

where f € A®Vp and f7 is its component in the basis I € AN Vp. Let 9)(t, h)
be elements of A®*Vp corresponding to the basis vectors in Vp. Typically I
is chosen as a monomial in ¢ (longest ordered product with no repetitions).
There are two choices of such integral I and —1I.

Elements v are generators of the Grassman algebra A®*Vp. In physics
they are called fermions since

1/)(15/, h/>¢(t7 h) = _1/}(ta h)d}(t/v h/)

In terms of generators we will write

[ 1= [ sa.

Similarly the Grassman integral can be defined for the dual vector space
V7. We will denote corresponding fermions as ¢*(t, h).

The Grassman algebra A®(Vp @ V) is naturally isomorphic to A*Vp ®
A*VE. The integral on this algebra can be identifies with the tensor product

of integrals. We will write
/ F= / Fdyp*di
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for such integral where F' is a polynomial in anticommuting variables ¥, ¥*,
generators of A*(Vp @ V3).
Define

A= Y (KD R,

(t,h)€D

where K1 is defined as in (1).
The determinant formulae for the partition function and for correlation
functions can be written in terms of fermions as

7= ’/eAdw*w’

and

o f 6A1/)(t1a hl)w*(tlv hl) s w(tnv hn)d}*(tna hn)dd}*dd}
N J eAdpdi '
Note that neither the formula for the partition function, nor the formula
for local correlation functions depends on the choice of monomials defining

the integrals.
Also, note that the inverse to the Kasteleyn matrix can be written as

[t Ryt R dyrdy
N [ eAdp*dip '

We will call 9, ¢¥* Kasteleyn fermions.

E(Ila"'axn)

R(t,h|t', ")

§3. CONTINUUM LIMIT FROM THE INTEGRALS REPRESENTATION

3.1. Continuum limit. Denote by ¢, : Z x %Z — R? the embedding
of the square grid into R? such that (¢,h) ~ (et,eh). We are interested
in the asymptotic of local correlation functions in the limit ¢ — 0 when
the lattice domain D expands such that the image ¢ (D) fills an R? do-
main . Because of the determinantal formulae (3) it is enough to find
the asymptotic of the kernel R((¢1, h1), (t2, ha)) of the inverse Kasteleyn
matrix.

We assume that as ¢ — 0 and the lattice region is expanding accordingly
to fill the Euclidean domain D), the coordinates t; and h; behaving as
t; = Ti/e, h; = Xi/e where (Ti,xi) e D.
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3.2. The integral formula for inverse to the Kasteleyn operator.
For special lattice domains D € Z X %Z the kernel of R = K~! has a
convenient integral representation. For a semiinfinite domain shown on
Fig. 3 such representation was found in [7]. Boundary conditions at infinity
are determined by asymptotical configuration of dimers as it is shown on
Fig. 3.

N T h=-8(Y)

Figure 3. The lattice domain D with asymptotical bound-
ary configuration of dimers. The function B(t) is defined
n (5). For details see [7].

t
U, v, v, Ve U

Assume that the edge weights x(t — £, h) in (1) are z(m, h) = ¢™ when
Vi <m < U; and z(m,h) = ¢™ when U; < m < Vi41. Define D4 to be
the set of m such that V; < m < U; for some i, and D_ to be the set of
m such that U; < m < V;41 for some i. Then formulae from [7] give the
following integral representation of the inverse Kasteleyn operator:

R((t1, 1), (t2, h2)) (2m> //%22 mglwuiz;

_hl_B(tl)whﬁB(tz)_\/w%d_w

Z—w z w

Xz

where

(I)Jr(zat): H (l_zqm)a (I)*(th) = H (1_2_1q_m)
m>t, m<t,
meD meD_
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and
1 (N1

B(t):§Z|t_Vi|_§Z|t_Ui| (5)
i=1 i=1
N N-1
formEZ—l—%andteZ. We assume > V; = > U; and Uy + Uy = 0.
i=1 i=1
>From our set up we see that for the case when t € D, V; <t < Uj,
we have:

Ui-1 Uip1—3 Uipa—d
()= [ 0-2¢m [[ (-z2¢m ]
m=t+3 m=Vij1+% m=Vija2+3
Vi—% Viei—%
D_(z,t) = H (1—z"tg™) H
m=U;_1+3 m=U;_2+1

and for the case when t € D_, U; <t < Vjy1:

Uit1—3% Uit2—3
o= [[ (-2 ]]
m=Vit1+3% m=Vij2+3%
t—3 Vi—3 Viei—%
o (zt)= [ a-z2"¢™ I a-z2"¢™ ]I
m=U;+% m=U;_1+% m=U;_2+%

3.3. Continuum limit. Now assume that ¢ = exp(—¢), € — 0 and that
u; = Use, v; = Vie, 74 = ta€, Xa = hqe are kept finite in this limit.

