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Abstract. The quantum SL(3,C) invariant spin magnet with in-
finite-dimensional principal series representation in local spaces is
considered. We construct eigenfunctions of Sklyanin’s B-operator

which define the representation of separated variables of the model.
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§1. Introduction

The method of separation of variables has a long-standing history as a
tool for treating both classical and quantum-mechanical models. Its essence
is the reduction of multidimensional equation to the set of one-dimensional
ones.

The quantum separation of variables has been developed by E. K. Sklya-
nin for the Toda chain in [4] and for integrable spin chain models in [5–8].
The complete set of SoV states and corresponding scalar products for
some models associated with finite-dimensional representations is known
explicitly [14,15]. The SOV for the the quantum integrable models having
infinite dimensional local spaces is considered in [16–21].

The main idea of the method is the construction of the unitary transfor-
mation from the initial coordinate representation to the new representation
(SOV representation) so that a multi-dimensional and multi-parameter
spectral problem for the transfer matrix in coordinate representation is
re-expressed in terms of a multi-parameter but one-dimensional spectral
problem. This unitary transformation is realized as integral operator and
its kernel is defined by the system of generalized eigenfunctions of some
special Sklyanin operator B(u). In the simplest case of the symmetry group

Key words and phrases: quantum spin chain, Separation of Variables, Yang-Baxter
equation.
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SL(2,C) operator B(u) coincides with the one of the matrix elements of
the monodromy matrix [5, 8].

For the symmetry group SL(n,C) its construction is more compli-
cated [6–8]. The classical SOV in this case worked out in [6, 9, 10] and
the algebraic scheme for the quantum SOV in [7, 8, 11]. It was conjec-
tured in [12] and proven in [13] that the Sklyanin B-operator can be used
as analog of creation operator (in closed analogy with algebraic Bethe
Ansatz [1, 2]) for construction of the eigenstates of transfer-matrix in the
case of finite-dimensional representations of the symmetry group.

A quantum inverse scattering [1, 2] based method for the iterative con-
struction of the generalized eigenfunctions of the B-operator for noncom-
pact SL(2,C)-magnet [22–25] is proposed in [26] and then generalized to
any matrix element of the monodromy matrix in [27]. It results in a pyra-
midal Gauss–Givental [28] representation for the integral kernel of the
separation of variables transform.

In the present paper we generalize the iterative construction of the eigen-
functions of the B-operator for noncompact SL(3,C)-magnet. The whole
construction follows the main line of [26, 27] and [29] where worked out
the technique of iterative construction of eigenfunctions of the quantum
minors of the SL(n,C)-invariant monodromy matrix. The eigenfunctions
are constructed in an explicit form for infinite-dimensional principal series
representations of symmetry algebra. This case is simpler than the case of
finite-dimensional representations. Namely, there are equivalent represen-
tations which differ by the permutation of representation parameters and
the corresponding intertwining operators play crucial role in our construc-
tion.

The paper is organised as follows. In Sections 2 and 3 we summarize the
needed definitions and formulae about SL(n,C) spin magnet and princi-
pal series representations of the group SL(n,C). The Section 4 is devoted
to the algebraic formulation of the SOV method [5–8] for the SL(2,C)-
and SL(3,C)-magnets. In Section 5 we present the construction of the
generalized eigenfunction of the B-operator in the case of inhomogeneous
SL(2,C)-magnet; this chapter generalizes results of [26, 27] obtained for
the homogeneous SL(2,C)-magnet. Construction of the generalized eigen-
function of the B-operator in the case of inhomogeneous SL(3,C)-magnet
is considered in Sec. 6.
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§2. SL(n,C) magnet: description of the model

In this section we will give the general definition of the quantum magnet
associated with SL(n,C) group with special attention to n = 2 and n = 3
cases.

The L-operator [1–3] for the quantum SL(n,C) magnet has the form

L(u) = u+

n
∑

i,j=1

eijEji, (2.1)

where u is the spectral parameter, eij are the standard matrix units in
auxiliary space C

n : (eij)kl = δikδjl, and Eij are the generators of sl(n,C)
acting on representation space V. They satisfy the standard commutation
relations

[Eij , Ekl] = δjkEil − δilEkj , i, j = 1, . . . , n, (2.2)

with a constraint

E11 + E22 + · · ·+ Enn = 0 . (2.3)

The set of the commutation relations can be combined into the well-known
Yang-Baxter relation for the product of L-operators with different auxil-
iary spaces and common quantum space V :

R(u − v)L(1)(u)L(2)(v) = L(2)(v)L(1)(u)R(u − v), (2.4)

where R(u) is Yang R-matrix R(u) defined on C
n ⊗ C

n as

R(u) = u+

n
∑

i,j=1

eij ⊗ eji.

For each site k = 1, . . . , N of the magnet one defines a local L-operator

Lk(u) by (2.1) with local sl(n,C) generators E
(k)
ij , 1 6 i, j 6 n, k =

1, . . . , N. The global object for the magnet with N sites is the monodromy
matrix

T (u) = LN (u+ δN )LN−1(u+ δN−1) · · ·L2(u + δ2)L1(u+ δ1), (2.5)

where δk are arbitrary shifts of the spectral parameter. We will consider
the general (nonhomogeneous) case δk 6= 0. From (2.4) and (2.5) it follows
that T i

j (u) satisfy the set of commutation relations

(u− v)[T i
j (u), T

k
l (v)] = T k

j (v)T
i
l (u)− T k

j (u)T
i
l (v), (2.6)

which define the associative algebra – Yangian Y (sl(n,C)).
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The Hilbert space of the model is V1⊗V2⊗· · ·⊗VN , where Vk is sl(n,C)
representation space in k-th site. Operators Lk(u) acts nontrivially only
on Vk ⊗Cn. Then T (u) is defined on V1 ⊗ V2 ⊗ · · · ⊗ VN ⊗Cn and can be
presented as a matrix in auxiliary space Cn:

T (u) =











T 1
1(u) T 1

2(u) · · · T 1
n(u)

T 2
1(u) T 2

2(u) · · · T 2
n(u)

...
...

. . .
...

T n
1 (u) T n

2 (u) · · · T n
n(u)











, (2.7)

where each entry T i
j(u) acts on V1 ⊗ V2 ⊗ · · · ⊗ VN . We use the similar

notations for the entries of L(u) too: Lk(u)
i
j is the element in i-th row and

j-th column of Lk(u), and due to (2.1) Lk(u)
i
j = uδij + E

(k)
ji . Note that

leading coefficients in u of T i
j (u) can be determined by (2.5):

T i
j (u) = uNδij + uN−1Eji +O(uN−2), (2.8)

where Eij (without superscripts) are generators of the global SL(n,C)
symmetry:

Eij = E
(1)
ij + E

(2)
ij + · · ·+ E

(N)
ij . (2.9)

We shall use principal series representation of SL(N,C), which has anti-
holomorphic generators Ēij in addition to holomorphic Eij . They satisfy
the same relations as Eij and commute with them. One can define the

anti-holomorphic L-operators L̄k(ū) = ū +
n
∑

i,j=1

eijĒji, which depend on

the anti-holomorphic spectral parameter ū, and the monodromy matrix
T̄ (ū) by

T̄ (ū) = L̄N (ū+ δ̄N )L̄N−1(ū+ δ̄N−1) · · · L̄2(ū+ δ̄2)L̄1(u+ δ̄1). (2.10)

From now on in most part of the paper we will omit formulas concerning
anti-holomorphic sector since they are one-to-one with formulas for the
holomorphic part.

Commuting hamiltonians of the model are expressed in terms of quan-
tum minors T i1...im

j1...jm
(u) of matrix T (u) (see [30, 31] for details):

T i1...im
j1...jm

(u) =
∑

σ∈Sm

(signσ) T i1
σ(j1)

(u)T i2
σ(j2)

(u− 1) · · · · · T im
σ(jm)(u−m+ 1),

(2.11)
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where σ is the permutation of indices j1 . . . jm and signσ is its sign. By the
defining relation (2.6) of the Yangian, (2.11) can be brought to another
form

T i1...im
j1...jm

(u) =
∑

σ∈Sm

(signσ) T
σ(i1)
j1

(u−m+1) · · · ··T
σ(im−1)
jm−1

(u−1)T
σ(im)
jm

(u).

(2.12)
Quantum minors are antisymmetric under the permutations of lower and
upper indices:

T i1...is...ir...im
j1...js...jr ...jm

(u) = −T i1...ir ...is...im
j1...js...jr ...jm

(u) = −T i1...is...ir ...im
j1...jr ...js...jm

(u).

Quantum determinant

d(u) = T 1...n
1...n(u), (2.13)

commutes with all T i
j (u) and hence is constant on the whole representation

space V1 ⊗ · · · ⊗ VN .

The set of commuting hamiltonians of the SL(n,C) spin magnet is
generated by: the set of quantum minors

tk(u) =

n
∑

i1,...,ik=1
i1<i2<···<ik

T i1...ik
i1...ik

, k = 1, . . . , n− 1, (2.14)

elements Eii, i = 1, . . . , (n−1) of Cartan subalgebra of the global sl(n,C)
algebra (2.9), and by their antiholomorphic counterparts t̄k(ū) and Ēkk. In
the present paper we will consider only particular cases n = 2 and n = 3.

For n = 2 we will use more customary notations for the generators of
the algebra

L(u) =

(

u+ E11 E21

E12 u+ E22

)

=

(

u+ S3 S−

S+ u− S3

)

. (2.15)

Generating function of the commuting operators is the transfer-matrix

t(u) ≡ t1(u) = T 1
1 (u) + T 2

2 (u). (2.16)

It is polynomial in spectral parameter of degree N

t(u) = uN +
N−2
∑

k=1

t(k)uk,

and coefficients t(k) commute due to [t(u), t(v)] = 0. To form the complete
set of N integrals of motion we add to (N − 1) operators t(k) a global

operator S3 = S
(1)
3 + S

(2)
3 + . . .+ S

(N)
3 .
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For n = 3 family (2.14) consists of transfer matrix

t1(u) = T 1
1(u) + T 2

2(u) + T 3
3(u), (2.17)

which gives rise to (N − 1) integrals of motion, and operator

t2(u) = T 12
12(u) + T 23

23(u) + T 13
13(u), (2.18)

which has (2N−1) independent integrals of motion in its decomposition. To
complete the set of 3N commuting operators we add the global generators
E11 and E22.

§3. Unitary series representations of the SL(n,C) group

3.1. General concepts. In this section we describe the construction of
principal series unitary representations of SL(n,C) [32]. In generic situa-
tion these infinite-dimensional representations are irreducible, but at some
special values of parameters appears finite-dimensional invariant subspace
and the representation becomes reducible. In the rest of the paper we will
consider only infinite dimensional unitary representations.

Consider two subgroups of GL(n) : group Z of the lower-triangular
complex matrices of the n-th order, and the group H of upper-triangular
complex matrices

z =











1 0 . . . 0
z21 1 . . . 0
...

...
. . .

...
zn1 zn2 . . . 1











∈Z, h =











h11 h12 . . . h1n

0 h22 . . . h2n

...
...

. . .
...

0 0 . . . hnn











∈H. (3.1)

For almost all GL(n,C) matrices there exists a Gauss decomposition: ma-
trix a ∈ GL(n,C) can be presented uniquely as a = zh.

The representation space for operators T (g) is the space of functions

Φ(z), where z ∈ Z, i.e., Φ(z) is a function of n(n−1)
2 variables: Φ(z) =

Φ(z21, z31, . . . , zn,n−1). These functions are not assumed to be holomorphic
and they also depends on the conjugate variables z̄21, z̄31, . . . , z̄n,n−1. To
make formulas more comprehensible we will specify only the holomorphic
part of the variables. Action of operator T (g) on function Φ(z) is defined
by

T (g)Φ(z) = [h11]
σ1+1[h22]

σ2+2 · · · [hnn]
σn+n Φ(z̃) , (3.2)

where h and z̃ are defined by the Gauss decomposition of the matrix g−1z ∈
GL(n,C) : g−1z = z̃ h. For the sake of simplicity we will use the compact
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notation

[h]σ = hσh̄σ̄ , (3.3)

where h̄ is complex conjugate of h, and complex numbers (representation
parameters) σ and σ̄ differs only by an integer: σ̄− σ ∈ Z. The last condi-
tions provides that function [h]σ is single-valued.

For the group SL(n,C) we have det h = 1, and (3.2) becomes:

T (g)Φ(z) = [∆1]
σ1−σ2−1[∆2]

σ2−σ3−1 · · · [∆n−1]
σn−1−σn−1 · Φ(z̃), (3.4)

where ∆k is a minor of h, generated by first k rows and columns. As
one can see from (3.4), representation is purely determined by differences
σi−σi+1 (together with σ̄i−σ̄i+1). But it is convenient to use the symmetric
parametrization σ = (σ1, . . . , σn) of the representation Tσ of SL(n,C),
imposing additional constraint

σ = (σ1, . . . , σn); σ1 + σ2 + . . .+ σn =
n(n− 1)

2
. (3.5)

The scalar product in representation space is defined by

〈Φ1|Φ2〉 =

∫

∏

16i<k6n

d2zki Φ1(z)Φ2(z) , (3.6)

where d2z = dxdy for z = x + iy and the requirement of unitarity of the
operator Tσ(g)

〈Tσ(g)Φ1|T
σ(g)Φ2〉 = 〈Φ1|Φ2〉,

leads to the restriction on parameters

σk − σk+1 = σ̄∗

k+1 − σ̄∗

k; k = 1, 2, . . . , n− 1.

Combining it with σ̄k − σk ∈ Z we arrive at the following parametrization
for the unitary representations:

σk−σk+1 = −
nk

2
+ iλk, σ̄k− σ̄k+1 =

nk

2
+ iλk, k = 1, 2, . . . , n−1, (3.7)

where nk ∈ Z, λk ∈ R. Representation Tσ is irreducible; two representa-
tions Tσ and Tσ

′

are unitary equivalent if and only if [32, 34] there is a
permutation s, which transform the set σk to σ′

k: sσ = σ
′. Intertwining

operator S

Tσ S = S T sσ ,

realizes unitary equivalence of representations and depends on permutation
s. All intertwining operators can be constructed from (n−1) basis operators
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Si which intertwine representations Tσ and T siσ: Tσ Si = Si T
siσ, where

siσ differs from σ by the transposition of two adjacent parameters:

si (. . . σi, σi+1, . . .) = (. . . σi+1, σi, . . .),

and the same for σ̄-parameters: si (. . . σ̄i, σ̄i+1, . . .) = (. . . σ̄i+1, σ̄i, . . .).
These intertwining operators are well known [32–34] and we shall use the
following convenient explicit expressions for them [36]

Si(σ)Φ(z)=A (σi+1−σi)

∫

d2w[w]−1−σi+1+σiΦ
(

z
(

1l−wei+1,i

))

, (3.8)

A(α) =
iα−ᾱ

π

Γ(1 + α)

Γ(−ᾱ)
, (eik)nm = δinδkm. (3.9)

Generators of the corresponding Lie algebra can be calculated in a usual
way: for an infinitesimal group element g = 1l + ε eij its representation
Tσ(g) produces the action of the generator Eik on the function of the
representation space:

T (g)Φ(z) = Φ(z) +
(

εEik + ε̄Ēik

)

Φ(z) +O(ε2) . (3.10)

They obey the commutation relations (2.2) as far as eij do. Generators Eij

are differential operators of the first order by construction. Their explicit
form for n = 2 and n = 3 will be given in next section.

3.2. Explicit formulae for n = 2, 3. For the group GL(2,C), matrix z
has only one nontrivial entry: z = ( 1 0

x 1 ) . Hence, representation space is
space of functions Φ(x, x̄) with scalar product (3.6), i.e., L2(C). We omit
dependence on antiholomorphic variables to simplify notations, as it was
explained earlier.

For the group SL(2,C) we have

T σ1 (g) Φ(x) = [d− bx]
2(σ1−1)

Φ

(

−c+ ax

d− bx

)

, (3.11)

where we have used (3.5) σ1+σ2 = 1. Hence its representations are labeled
by the only parameter σ1.

Generators of the group can be computed by using (3.10):

S+ = x2∂x − 2(σ1 − 1)x; S3 = x∂x − (σ1 − 1); S− = −∂x , (3.12)
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where ∂x ≡
∂
∂x

and operator L(u) is then

L(u) =

(

x∂x + u1 + 1 −∂x
x (x∂x + u1 − u2 + 1) u2 − x∂x

)

=

(

1 0
x 1

)(

u1 −∂x
0 u2

)(

1 0
−x 1

) (3.13)

Note that it is useful to introduce new parameters u1 = u − σ1, u2 =
u + σ1 − 1 = u − σ2 instead of u and σ1 and we shall use the following
uniform notation for the parameters in L-operator

L(u) = L
(

u1

u2

)

. (3.14)

Equivalence of GL(2,C) representations T (σ1,σ2) and T (σ2,σ1) leads to
equivalence of SL(2,C) representations T (σ1) and T (1−σ1). In terms of
our new parameters this means that corresponding intertwining operator
S1 = S1(u) (3.8) interchanges u1 and u2 :

L
(

u1

u2

)

S1(u) = S1(u)L
(

u2

u1

)

, (3.15)

S1(u)Φ(x) = A(u1 − u2)

∫

d2w [w]−1−u1+u2 Φ(x− w). (3.16)

For the group GL(3,C), matrix z has three nontrivial entries and we

shall denote the matrix elements of z by x, y, z : z =
(

1 0 0
x 1 0
y z 1

)

. Represen-

tation is defined on space L2(C
3) of functions of three complex variables:

Φ(z) = Φ(x, y, z) with scalar product (3.6). Explicit form of (3.2) becomes
rather cumbersome and is not presented here. However, we will extensively
use corresponding L-operator and the following uniform notation for the
parameters in L-operator

L(u) = L

(

u1

u2

u3

)

; u1 = u− σ1, u2 = u− σ2, u3 = u− σ3, (3.17)
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where (σ1 , σ2 , σ3) is the set of representation parameters

L(u) =










u1 + 2 + x∂x + y∂y −∂x −∂y

y∂z+
x(x∂x+y∂y−z∂z+u1−u2+1)

u2+1−x∂x+z∂z −∂z−x∂y

y(x∂x+y∂y+z∂z+u1−u3+2)
−xz(z∂z+u2−u3+1)

−y∂x
+z(z∂z + u2 − u3 + 1)

u3 − y∂y − z∂z











=





1 0 0
x 1 0
y z 1









u1 −∂x − z∂y −∂y

0 u2 −∂z

0 0 u3









1 0 0
−x 1 0

xz − y −z 1



 . (3.18)

Intertwining operators S1 , S2 satisfy the defining relations

L

(

u1

u2

u3

)

S1(u) = S1(u)L

(

u2

u1

u3

)

; L

(

u1

u2

u3

)

S2(u)=S2(u)L

(

u1

u3

u2

)

, (3.19)

and have the following explicit form

S1(u)Φ(x, y, z) =A(u1−u2)

∫

d2w[w]−1−u1+u2 Φ(x−w, y−zw, z), (3.20)

S2(u)Φ(x, y, z) = A (u2 − u3)

∫

d2w [w]−1−u2+u3Φ (x, y, z − w) . (3.21)

§4. SOV for the quantum SL(2) and SL(3) models

In this section we review the general idea of separation of variables for
the quantum integrable systems suggested by E.K. Sklyanin [4–8] and its
application to models related to Yangians Y [sl(2)] and Y [sl(3)] [7].