3.3.1. Lemma on g-dilogarithms. The following lemma is known. We pre-
sent it anyway for completeness.

Lemma 1.

to—% 1 “]Tl (-t 4
[1 a-zqm)=e¢ = (1+0(e)).
m=t1+%

Proof. Recall the g-Pochhammer symbol (q-dilogarithm) defined by
(2;9)00 = [ (1 — 2¢*). Suppose (z;q)oo can be expanded as:

S(z)

(%:¢)o0 = € = f(2)(1 4 O(e))
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as € — 0. Then we have:

(40 = (0 = 2 L (14 0(0)
as well as: .
(2¢; Q)0 = € = f(2q)(1 + O(e)).

We now write ¢ = e~ ¢ and expand the above in orders of e:
62 62 !/ 262 1
S(z—ze—l—zg) —S(z)—i-z(—e—i- 5)5’(2)—1—2 ES (z2)+...
2
= S(2) — e25'(2) + %(ZS/(Z) + 225" (2)) + O(e%).

Equating the two expressions for (z¢; ¢)s we have:

1
12
Now let’s look at terms order-by-order. For the 0-order terms we have:

S'(z) = M

z

e=*5'(2) (1 + % (28'(2) + 2°5"(2)) + .. ) (f(z)—ezf'(z)+...) f(2).

If S is chosen such that S(0) = 0 then

z

S(z):/wdt.

t

For the e-order terms we have:
1

S(:8(2) + 28" f(2) — 2f(2) = 32(=8' () £ (=) - =f'() = 0.

Using what we know about S(z) this becomes :

fe) =218

giving
f)=vz-1.
Putting this all together we have:

z

(2,q)00 = €xp %/ln(l%t)dt Vz—1(140(e)).
0
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Now we write our finite product as a ratio of infinite products and use
the above result:

1
t2—§

t1+l.
H (1 _ qu) — (th +i7‘])oo
et (24723 ¢)
zqt1+%
1 In(1—1¢) zqg~ ™ —1
= - dt 1+0
o[ 020 B
zqt2+%
) 21(1*5)1 (1t )
n(l—¢ zq~ ™ —
= - dt 1+0
exp | - 7 2 — 1( + O(e))
Z2(1—%)
z1
1 [In(l—-t¢ 1
=exp | - / n(f)dt - i(ln(l —zeT ™) +1In(1 — ze7 ™))
€
Z2
ze 71
[zg=™ — 1 B 1 In(1—1t)
ze T2
(]
Similarly we have:
ta—% ta—% ta—%
[[Ta-z"gm™ =% I ™[]0 -2")
t1+3 m=t1+3 ti+3

So as € — 0 we have:

1
to—5

rp-ry r§-r? 1 In(1 —t
= (=)l e exp | - / (=4 4 (14 O(e)).
€

ze~ T2

Note that this asymptotic expansion is a meromorphic function of z on
the complex plane with branch cuts along [e™, e™].
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3.3.2. Functions @ in the continuum limit. Now we can use computations
from the previous section to find the asymptotic of ®4(z,1t).
Indeed for t € Dy, ie V; <t < U; we have!