4.1. SL(2,C) magnet. Consider the magnet with N sites, where in each
site L-operator is given by (2.15), and spin operators at k-th site are real-
ized as differential operators (3.12) with respect to variable xk. Then the
state of the magnet is determined by square-integrable function Φ(x) ≡
Φ(x1, x2, . . . , xN ).

The set of commuting hamiltonians is generated by the coefficients of the
holomorphic and anti-holomorphic transfer matrices (2.16) and operators
of the total spin S3, S̄3. The problem under consideration is to find their
common eigenfunctions and corresponding eigenvalues:

t(u)Φ(x) = τ(u)Φ(x); S3Φ(x) = s3Φ(x), (4.1)

t̄(ū)Φ(x) = τ̄(ū)Φ(x); S̄3Φ(x) = s̄3Φ(x), (4.2)

where τ(u), τ̄ (ū) are polynomials with complex coefficients, and s3, s̄3 ∈ C.
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This problem allows separation of variables if there exists the represen-
tation, defined by eigenvalues qi of some set of operators q̂i, i = 1, . . . , N
in which the eigenfunction Φ(q1, . . . , qN ) factorizes into the product of
one-variable functions. In what follows this representation will be called
q-representation, in contrast to the original x-representation.

The construction of such operators q̂k for models related to the Yangian
Y [SL(2)] was presented in [4] and it was adapted to the case of principal
series representation of SL(2,C) in [26].

Following these papers, we introduce eigenfunctions Ψp(q|x) of opera-
tors

B(u) = T 1
2 (u); B̄(ū) = T̄ 1

2 (ū), (4.3)

which are polynomials of the spectral parameter u (ū respectively) of de-
gree N − 1. They are parameterized by roots qi of their eigenvalues:

B(u)Ψp(q|x) = −ip(u− q1) . . . (u− qN−1)Ψp(q|x); (4.4)

B̄(ū)Ψp(q|x) = −ip̄(ū− q̄1) . . . (ū− q̄N−1)Ψp(q|x). (4.5)

The main achievement of [4, 26] is the proof of the fact that Ψp(q|x)
performs the transformation to the representation of separated variables,
i.e., q̂i are "operator zeroes" of B(u) :

B(u) = S−(u− q̂1) . . . (u− q̂N−1).

The set of “coordinates” in q-representation consists of p, p̄, and q =
(q1, q̄1, . . . qN−1, q̄N−1). It will be shown that function Ψp(q|x) is well-
defined only if they satisfy conditions similar to (3.7):

qk =
mk

2
+ iνk , q̄k = −

mk

2
+ iνk, mk ∈ Z, νk ∈ R. (4.6)

Note that by (2.8) p is the eigenvalue of global generator S− : S−Ψp(q|x) =
−ipΨp(q|x).

Here we assume that the spectrum of B, B̄ is non-degenerate and Ψp(q|x)
form a complete orthogonal set on the Hilbert space of the model; there
is no exact proof of these statements, but it is strongly believed that they
are fulfilled for the wide class of representations. Orthogonality and com-
pleteness relations read

∫

d2NxΨp(q|x)Ψp′(q′|x) = µ−1(p, q) δ2(~p− ~p ′) δN−1(q − q′); (4.7)

∫

d2p

∫

DN−1q µ(p, q)Ψp(q|x)Ψp(q|x
′) =

N
∏

i=1

δ2(~xi − ~x ′

i ), (4.8)
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where delta-functions and integration measures should be understood as

follows. In x-representation integration with measure d2Nx =
N
∏

i=1

d2xi is

by definition the scalar product (3.6), and δ2(~x− ~x′) = δ(x− x′)δ(x̄− x̄′).
Integration in q-representation due to (4.6) is understood as

∫

DN−1q =

N−1
∏

k=1





∞
∑

mk=−∞

∞
∫

−∞

dνk



 ,

and delta-function in q-representation is defined as symmetrized expression

δN (q − q′) =
1

N !

∑

s∈SN

N
∏

k=1

δ(2)(qk − q′s(k)), (4.9)

where the sum goes over all permutations of N elements, and

δ(2)(q − q′) ≡ δmm′δ(ν − ν′). (4.10)

Integration over ~p = (p1, p2), where p = p1 + ip2 , p̄ = p1 − ip2, goes over
the whole complex plane, and d2p = dp1dp2; corresponding delta-function
δ2(~p− ~p′) = δ(p− p′)δ(p̄− p̄′).

In this notations transition from one representation to another has the
following form:

Φ(x) =

∫

d2p

∫

DN−1q µ(p, q)Ψp(q|x)Φ(p, q), (4.11)

Φ(p, q) =

∫

d2NxΨp(q|x)Φ(x). (4.12)

The weight function µ(p, q) is the Sklyanin measure and here we do not
need its explicit form [26]. To prove the fact that in q-representation the
eigenfunction of hamiltonians Φ factorizes

Φ̄(p, q) = φ0(p)φ1(q1) . . . φN−1(qN−1), (4.13)

we need the following three relations connecting B(u) and operator A(u) =
T 1
2 (u).

Proposition 1.

[B(u), B(v)] = 0, (4.14)

(u− v + 1)A(u)B(v) = (u− v)B(v)A(u) +A(v)B(u), (4.15)

A(u + 1)A(u)− t(u+ 1)A(u) + d(u + 1) = −T 2
1 (u+ 1)B(u). (4.16)
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Similar formulas hold for antiholomorphic operators as well. Relations
(4.14) and (4.15) are particular cases of commutation relations (2.6) and
(4.16) follows from one of the forms of quantum determinant (2.13):

d(u) = T 2
2 (u)T

1
1 (u− 1)− T 2

1 (u)T
1
2 (u− 1),

which is a constant on the whole representation space.
Due to (4.14) coefficients bk in decomposition of B(u), B(u) =

∑

bku
k

form a commuting family of operators, [bk, bm] = 0. Applying the rhs and
lhs of (4.15) to the function Ψp(q|x) and taking u = qi, we get

B(v)A(qi)Ψp(q|x) = −ip(v − q1) · · · (v − qi − 1)

· · · (v − qN−1)A(qi)Ψp(q|x).
(4.17)

Moreover, B̄(v̄)A(u) = A(u)B̄(v̄), and hence

B̄(v̄)A(qi)Ψp(q|x) = −ip̄(v̄ − q̄1) · · · (v̄ − q̄i)

· · · (v̄ − q̄N−1)A(qi)Ψp(q|x).
(4.18)

From (4.17) and (4.18) follows that A(qi)Ψp(q|x) is proportional to

Ψp(E
+
i q|x), where E+

i q stands for the set q with element qi shifted by
+1 and other elements unchanged: i.e if

q = (q1, . . . , qi, . . . , qN ; q̄1, . . . , q̄N ),

then

E+
i q = (q1, . . . , qi + 1, . . . , qN ; q̄1, . . . , q̄N ).

In analogous way one can show that Ā(q̄i)Ψp(q|x) ∼ Ψp(Ē
+
i q|x), where

the set

Ē+
i q = (q1, . . . , qN ; q̄1, . . . , q̄i + 1, . . . , q̄N ).

By the choice of normalization for Ψ we can make proportionality coeffi-
cient equal to unity, i.e.,

A(qi)Ψp(q|x) = Ψp(E
+
i q|x), Ā(qi)Ψp(q|x) = Ψp(Ē

+
i q|x). (4.19)

Now let us show that (4.16) leads to separated equations for the function
Ψ. Applying both sides of it to Ψp(q|x) and putting u = qi with the help
of (4.19) we get

Ψp(E
+2
i q|x)− t(qi + 1)Ψp(E

+
i q|x) + d(qi + 1)Ψp(q|x) = 0, (4.20)

(rhs is zero due to (4.4)). Multiplying (4.20) by Φ̄(x) and integrating over x,
with the use of (4.12) and (4.1) we obtain equation for conjugated function
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Φ̄(p, q) :

Φ̄(p,E+2
i q)− τ(qk + 1)Φ̄(p,E+

k q) + d(qk + 1)Φ̄(p, q) = 0,

∀k = 1, . . . , N − 1,
(4.21)

where τ(qi + 1) is the eigenvalue of the transfer-matrix t(u) at u = qi + 1.
This set of equations can be solved by the ansatz

Φ̄(p, q) = φ0(p)φ1(q1) . . . φN−1(qN−1),

which leads to separated equations

φk(qk + 2)− τ(qk + 1)φk(qk + 1) + d(qk + 1)φk(qk) = 0. (4.22)

Now let us write the equation for the function φ0(p). Expanding (4.15) in
powers of u one gets

[S3, B(v)] = −B(v), (4.23)

from which it follows that

λS3B(u)λ−S3 = λ−1B(u), (4.24)

where λ ∈ C, and λS3 is understood as the formal power series in λ. Ap-
plying the last operator equation to the function λS3Ψp(q|x) we see that
λS3Ψp(q|x) ∼ Ψλp(q|x), i.e., global transformations of the form λS3 gener-
ate the scaling of the parameter p. From the fact that these transformations
form a one parameter group, one derives that

λS3Ψp(q|x) = λmΨλp(q|x), (4.25)

where parameter m is determined by p-dependent part of the normalization
coefficient of Ψp(q|x). The change of normalization Ψp(q|x) → pkΨp(q|x)
changes m → m + k and measure µ(p, q) → [p]−kµ(p, q), but does not
affect other properties of eigenfunction including (4.19).

For infinitesimal transformations λ = 1 + ǫ one has

S3Ψp(q|x) = (p∂p +m)Ψp(q|x). (4.26)

It allows us to derive the equation for the function φ0(p):

s3φ0(p) = (p∂p +m)φ0(p). (4.27)
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4.2. SL(3,C) magnet. Similar to SL(2,C) case, operator that performs
the transfer to representation of separated variables (q-representation) is
generated by eigenfunctions of the certain operator B(u), and there exists
an operator A(u) that acts as a shift operator on these functions (see
(4.19)). But expressions for A(u) and B(u) now are more involved. Namely,

B(u) = T 2
3 (u)T

12
23 (u+ 1) + T 1

3 (u)T
12
13 (u+ 1), (4.28)

A(u) = T 13
12 (u + 1)

(

T 2
3 (u+ 1)

)−1
. (4.29)

We deal with the complex algebra sl(3,C) and, as usual, define anti-
holomorphic operators B̄(ū) and Ā(ū) in terms of T̄ i

j (ū) by (4.28)–(4.29).
Using defining relations of the Yangian together with commutators of

matrix elements and minors, it was shown in [7] that A(u) and B(u) have
properties analogous to (4.14)–(4.16) of previous section.

Proposition 2.

[B(u), B(v)] = 0, [A(u), A(v)] = 0, (4.30)

(u+ v − 1)A(u)B(v)− (u− v)B(v)A(u)

=
(

T 2
3 (u+ 1)

)−1
T 2
3 (v)

(

T 2
3 (u)

)−1
T 2
3 (v + 1)A(v)B(u), (4.31)

A(u+2)A(u+1)A(u)+ t1(u+2)A(u+1)A(u)+ t2(u+2)A(u)+d(u+2)

=
(

T 2
3 (u + 2)T 23

13 (u+ 2)− T 2
1 (u+ 2)T 12

13 (u+ 2)
)

×
(

T 2
3 (u)T

2
3 (u+ 1)T 2

3 (u + 2)
)−1

B(u). (4.32)

The last equation involves two transfer matrices t1(u) and t2(u) given by
(2.17), (2.18), and quantum determinant d(u). The proof of (4.30)–(4.32)
is much more complicated in comparison to SL(2,C) case. We refer reader
to the original paper [7] for details1.

It follows from (4.28) that B(u) is the polynomial on u of degree 3N−3
and its eigenfunctions are characterized by 3N − 2 parameters p, qi:

B(u)Ψ = ip

3N−3
∏

i=1

(u− qi)Ψ.

1Equations (4.31) and (4.32) differs from those presented in [7] since we use different
rule for defining operator-valued finctions. See [7] for details.
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The same holds for its anti-holomorphic counterpart B̄(ū) : B̄(ū)Ψ =

ip̄
3N−3
∏

i=1

(ū− q̄i)Ψ with anti-holomorphic parameters p̄, q̄i.

Coefficients of B(u), B̄(ū) form a commutative family of 6N − 4 op-
erators, while the quantum system has 6N degrees of freedom. To have
the complete set of commuting operators, we have to add two more opera-
tors both in holomorphic and antiholomorphic sector. We choose them to
be generators of global sl(3,C) algebra E32, E31 (see (2.9)) and Ē32, Ē31.

One can check that they commute with B(u), B̄(ū) and among themselves.
So, variables in x-representation are xi, yi, zi (i = 1, . . . , N), or, in short
x, y, z, where x = (x1, . . . , xN ) etc. together with their antiholomorphic
counterparts x̄i, ȳi, z̄i. In q-representation variables are p1, p2, p, q, where
q = (q1, . . . , q3N−3) and their antiholomorphic counterparts (p1 and p2 are
eigenvalues of global generators E32, E31). All eigenfunction will be well-
defined if qi are of the form (4.6). Eigenfunctions under consideration will
be denoted by Ψp1p2p(q|x, y, z). They satisfy the set of equations

B(u)Ψp1p2p(q|x, y, z) = ip

3N−3
∏

i=1

(u− qi)Ψp1p2p(q|x, y, z),

E31Ψp1p2p(q|x, y, z) = −ip1Ψp1p2p(q|x, y, z), (4.33)

E32Ψp1p2p(q|x, y, z) = −ip2Ψp1p2p(q|x, y, z),

and similar equations for the antiholomorpic part. Integral transformations
that bring the function Φ from x− to q-representation and back read (cf.
(4.11) and (4.12)):

Φ(p1, p2, p, q) =

∫

d2Nx d2Ny d2NzΦ(x, y, z)Ψp1p2p(q|x, y, z); (4.34)

Φ(x, y, z) =

∫

d2p1 d
2p2 d

2p

×

∫

D3N−3q µ(p1, p2, p, q)Φ(p1, p2, p, q)Ψp1p2p(q|x, y, z) , (4.35)

where the integration in q-representation due to (4.6) is understood as

∫

D3N−3q =
3N−3
∏

k=1





∞
∑

mk=−∞

∞
∫

−∞

dνk



 .
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Function µ(p1, p2, p, q) originates from the normalization condition for
eigenfunctions:

∫

d2Nx d2Ny d2NzΨp′

1
p′

2
p′(q′|x, y, z)Ψp1p2p(q|x, y, z)

= µ−1(p1, p2, p, q)δ
2(~p1−~p

′

1)δ
2(~p2−~p

′

2)δ
2(~p−~p ′)δ3N−3(q−q

′), (4.36)

with symmetrized delta function δ3N−3(q − q′) of the form (4.9).
In full analogy to SL(2,C) case, (4.31) implies that operator A(u) is a

shift operator for Ψp1p2p(q|x, y, z):

A(qi)Ψp1p2p(q|x, y, z) = Ψp1p2p(E
+
i q|x, y, z), i = 1, . . . , 3N − 3. (4.37)

Now consider Φ – eigenfunction of hamiltonians:

t1(u)Φ = τ1(u)Φ; t2(u)Φ = τ2(u)Φ. (4.38)

Applying both sides of (4.32) to Ψp1p2p(q|x, y, z), integrating with Φ(x, y, z)
over x, y, z we arrive at the equation for Φ in q-representation

Φ̄(p1, p2, p, E
+3
i q) + t1(qi + 2)Φ̄(p1, p2, p, E

+2
i q)

+ t2(qi + 2)Φ̄(p1, p2, p, E
+
i q) + d(qi + 2)Φ̄(p1, p2, p, q) = 0 . (4.39)

It can be reduced to the set of one-dimensional equations

ϕ(qi+3)+t1(qi+2)ϕ(qi+2)+t2(qi+2)ϕ(qi+1)+d(qi+2)ϕ(qi) = 0, (4.40)

if we take the ansatz

Φ̄(p1, p2, p, q) = ϕ11(p1)ϕ22(p2)ϕ0(p)ϕ1(q1) . . . ϕ3N−3(q3N−3).

Separated equations for φ11(p1), φ22(p2) follow from

λE11E31λ
−E11 = λ−1E31; λE22E32λ

−E22 = λ−1E32, (4.41)

and read

e11 φ11(p1) = (p1∂p1
+m1)φ11(p1), (4.42)

e22 φ22(p2) = (p2∂p2
+m2)φ22(p2), (4.43)

where e11, e22 are values of the integrals of motion E11, E22 on Φ. Param-
eters m1,m2 are arbitrary and are defined by the p1- and p2-dependent
part of normalization coefficient of Ψp1p2p(q|x, y, z).
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§5. Eigenfunctions of the operator B(u) for the SL(2,C)
magnet.

5.1. Permutation of parameters in the monodromy matrix. In
this section we will construct the manifest form of functions Ψp(q|x) sat-
isfying (4.4)-(4.5). Our construction heavily relies on the existence of the
intertwining operator (3.15)-(3.16) which interchanges parameters u1 and
u2 inside L-operator

L
(

u1

u2

)

S1(u) = S1(u)L
(

u2

u1

)

,

and an operator S which interchanges parameters u1 ⇄ v2 in the product
of two L-operators:

L2

(

u1

u2

)

L1

(

v1

v2

)

S = S L2

(

v2

u2

)

L1

(

v1

u1

)

. (5.1)

In this formula L-operators have the same auxiliary space and different
quantum spaces, i.e., matrix elements of L2(u1, u2) and L1(v1, v2) are dif-
ferential operators with respect to variables x2 and x1 correspondingly. It
can be shown [36] that S is the operator of multiplication by the simple
function

S(u1 − v2) = [x2 − x1]
v2−u1 . (5.2)

We shall use the following uniform notation for the parameters in L-
operator for the k-th site

Lk(uk) = Lk

(

u1k

u2k

)

; u1 k=u− σ
(k)
1 + δk; u2 k=u− σ

(k)
2 + δk, (5.3)

where (σ
(k)
1 , σ

(k)
2 ) is the set of representation parameters in the k-th site.