Ui—3 Uig1—% Uiya—%
Oy (2,t) = (1-z¢") JI -z¢™ ]I
m:tJr% m:Vi+1+% m:Vi+2+%
ze T ze  Vitl
1 In(1—t¢ 1 In(1—1¢
=exp | — Mdt exp | — Mdt
€ t € t
ze— Wi se Witl
ze  Vit2
In(1—1¢
exp | — / n ; )dt
e Wit2
ze T ze Vitl ze Vit2
1 1 In(1—t¢
=exp | — / += / += / n( )dt+
€ €
ze Ui e Witl e Wit2
Vi—% Vici—3
(1) = -2 ]
m=Ui_1+3 m=U;_2+%
e Wi—1
vi—ug_y vi—ui_g 1 ‘ In(1—t¢
=(—z)" ¢ e 2 exp| - / ydt
€
ze Vi
2 2 ze” Miz2
Vi—1—Ui—2 Yi_1"Yi_2 1 In(l —t¢
(—2) € e 2 exp | = / Mdt
€ t
se Vi—1

1 1 2 2
— X (vjmuj1) 5o X ovi-uig
Jj<i e

= (-2)
ze  “i—1 ze “i—2
exp 1 / +1 / Mdt +...
€ € t
ze Vi ze Vi—1

1n the expressions below we will omit the integrand if it is clear which function is
integrated.
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Similarly, for t € D_, i.e. U; <t < V;41 we obtain:

ze Vi+2

ze  Vitl
1 1 In(1—1t¢
(I)+(Z,t) :exp — / +— / 711( )dt+
€ € t
ze Mitl ze Wit+2
— I S (imugo1) = (PPui4 S vl -l )
D_(z,t) =(—2) i<i e’ i< I
ze Wi ze %i—1
1 1 In(1—1¢
exp | — / +- / L( )dt—|-...
€ € t
Recall:

1 N 1N—1
B(f)=§Z|t—W|—§ > |t—Uil.
i=1 i=1

Now define:
EVJ'—Ujfl, fOrt€D+,‘/i<t<Ui
(= %
t—Ul'-l-Z‘/j—Ujfl, fort e D_,U; <t < Viys.
j<i

ForteD,, Vi<t<U;:

1 N 1Nfl
B+ L) =5 [t=Vil =5 > It = Uil + > (Vs = Uj-)
JN N-1 'Jfl % ’ N N-1 i—1
SEEDSEDIED SRS SRS WD)
j=1 =1 =i =

j=it1

N —

= <Zt -
=1
i i—1 ¢ 1 N —1 "
+j§::1vj—ZUj+Uo:§+§ <J 1vj— ZU]) —Uo =15 — U,
N N-1
U;. A similar calculation can be done for

j=1
where we use that >~ V; = >

j=1 Jj=1

j=i+1 j=i

Jj=1

teD_,U; <t <Vigr.
Now for the ratio of the ®’s:
d_(z,t S
(27 ) —h—B(t) _ C, exp ( (2)> (1 + O(e))

<I>+(z,t)2 €
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where C is a constant in z. The function S(z) is :
N N -
S(z) = ; Lig(ze ™) — ; Lig(ze™"") — Lig(ze™7) — (5 —up + X) Inz

and Lis(z) = [ wd:r is the dilogarithm.

0
Combining result from above we have the following asymptotical inte-

gral representation for R.
2
1 S(z,71,x1)—S(w,72,x2)
5= e ‘
271
C. Cu

V2w dz dw

Z—w z w

Cr
Cr,

R((t1, h1), (t2, ha)) =
(6)

(1+0(e))

where the function S(z) as above. The integration contours are shown on
Fig. 4.

AN
VCs
\
\
|
Qi eVvi ,| eC eu. ev.‘u Qur»n
/
i
J; <« T <L U
\
\CE_
\
\
I
|
y
Vi Uiy
eq - Cv‘ eu. 61-/ e et e [}

u; < T < ¥

Figure 4. The integration contours in (6) are circles with
|z] < |w| when 74 < 7o and |w| > |z| when 71 > 7
centered at the origin. They the contour C, intersect the
positive part of the real line as it is shown above with
7 = 71. The contour C), intersect the positive part of the
real line similarly with 7 = 75.
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3.3.3. The asymptotic of the integral (6). We will be computing the as-
ymptotic using the method of steepest descent, so first we should study
critical points of the function S(z).

Lemma 2. The following identity holds

62’0 -1
225// 20) = ( )
where zg 1s a critical point of S(z).