Elements of the monodromy matrix from site k to site n

T (U) = Ln(un)Ln−1(un−1) · · ·Lk+1(uk+1)Lk(uk), (5.4)

depend on the set of parameters ui, where k 6 i 6 n and we combine all
parameters in the matrix U

U =

(

u1n u1n−1 . . . u1 k+1 u1 k

u2n u2n−1 . . . u2 k+1 u2 k

)

, (5.5)

where the i-th column of this matrix contains parameters of the i-th
L-operator Li(ui).

Let us introduce the intertwining operators S1 for each site of the chain.
We will denote them S1(uk) and each of them interchanges parameters
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u1k ⇄ u2k inside the L-operator at k-th site

Lk

(

u1k

u2k

)

S1(uk) = S1(uk)Lk

(

u2k

u1k

)

. (5.6)

Next we introduce the operators S for each pair of two adjacent cites. We
will denote them S(uk+1 ,uk) and each of them interchanges parameters
u1 k+1 ⇄ u2 k inside the product of L-operators at two adjacent sites

T
(

u1 k+1 u1 k

u2 k+1 u2 k

)

= Lk+1(uk+1)Lk(uk) ; (5.7)

T
(

u1 k+1 u1 k

u2 k+1 u2 k

)

S(uk+1 ,uk) = S(uk+1 ,uk)T
(

u2 k u1 k

u2 k+1 u1 k+1

)

. (5.8)

The explicit formulae for these elementary intertwining operators are

S1(uk)Φ(xk) = S1(u1k − u2k)Φ(xk)

= A(u1k − u2k)

∫

d2w [w]−1−u1k+u2k Φ(xk − w);
(5.9)

S(uk+1 ,uk) = S(u2k − u1k+1) = [xk+1 − xk]
u2k−u1k+1 . (5.10)

Clearly, [S1(uk) , Li(ui)] = 0 for i 6= k and [S(uk+1 ,uk) , Li(ui)] = 0 for
i 6= k, k+1 so that for the complete monodromy matrix from the first site
to the N-th site we obtain

T
(

u1N ... u1k ... u11

u2N ... u2k ... u21

)

S1(uk) = S1(uk)T
(

u1N ... u2k ... u11

u2N ... u1k ... u21

)

, (5.11)

T
(

u1N ... u1 k+1 u1 k ... u11

u2N ... u2 k+1 u2 k ... u21

)

S(uk+1 ,uk)

= S(uk+1 ,uk)T
(

u1N ... u2 k u1 k ... u11

u2N ... u2 k+1 u1 k+1 ... u21

)

.
(5.12)

Hence, taking products of S1(uk) and S(uk+1 ,uk) with suitable argu-
ments, we can construct operator which performs any permutation of ele-
ments in U.

5.2. Change of parameters in operator B(u). Let us find out pa-
rameter dependence of B(u) = T 1

2 (u). Being matrix element of T (U),
B(u) = B(U) with U defined for the complete monodromy matrix

U =

(

u1N . . . u12 u11

u2N . . . u22 u21

)

, (5.13)

From (3.13) we see that first line of L(u) does not contain u2. By (2.5)

B(u) =
∑

a,b...,c=1 ,2

LN (u)1a LN−1(u)
a
b · · ·L1(u)

c
2, (5.14)
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hence u2N is not present in B(u) and we have

B
(

u1N ... u12 u11

u2N ... u22 u21

)

= B
(

u1N ... u12 u11

v ... u22 u21

)

, (5.15)

with arbitrary new parameter v. This parameter can be transferred to any
position in U with the use of intertwining operators (5.6), (5.8). It can be
demonstrated by the following sequence of transformations:

B
(

u1N ... u12 u11

u2N ... u22 u21

)

S1(u1N − v) = B
(

u1N ... u12 u11

v ... u22 u21

)

S1(u1N − v)

=S1(u1N−v)B
(

v ... u12 u11

u1N ... u22 u21

)

=S1(u1N−v)B
(

v ... u12 u11

u2N ... u22 u21

)

. (5.16)

As a result, we get B
(

v ... u12 u11

u2N ... u22 u21

)

with parameter matrix which el-

ement (1N) is now arbitrary. This idea can be used to substitute any

element (and any number of elements) of U by arbitrary parameter(s).

5.3. Eigenfunctions of B(u). Consider operator W (U, V ) which inter-
twines B(U) with B(V )

B(U)W (U, V ) = W (U, V )B(V ) , (5.17)

where

U =

(

u1N u1N−1 . . . u12 u11

u2N u2N−1 . . . u22 u21

)

;

V =

(

u1N u1N−1 . . . u12 u11

u21 vN−1 . . . v2 v1

)

.

(5.18)

Note that due to (5.15) there is not any dependence on the parameters
u2N and u21, so that the operator W (U, V ) effectively contains (N − 1)
arbitrary parameters v1, v2, . . . , vN−1 and it can be constructed from the
elementary intertwining operators in a many equivalent ways. We give a
more or less canonical construction using operators Rk+1k [29,35,36] each
of them interchanges parameters u2 k+1 ⇄ u2 k at two adjacent sites inside
the product of L-operators

T
(

... u1 k+1 u1 k ...

... u2 k+1 u2 k ...

)

Rk+1k

(

u1 k+1 u1 k

u2 k u2 k+1

)

= Rk+1k

(

u1 k+1 u1 k

u2 k u2 k+1

)

T
(

... u1 k+1 u1 k ...

... u2 k u2 k+1 ...

)

.

Note that the parameters in R-matrix mimic exactly parameters in the
monodromy matrix in the right hand side of the considered relation. The
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chain of the elementary transpositions
(

u1 k+1 u1 k

u2 k u2 k+1

)

S1(u2 k−u1 k+1)
←−−−−−−−−−−

(

u2 k u1 k

u1 k+1 u2 k+1

)

S(u2 k−u2 k+1)
←−−−−−−−−−−

(

u2 k+1 u1 k

u1 k+1 u2 k

)

S1(u1 k+1−u2 k+1)
←−−−−−−−−−−−−

(

u1 k+1 u1 k

u2 k+1 u2 k

)

,

results in a needed permutations of parameters so that we obtain

Rk+1k

(

u1 k+1 u1 k

u2 k u2 k+1

)

= S1(u1 k+1 − u2 k+1)S(u2 k − u2 k+1)S1(u2 k − u1 k+1). (5.19)

The product of R-operators

Λv

(

u1N u1 N−1 ... u12

u2 N−1 u2 N−2 ... u21

)

= RNN−1

(

u1 N u1N−1

u2 N−1 v

)

RN−1N−2

(

u1 N−1 u1 N−2

u2 N−2 v

)

· · ·R21

(

u12 u11

u21 v

)

intertwines the monodromy matrices

T
(

u1N u1N−1 ... u12 u11

v u2N−1 ... u22 u21

)

Λv

(

u1N u1 N−1 ... u12

u2N−1 u2 N−2 ... u21

)

= Λv

(

u1N u1N−1 ... u12

u2 N−1 u2N−2 ... u21

)

T
(

u1 N u1 N−1 ... u12 u11

u2N−1 u2 N−2 ... u21 v

)

,
(5.20)

and due to (5.15) it is equivalent to the following intertwining relation for
B-operators

B
(

u1N u1 N−1 ... u12 u11

u2N u2 N−1 ... u22 u21

)

Λv

(

u1N u1 N−1 ... u12

u2 N−1 u2 N−2 ... u21

)

= Λv

(

u1N u1 N−1 ... u12

u2 N−1 u2 N−2 ... u21

)

B
(

u1 N u1N−1 ... u12 u11

u2 N−1 u2N−2 ... u21 v

)

. (5.21)

The needed operator W (U, V ) is constructed step by step

W (U, V ) = Λv1

(

u1N ... u12

u2N−1 ... u21

)

Λv2

(

u1N ... u13

u2 N−2 ... u21

)

· · ·ΛvN−2

(

u1N u1N−1

u22 u21

)

RNN−1

(

u1 N u1 N−1

u21 vN−1

)

and intertwines the B-operators

B
(

u1N u1 N−1 ... u12 u11

u2N u2 N−1 ... u22 u21

)

W (U, V ) = W (U, V )B
(

u1 N u1 N−1 ... u12 u11

u21 vN−1 ... v2 v1

)

.

If Ψ0(x) is eigenfunction of B(V )

B(V )Ψ0(x) = −ip (u− q1) · · · (u− qN−1)Ψ0(x) , (5.22)
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then W (U, V )Ψ0 is eigenfunction of B(U) with the same eigenvalues. Since
V is arbitrary, it is sufficient to construct only one eigenfunction of B(V )
and it will give rise to the family of eigenfunctions of B(U). Let us consider
such "particular" eigenfunction Ψ0 = eipxN .2 Due to (3.13) we have

T
(

u1N ... u12 u11

u21 ... v2 v1

)

eipxN = eipxN

(

u1N+1+ipxN −ip

ipx2
N+(u21−u1N−1)xN u21−ipxN

)

(

u1 N−1+1 0
(vN−1−u1N−1−1)xN−1 vN−1

)

· · ·
(

u11+1 0
(v1−u11−1)x1 v1

)

(5.23)

and therefore

B(V )Ψ0 = −ip v1v2 · · · vN−1 Ψ0 .

Hence, if we put vk = u − qk we arrive at desired form (5.22). Finally,
eigenfunction Ψp(q|x) satisfying

B(U)Ψp(q|x) = −ip (u− q1) · · · (u− qN−1)Ψp(q|x)

has the form

Ψp(q|x) = W (U, V ) eipxN , (5.24)

where vk = u − qk and W (U, V ) is constructed in an explicit form. This
formula presents known result for Ψp(q|x) [26, 27] in a little bit different
form. The idea of this construction can be implemented to the case of
SL(3,C) magnet.

§6. Eigenfunctions of the operator B(u) for the SL(3,C)
magnet.

The initial expression for the operator B(u) can be rewritten in a useful
matrix form

B(u) =
(

T 1
3 (u), T 2

3 (u)
)

(

T 12
13 (u+ 1)

T 12
23 (u+ 1)

)

(6.1)

=
(

T 1
3 (u), T 2

3 (u)
)

(

T 1
1 (u) T 2

1 (u)
T 1
2 (u) T 2

2 (u)

)(

T 2
3 (u+ 1)
−T 1

3 (u+ 1)

)

, (6.2)

where in the last line we use relation
(

T 12
13 (u + 1)

T 12
23 (u + 1)

)

=

(

T 1
1 (u) T 2

1 (u)
T 1
2 (u) T 2

2 (u)

)(

T 2
3 (u+ 1)
−T 1

3 (u+ 1)

)

, (6.3)

2We remind that this function eipxN+ip̄x̄N also contains antiholomorphic part, but
it is not shown to simplify formulas.
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which is simply matrix form of the expression for the quantum minors

T 12
13 (u+ 1) = T 1

1 (u)T
2
3 (u+ 1)− T 2

1 (u)T
1
3 (u+ 1) ,

T 12
23 (u+ 1) = T 1

2 (u)T
2
3 (u+ 1)− T 2

2 (u)T
1
3 (u+ 1) . (6.4)

6.1. Example: N = 1.. To start with let us consider the simplest exam-
ple of the one site N = 1 when the monodromy matrix coincides with the
L-operator: T i

j (u) = Li
j(u). Substitution of the explicit matrix elements

for the L-operator (3.18) gives
(

L12
13(u+ 1)

L12
23(u+ 1)

)

=

(

u1 + 2 + x∂x + y∂y
y∂z+

x(x∂x + y∂y − z∂z + u1 − u2 + 1)

−∂x u2 + 1− x∂x + z∂z

)

×

(

−∂z − x∂y
∂y

)

, (6.5)

and expression for the operator B(u) explicitly reads

B(u)

=−(∂y, ∂z+x∂y)

(

u1+2+x∂x+y∂y
y∂z+

x(x∂x+y∂y−z∂z+u1−u2+1)

−∂x u2 + 1− x∂x + z∂z

)

×

(

−∂z − x∂y
∂y

)

.

Let us search for the eigenfunction of B(u) of the form

Ψ = eip1(y−xz)+ip2zϕ(x), (6.6)

where ϕ is yet undefined function, and p1,2 are parameters. The direct
calculation gives

B(u)Ψ = −eip1(y−xz)+ip2z (p1, p2)

×

(

u1 + 2 + x∂x x(x∂x + u1 − u2 + 1)
−∂x u2 + 1− x∂x

)(

p2
−p1

)

ϕ(x). (6.7)

Note that the matrix in the middle coincides up to transposition and shift
of the spectral parameter u→ u+1 with the L-operator (3.13) for SL(2,C)

L(u) =

(

x∂x + u1 + 1 −∂x
x (x∂x + u1 − u2 + 1) u2 − x∂x

)

.
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Of course it is possible to diagonalize the operator

(p1, p2)L
t(u+ 1)

(

p2
−p1

)

= (p2, −p1)L(u+ 1)

(

p1
p2

)

, (6.8)

directly but we apply some trick which will be used later in a general case
of N sites.

Note that the matrix Eσ =
∑

ij Eijeji coincides up to additive constant
with the quadratic Casimir operator in the tensor product of representation
Tσ and fundamental representation so that it commutes with the operators
Tσ(g)⊗ g

(Tσ(g)⊗ g)Eσ = Eσ (Tσ(g)⊗ g) −→ Tσ(g)Eσ Tσ(g)−1 = g−1 Eσ g.

In terms of L(u) it reads

Tσ(g)L(u)Tσ(g)−1 = g−1 L(u) g, (6.9)

i.e., the matrix similarity transformation of L-operator L(u)→ g−1 L(u) g
can be performed using the operator Tσ (g) acting on the quantum space.

The operator (6.8) coincides with the matrix element B̃(u) of unitary trans-
formed monodromy matrix for one site:
(

Ã(u) B̃(u)

C̃(u) D̃(u)

)

=

(

p2 −p1
0 p−1

2

)(

A(u) B(u)
C(u) D(u)

)(

p−1
2 p1
0 p2

)

.

(6.10)
Equation (6.9) states that this transformation can be written as operator
(which we will denote Ω) acting in quantum space, i.e.

B̃(u) = ΩB(u)Ω−1 , (6.11)

and Ω is defined by (3.11) with g =

(

p−1

2
p1

0 p2

)

:

Ωφ(x) = [p2 − p1x]
u2−u1−1 φ

(

p
−1

2
x

p2−p1x1

)

. (6.12)

If ϕ is eigenfunction of B(u) then Ωϕ is eigenfunction of B̃(u). But eigen-
functions of SL(2,C) operators B(u) = −∂x and B̄(u) = −∂̄x are simply
exponents3

ϕp(x) = eipx.

3We understand all exponent here as the product of holomorphic and antiholomor-
phic part, i.e., eipx stands for eipx+ip̄x̄.
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This system of functions is orthogonal and complete
∫

d2xϕp(x)ϕp′(x)=π2δ2(~p− ~p ′);

∫

d2p

π2
ϕp(x)ϕp(x

′)=δ2(~x−~x ′). (6.13)

The function Ψp1p2p(x, y, z)

Ψp1p2p(x, y, z) = eip1(y−xz)+ip2zΩ eipx

= [p2 − p1x]
u2−u1−1 e

ip1(y−xz)+ip2z+
ip
p2

x
p2−p1x ,

(6.14)

satisfy

B(u)Ψp1p2p(x, y, z) = ipΨp1p2p(x, y, z), (6.15)

E31Ψp1p2p(x, y, z) = (−∂y)Ψp1p2p(x, y, z) = −ip1Ψp1p2p(x, y, z), (6.16)

E32Ψp1p2p(x, y, z) = (−∂z − x∂y)Ψp1p2p(x, y, z)

= −ip2Ψp1p2p(x, y, z). (6.17)

The corresponding orthogonality and completeness relations
∫

d2x d2y d2zΨp1p2p(x, y, z)Ψp′

1
p′

2
p′(x, y, z)

= π6 δ2(~p1 − ~p ′

1) δ
2(~p2 − ~p ′

2) δ
2(~p− ~p ′),

(6.18)

∫

d2p1

π2

d2p2

π2

d2p

π2
Ψp1p2p(x, y, z)Ψp1p2p(x

′, y′, z′)

= δ2(~x− ~x ′) δ2(~y − ~y ′) δ2(~z − ~z ′),

(6.19)

can be proven with the help of (6.13). Now we are going to the general
situation of N sites.

6.2. Permutation of parameters. For the group SL(3,C) the L-ope-
rator depends on three parameters

Lk(uk) = Lk

(

u1k

u2k

u3k

)

; uik = u− σ
(k)
i + δk; i = 1, 2, 3, (6.20)

and, similar to SL(2,C) case we introduce matrix of parameters

U =





u1n u1n−1 . . . u1 k+1 u1k

u2n u2n−1 . . . u1 k+1 u2k

u3n u3n−1 . . . u1 k+1 u3k



 , (6.21)

for the monodromy matrix from site k to site n

T (U) = Ln(un)Ln−1(un−1) · · ·Lk+1(uk+1)Lk(uk) . (6.22)
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An essential role will be played by operators S1(uk) and S2(uk) (3.20)
which perform the parameters permutations u1k ⇄ u2k and u2k ⇄ u3k

inside the L-operator at k-th site

Lk

(

u1k

u2k

u3k

)

S1(uk) = S1(uk)Lk

(

u2k

u1k

u3k

)

;

Lk

(

u1k

u2k

u3k

)

S2(uk) = S2(uk)Lk

(

u1k

u3k

u2k

)

,

(6.23)

and operator S(uk+1 ,uk) which interchanges parameters u1 k+1 ⇄ u3 k

inside the product of L-operators at two adjacent sites

T

(

u1 k+1 u1 k

u2 k+1 u2 k

u3 k+1 u3 k

)

= Lk+1(uk+1)Lk(uk) , (6.24)

T

(

u1 k+1 u1 k

u2 k+1 u2 k

u3 k+1 u3 k

)

S(uk+1 ,uk) = S(uk+1 ,uk)T

(

u3 k u1 k

u2 k+1 u2 k

u3 k+1 u1 k+1

)

. (6.25)

Direct calculation shows that it is again multiplication operator [36]

S(uk+1,uk)=S(u3k − u1 k+1)=[yk+1−yk−zk(xk+1−xk)]
u3k−u1 k+1 .

(6.26)
Clearly, [S1(uk) , Li(ui)] = 0 for i 6= k and [S(uk+1 ,uk) , Li(ui)] = 0
for i 6= k, k + 1 so that its commutation relations with the complete mon-
odromy matrix from the first site to the N-th site simply mimics considered
local commutation relations. These three operators can be used to perform
any permutation of elements in U.