Proof. For the first derivative of S in z we have:

95(2) & a
P :;m(l —ze ") —;ln(l—ze N —In(1 —ze™7)

IN[ (1—ze™ ")
where f(z) = S¥———e"0.
[1(1—ze™%)
i=1
From this we see that if zy is a critical point of S, i.e. S'(z9) = 0 we
have:
eXxtg f(20) )
1—zpe 7
This defines zp as an implicit function of x and 7. Taking a derivative we

have: ,
()
Ox 1—z0e 7 '

For the second derivative of S(z) we have

() -+ 22

Taking into account The equation for the derivative of the critical point
in x and that

(z%>2 S(2) = 28'(z) + 225" (2)
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we obtain the value of the second derivative of S(z) at the critical point
zo and the desired identity. (|

Before we will compute the asymptotic of (6), we need one more lemma.

Lemma 3. The following identities hold:

=Sr _ _ VA 38— /7
1—20677 e 20

Indeed, we have the following identities which imply the lemma.

e

d 020 2, 1 s
d_TS(ZO) =5 S'(z0) + 57 |20 = 5 In(zo) + In(1 — 2pe™7)
d 020 28,

@S(ZO) = x S'(z0) + 3X|Z0 = —1In(zp).

Theorem 1. The integral (6) has the following asymptotic when ¢ — 0
and all parameters are scaling as before

Dzg Ow 0zg Ow
;o Cr S(z0)=S(wo) \/ ax[i axs S(20)—=S(wg) \/ ax(i axg
R(t,h|t,h):ec— e c +e c -~

o Zp — Wo Zp — wWo

(7)
dzo Owg 0zg Owg
S(z0)—S(wg) Ox1 Ox2 S(20)—S(wg) Ox1 Ox2
e € ——+e €

7> (1+O(e)).

Zp — Wo Zp — Wo

Proof. As it is shown in [7] for (7, x) inside the discriminant curve there
are two complex conjugate critical points of S(z). The discriminant curve
also know as the arctic circle is

S'(z)=95"(2) = 0.

Deforming integration contours to the contours which pass critical points
in the steepest descent direction and computing corresponding Gaussian
integrals we arrive at (7). O

§4. ASYMPTOTICAL SOLUTIONS TO KASTELEYN DIFFERENCE
EQUATION

4.1. Formal asymptotical solutions to the Kasteleyn equations.
Here we will study the difference equation

f(t,h)—f(t—l,h—i—%) +x(t—%,h)f(t—1,h—%) —0 (8
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in the continuum limit when ¢ — 0 and 7 = €t, x = €eh are fixed. It is
convenient to change of coordinates:

-
Gh=X+35 &=Xx-

0y =0, + %ax, o =—0, + %ax.

NS

Let us look for asymptotic solutions to the difference equation (8) of
the form f(t,h) = e<SE+£-) (€, £_). The equation (8) gives:

1

L (T e I
+o(gr & = 5)erTE T Ig(e, —e6) =0

Taking the limit ¢ — 0, we get the following nonlinear differential equation
for S at 0-th order in e:

1— e 4 pe 9+9 = . 9)
The first order terms 1-order terms give linear differential equation for ¢:

1 0- 1 0 1
—583566*S——¢66*S+§U(’935’6_8*S—U%¢e_8+5—§v'e_6+s =0. (10)

4.1.1. The function S. Taking into account equation (9) we can write:

os_ _ 1 o048 — __ 20
1—zv’ 1—zpv

e

for some function zg(&4,£-).

Lemma 4. The function zo(£4,&-) satisfies differential equation
0-z0(&+,8-) + 20(&4, € )v(§4 —€-)0120(84,6-) = 0. (11)

Proof. Indeed, differentiating (9) we obtain:

6_;,_((9_5) = —a_,’_ ln(l _ ZQ’U) _ 6+(ZO'U)

1— zpv
0_(945) = 0_(In(1 — zov) — In(z0)) = _% + %,

These two identities imply
0—(2ov) + (20v)0+ (20v) = (1 — 2ov)2p0—v.
Because v = v(&4 — £_) we can rewrite this as:

(0_20)v — 200" + 200(01 20)v + 250 = —2v" + ziv’
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this gives the desired identity. (|

Note that when v is constant the equation for zg is exactly the complex
Burgers equation from [8].

4.1.2. The function ¢. Here we will describe general solution to the differ-
ential equation for ¢.

Theorem 2. Let z0(€4,&-) be as above, then the function

15) —1—6_ 20
p—p O H0) (12)
Zp — Wo
where wqy does not depend on i, is a solution to (10) if and only if
satisfies the equation

(0— + zvd4 )y = 0.