6.3. Parameter dependence of B(U). From the explicit form of
SL(3,C) L-operator (3.18) we see that Li

j(u) does not depend on u1,2,3

for i < j and Li
j(u) = Li

j(uj , . . . , ui) for i > j. For quantum minors of

L-operator then Li1i2
j1j2

(u) = Li1i2
j1j2

(uj1 , . . . ui2) if i1 < i2 and j1 < j2 (it can

be always fulfilled since is Li1i2
j1j2

(u) antisymmetric under the permutation

of i1, i2 and j1, j2, see sec. 2).
The quantum minor of monodromy matrix can be expressed in terms

of quantum minors of corresponding L-operators [30, 31]:

T i1i2
j1j2

(u) =
∑

a1<a2,b1<b2,...

LN(u)i1 i2
a1a2

LN−1(u)
a1a2

b1b2
· · ·L1(u)

c1c2
j1j2

, (6.27)

which is similar to definition (2.5) written in terms of matrix elements:

T i
j (u) =

∑

a,b...

LN (u)ia LN−1(u)
a
b . . . L1(u)

c
j . (6.28)
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From (6.27) we conclude that T i1i2
j1j2

(u) does not depend on parameters uj1

for j < j1 and uiN for i > i2. Hence T 12
23 (u) and T 12

13 (u) does not depend
on parameter u3N . The same is valid for T 2

3 (u) and T 1
3 (u) and we conclude

that the whole operator B(u) (6.1) does not depend on u3N . This is in the
full analogy with SL(2,C) case.

Using similar idea as in (5.16) we can construct operator W (U, V ) which
satisfy

B(U)W (U, V ) = W (U, V )B(V ) , (6.29)

i.e., it changes the parameter matrix U to the parameter matrix V

U =





u1N . . . u12 u11

u2N . . . u22 u21

u3N . . . u32 u31



 −→ V =





v1N . . . v12 v11
v2N . . . v22 v21
u1N . . . u12 u11



 ,

(6.30)
containing arbitrary parameters in the first two rows. We shall suppose
that vik are linear functions of the spectral parameter u. The reason is
that all operators S1 , S2 and S should not depend on u to satisfy (6.23),
(6.25) with L(u) and L(u+ 1).

The operator W (U, V ) can be constructed from the elementary inter-
twining operators in a many equivalent ways. We present the construction
which is the direct generalization of the ones used for the case SL(2,C) in
the section 5.3 and the whole transformation will be performed in a two
steps

U =

(

u1N ... u12 u11

u2N ... u22 u21

u3N ... u32 u31

)

−→ V1 =

(

v1N ... v12 v11
u1N ... u12 u11

u2N ... u22 u21

)

−→ V =

(

v1N ... v12 v11
v2N ... v22 v21
u1N ... u12 u11

)

.

The main building blocks are operators Rk+1k each of them interchanges
parameters u3 k+1 ⇄ u3 k at two adjacent sites

T

(

... u1 k+1 u1 k ...

... u2 k+1 u2 k ...

... u3 k+1 u3 k ...

)

Rk+1k

(

u1 k+1 u1 k

u2 k+1 u2 k

u3 k u3 k+1

)

= Rk+1k

(

u1 k+1 u1 k

u2 k+1 u2 k

u3 k u3 k+1

)

T

(

... u1 k+1 u1 k ...

... u2 k+1 u2 k ...

... u3 k u3 k+1 ...

)

.

Note that the parameters in R-matrix mimic exactly parameters in the
monodromy matrix in the right hand side of the considered relation. The
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chain of the elementary transpositions
(

u1 k+1 u1 k

u2 k+1 u2 k

u3 k u3 k+1

)

S2(u3 k−u2 k+1)
←−−−−−−−−−−

(

u1 k+1 u1 k

u3 k u2 k

u2 k+1 u3 k+1

)

S1(u3 k−u1 k+1)
←−−−−−−−−−−

(

u3 k u1 k

u1 k+1 u2 k

u2 k+1 u3 k+1

)

S(u3k−u3 k+1)
←−−−−−−−−−

(

u3 k+1 u1 k

u1 k+1 u2 k

u2 k+1 u3 k

)

S1(u1 k+1−u3 k+1)
←−−−−−−−−−−−−

(

u1 k+1 u1 k

u3 k+1 u2 k

u2 k+1 u3 k

)

S2(u2 k+1−u3 k+1)
←−−−−−−−−−−−−

(

u1 k+1 u1 k

u2 k+1 u2 k

u3 k+1 u3 k

)

results in a needed permutations of parameters so that we have

Rk+1k

(

u1 k+1 u1 k

u2 k+1 u2 k

u3 k u3 k+1

)

= S2(u2 k+1 − u3 k+1)S1(u1 k+1 − u3 k+1)

S(u3 k − u3 k+1)S1(u3 k − u1 k+1)S2(u3 k − u2 k+1). (6.31)

The product of R-operators

Λv

(

u1N u1N−1 ... u12

u2N u2N−1 ... u22

u3N−1 u3N−2 ... u31

)

= RNN−1

(

u1 N u1 N−1

u2 N u2 N−1

u3N−1 v

)

×RN−1N−2

(

u1 N−1 u1 N−2

u2 N−1 u2 N−2

u3 N−2 v

)

· · ·R21

(

u12 u11

u22 u21

u31 v

)

intertwines the following monodromy matrices

T

(

u1N u1 N−1 ... u12 u11

u2N u2 N−1 ... u22 u21

v u3 N−1 ... u32 u31

)

Λv

(

u1N u1 N−1 ... u12

u2N u2 N−1 ... u22

u3 N−1 u3 N−2 ... u31

)

= Λv

(

u1N u1 N−1 ... u12

u2N u2 N−1 ... u22

u3 N−1 u3 N−2 ... u31

)

T

(

u1 N u1N−1 ... u12 u11

u2 N u2N−1 ... u22 u21

u3 N−1 u3N−2 ... u31 v

)

, (6.32)

and then we apply the appropriate intertwining operators

S21

(

v

u11

u21

)

≡ S2(u21 − v)S1(u11 − v)

at the first site

T

(

u1 N u1 N−1 ... u12 u11

u2 N u2 N−1 ... u22 u21

u3N−1 u3 N−2 ... u31 v

)

S21

(

v

u11

u21

)

= S21

(

v

u11

u21

)

T

(

u1N u1 N−1 ... u12 v

u2N u2 N−1 ... u22 u11

u3 N−1 u3 N−2 ... u31 u21

)

where again the parameters in operator S21 mimic exactly parameters in
the last column of the monodromy matrix in the right hand side of the
considered relation.
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The operator W (U, V1) is constructed step by step

W (U, V1) = Λv11

(

u1N ... u12

u2N ... u22

u3 N−1 ... u31

)

S21

(

v11
u11

u21

)

× Λv12

(

u1N ... u13

u2N ... u23

u3N−2 ... u31

)

S21

(

v12
u12

u22

)

· · ·

× Λv1N−2

(

u1N u1 N−1

u2N u2 N−1

u32 u31

)

S21

(

v1 N−2

u1 N−2

u2 N−2

)

×RNN−1

(

u1 N u1 N−1

u2 N u2 N−1

u31 v1 N−1

)

S21

(

v1 N−1

u1 N−1

u2 N−1

)

S21

(

v1 N

u1 N

u2 N

)

and intertwines the operators B(V1) and B(U)

B

(

u1 N u1 N−1 ... u12 u11

u2 N u2 N−1 ... u22 u21

u3 N u3 N−1 ... u32 u31

)

W (U, V1)

= W (U, V1)B

(

v1N v1N−1 ... v12 v11
u1N u1N−1 ... u12 u11

u2N u2N−1 ... u22 u21

)

.

In a similar way one constructs the operator W (V1, V )

W (V1, V ) = Λv21

(

v1N ... v12
u1N ... u12

u2N−1 ... u21

)

S2(u21 − v21)

× Λv22

(

v1N ... v13
u1N ... u13

u2 N−2 ... u21

)

S2(u22 − v22) · · ·

Λv2N−2

(

v1N v1 N−1

u1N u1 N−1

u22 u21

)

S2(u2N−2 − v2N−2)

×RNN−1

(

u1N u1N−1

u2N u2N−1

u31 v1N−1

)

S2(u2N−1 − v2N−1)S2(u2N − v2N )

which intertwines the operators B(V ) and B(V1)

B

(

v1N v1N−1 ... v12 v11
u1N u1N−1 ... u12 u11

u2N u2N−1 ... u22 u21

)

W (V1, V )=W (V1, V )B

(

v1 N v1 N−1 ... v12 v11
v2 N v2 N−1 ... v22 v21
u1 N u1 N−1 ... u12 u11

)

.

The needed operator W (U, V ) is the product W (U, V )=W (U, V1)W (V1, V )
Again, it is sufficient to find one eigenfunction Ψ of B(V ) which eigen-

values depend on vik, and it will give rise to the set W (U, V )Ψ of eigenfunc-
tions of B(U). This particular eigenfunction Ψ can be found in recursive
way by the reduction to SL(2,C) case. This construction will be described
in the next section.
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6.4. Reduction to the SL(2,C) case. Let us search the eigenfunction
of B(V )

B(V ) =
(

T 1
3 (V ), T 2

3 (V )
)

(

T 12
13 (V + 1)

T 12
23 (V + 1)

)

(6.33)

in the form

Ψ = eip1(y1−x1z1)+ip2z1ϕ(x1, x2, . . . , xN ). (6.34)

Note that in the matrix V all matrix elements vik are linear function of
the spectral parameter u and we shall use compact notation V +1 for the
matrix with matrix elements vik + 1 which corresponds to the shift of the
spectral parameter u→ u+ 1.