Proof. First, let us now look at the the terms in equation (10) not con-
taining ¢. We have:

Z0 ’ Z0

1— zpv

10-In(1 —2pv) 1 1
-~ 4+ 0y (1 —In(1 — - =
2 1—zpv + 2U +(In(z0) — In( 20v)) 1—zpv 2U

_ 1 0—(zov) 11} <8+z0 n 8+(zov)> 20 lv/ 20

2(1—2zpv)2 2
1 0—(zov) + v2004+(20v) 1  O1zp lv, 20

20 1—zpv 1—201)_5 1— zpv

) (1 = zv)? 21—z 21—z

_ 1v(0-(20) + v2004(20)) + 20(0—v +v2004v) 1 Oizp 1 v’z
T2 (1—2zgv)? _Evl—zov_gl—zov
1oz 1 v0y 20 1 vz

B 51—201) _El—zov _51—2“01)

1 wiiz

To21-— 20V

where in the fourth line we use the lemma from above.
Now the terms containing ¢ after the substitution (12) can be trans-

formed as:
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1 0_¢ V20 %
1—2zpv ¢ 1—20v @
0+ 200040 1(0- +v2004) (0420 + 0—20) (0— + z0v04 )20

P(1 — zgv) 2 (D120 + 0_20)(1 — zv) (1 — zov)(20 — Zo)
o 6—'¢ + ZO’U@+’¢ + 1 (6_ + vzoa+)(6+zo + 6_20)
(1 — zw) 2 (0420 + 0-20)(1 — 2zv)

where we again use the lemma from above. The denominator of the second
term we can write as

(0— + 2ov04)(0+ 20 + O—20)
= (04 + 0_)(0— + 2ov04)z0 + (01 + 0-)(20v)0+ 20
= (04 + 0-)(20v)04 20
= v(04 + 9-)(20)0+ 20.

Here we use the lemma and the fact that (04 + 0_)v = 0. Combining
expressions above, we have the following expression for terms in (10)

1 0-¢ n vzog 049  O_+ z2puditp 1 v04 20
1—2z20v ¢ T—zv ¢ (1 — 2w) 21—z’

Putting everything together, the equation for ¢ becomes:

1 wdyzg | O+ 2zov0yy 1 v0iz0 _ O-th + 20yt
21— zpv (1 — zgv) 21—zv (1 — zv)

The theorem follows. O

4.2. The asymptotical behavior of the inverse to the Kasteleyn
operator in the continuum limit. Now let us find the asymptotic of the
inverse to the Kasteleyn operator from the difference equation. Note that
critical points of function S from the asymptotic of integral representation
satisfy the equation (11).

Let zo(7, x) be the relevant solution to (11), denote zg = zo(7, x) and
wo = 2o(7’, x'). Combining the previous results of this section we arrive to
the following asymptotic of R(t, h|t'h’):
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Oz Awg 0Zp Qwo
Cr ( 5(20)=S(wo) \/ Ix1 Ix2 n 5(z0)=S(wo) \/ dx1 Ox2
e € - € - - -

R(t,h|t' W) =€ e —
CTQ Z0 — Wo Zo — Wo
Dzg Owg 0zg Owg
S(z0)—S(wg) \/ Ox1 Ox2 S(z9)—5S(wq) Ix1 Ox2
e € — +fe € f) (1+O(€)).
20 — Wo Z0 — Wo

(13)

This agrees with (7) when v(z) = e~*. We will give detailed proof in an
extended version of this paper.

§5. CONFORMAL CORRELATION FUNCTIONS

Note that the asymptotical formula for the inverse to the Kasteleyn
operator can be interpreted in terms of Kasteleyn fermions in the following
way. In the appropriate sense one can say that as € — 0

() = Ve, (WO(T, Ve Fama)e ) (1+0()

S(z0(7:x))
€

_ S(z0(mx)) _ S(20(7:x))

U (b By = VeO! (bm(r, Ve b ) (140(c))

where a(z) and b(z) are components of the Dirac fermionic field with cor-
relation functions

We will explain the exact meaning of the convergence and the definition of
the Dirac fermionic field in an extended version of this paper. The square
roots in the formulae (13) appear from the spinor nature of conformal fields
a and b.

The height function of the dimer model is a quadratic combination in
a and b, see the extended version of the paper.
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