Proposition 1. The action of the column in the rhs of (6.33) on Ψ is

given by the formula

(

T 12
13 (V + 1)

T 12
23 (V + 1)

)

Ψ =

N
∏

k=2

(v1k + 2)(v2k + 2) eip1(y1−x1z1)+ip2z1 (6.35)

(

v11 + 2 + x1∂x1
x1(x1∂x1

+ v11 − v21 + 1)
−∂x1

v21 + 1− x1∂x1

)(

−ip2
ip1

)

ϕ.

Proof. For the minors of L-operators for the sites k = 2, . . . , N one has
(see (6.5))

Lk(vk+1)1223Ψ = Lk(vk+1)1213Ψ = 0; Lk(vk+1)1212Ψ = (v1k+2)(v2k+2)Ψ,

and at the first site we obtain

(

L1(v1 + 1)1213
L1(v1 + 1)1223

)

Ψ = eip1(y1−x1z1)+ip2z1

×

(

v11 + 2 + x1∂x1
x1(x1∂x1

+ v11 − v21 + 1)
−∂x1

v21 + 1− x1∂x1

)(

−ip2
ip1

)

ϕ

and this formula is very similar to (6.7). Using (6.27) one arrives at desired
formula (6.35). �

In each line of the r.h.s. of (6.35) we have again the function of the
form (6.34).
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Proposition 2. The following formula holds:
(

T 1
3 (V )

T 2
3 (V )

)

Ψ = eip1(y1−x1z1)+ip2z1

(

v1N + 2 + xN∂xN
−∂xN

xN (xN∂xN
+ v1N − v2N + 1) v2N + 1− xN∂xN

)

· · ·

(

v12 + 2 + x2∂x2
−∂x2

x2(x2∂x2
+ v12 − v22 + 1) v22 + 1− x2∂x2

)(

−ip1
−ip2

)

ϕ. (6.36)

Proof. For the L-operators for the sites k = 2, . . . , N all matrix elements
are acting on the function which depends on the x-variables only and we
obtain

L(u)ϕ(x)

=

(

u1 + 2 + x∂x −∂x 0
x(x∂x + u1 − u2 + 1) u2 + 1− x∂x 0

y(x∂x+u1−u3+2)−xz(u2−u3+1) −y∂x+z(u2−u3+1) u3

)

ϕ(x).

Being substituted in (6.28) together with

L1(v1)
1
3 Ψ = −ip1Ψ; L1(v1)

2
3 Ψ = −ip2Ψ,

it gives the desired expression (6.36). �

Combining results of two Propositions we get the formula for the action
of B(V ) on Ψ :

B(V )Ψ = −eip1(y1−x1z1)+ip2z1

×

N
∏

k=2

(v1k+2)(v2k+2)

[

(p1, p2)

(

a(V ) c(V )
b(V ) d(V )

)(

p2
−p1

)]

ϕ, (6.37)

where matrix in the middle is the transposed monodromy matrix for the
SL(2,C) invariant spin chain with shifted spectral parameter and sites
ordered as 2, . . . , N, 1 from the right to the left

(

a(V ) c(V )
b(V ) d(V )

)

=

(

a(V ) b(V )
c(V ) d(V )

)t

= [L1(v1 + 1)LN (vN + 1) · · · L2(v2 + 1)]t , (6.38)

where

Lk(vk + 1) =

(

xk∂xk
+ v1k + 2 −∂xk

xk (xk∂xk
+ v1k − v2k + 1) v2k + 1− xk∂xk

)

.
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As a result, the function Ψ (6.34) is eigenfunction of B(V ) if and only
if the function ϕ, depending only on one variable xk in each site, is the
eigenfunction of the operator

(p1 , p2)

(

a(V ) c(V )
b(V ) d(V )

)(

p2
−p1

)

= (p2 ,−p1)

(

a(V ) b(V )
c(V ) d(V )

)(

p1
p2

)

.

Such function ϕ will be constructed with the use of eigenfunctions of
b(V ) in the next section.

6.5. Unitary transformations of monodromy matrix. We shall use
the SL(3, C) invariance of the L-operator

Tσ(g)L(u)Tσ(g)−1 = g−1 L(u) g, (6.39)

in a closed analogy with section 6.1. Right-hand side of (6.37) in square

brackets contain matrix element b̃(u) of unitary transformed monodromy
matrix:

(

ã(V ) b̃(V )

c̃(V ) d̃(V )

)

=

(

p2 −p1
0 p−1

2

)(

a(V ) b(V )
c(V ) d(V )

)(

p−1
2 p1
0 p2

)

. (6.40)

Equation (6.39) states that this transformation can be written as operator
(which we will denote Ω) acting in quantum space, i.e.

b̃(V ) = Ω b(V )Ω−1 , (6.41)

and Ω is defined by (3.11) with g =

(

p−1

2
p1

0 p2

)

in each site. We have

Ωϕ(x1, . . . , xN ) = [p2 − p1x1]
v21−v11−1 . . .

× [p2 − p1xN ]v2N−v1N−1ϕ
(

p
−1

2
x1

p2−p1x1
, . . . ,

p
−1

2
xN

p2−p1xN

)

. (6.42)

If ϕ is eigenfunction of b(V ) then Ωϕ is eigenfunction of b̃(V ). Eigen-
functions of SL(2,C) operator b(V ) were found earlier in sec. 5 so that
we reduced the eigenproblem for B(V ) to the analogous problem for the
algebra with lower rank.

Let us combine together all the parts of the answer. In last few sections
we were constructing eigenfunction for B(V ) and now we should substitute
v1k = u− 2− rk and v2k = u− 2− sk. We have

Ψp1p2b(q|x, y, z) = W (U, V )Ωϕ(x1, . . . , xN ), (6.43)
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where W (U, V ) is constructed explicitly, Ω is defined by (6.42) and ϕ is
eigenfunction of the operator b(V )

(

a(V ) b(V )
c(V ) d(V )

)

= L1(v1 + 1)LN(vN + 1) · · · L2(v2 + 1) , (6.44)

from the monodromy matrix of the SL(2,C) magnet with matrix of pa-
rameters

V =
(

v11+1 v1N+1 ... v12+1

v21+1 v2N+1 ... v22+1

)

and sites ordered as 2, . . . , N, 1 from the right to the left. If for ϕ eigenval-
ues are p, qi:

b(V )φ = −ip

N
∏

i=1

(u− qi)φ, (6.45)

then the corresponding eigenvalues of (6.43) are

B(u)Ψp1p2p(q|x, y, z) = ip

N−1
∏

i=1

(u − qi)(u − ri)(u− si)Ψp1p2p(q|x, y, z),

(6.46)
and

E31Ψp1p2p(q|x, y, z) = −ip1Ψp1p2p(q|x, y, z)

E32Ψp1p2p(q|x, y, z) = −ip2Ψp1p2p(q|x, y, z).

§7. Conclusions

The main result of the present paper is the construction of the general-
ized eigenfunctions of the operator B(u). The system of these eigenfunc-
tions define the kernel of the integral operator, which provides transforma-
tion to the representation of separated variables. We have presented the
algebraic part of the construction only and the main idea is the following.
Elements of the monodromy matrix

T (U) = LN(uN )LN−1(uN−1) · · ·L2(u2)L1(u1)

depend on the set of parameters ui, where 1 6 i 6 N and we combine
all parameters in the matrix U . The Sklyanin B-operator depends on the
whole set of parameters in monodromy matrix B = B(U) but it appears
that operators with different sets of parameters are unitary equivalent

B(U) = W (U, V )B(V )W−1(U, V )
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where operator B(V ) depends on the new set of parameters V . Then the
generalized eigenfunction of the operator B(U) can be represented in the
form

Ψ = W (U, V )Ψ0

where Ψ0 is some particular eigenfunction of the operator B(V ). The ma-
trix V is generic, so that we obtain a sufficiently rich set of eigenfunctions.
The construction of the intertwining operator W (U, V ) which allows to
change the set of parameters U → V

B(U)W (U, V ) = W (U, V )B(V )

extensively uses the intertwining operators from the representation theory
of SL(n,C) [32–34].

We have presented only algebraic part of the construction and there
remain many open questions which we hope answer in the future. Among
problems that attracts attention are the following:

• The investigation of the symmetry of the eigenfunction with re-
spect to permutations of {qi}.
• Calculation of the proper normalization coefficient for
Ψp1p2p(q|x, y, z) that provides

A(qi)Ψp1p2p(q|x, y, z) = Ψp1p2p(E
+
i q|x, y, z)

and makes eigenfunctions symmetric with respect to permutations
of {qi}.
• Proof of the orthogonality of the set of eigenfunctions. Explicit

calculation of the scalar product which gives the Sklyanin measure.
• Proof of the completeness of the set of eigenfunctions.

In the case of SL(2, C) algebra all such problems except to the com-
pleteness were considered in [26,27]. The main computational tool for the
calculation of scalar products was the Feynman diagram technique. The
calculation of integrals is reduced to the transformation and simplification
of the diagrams according some graphic rules (chain integration rule,star-
triangle relation). At the moment this Feynman diagrams technique is not
worked out in the SL(3,C) case.

A quantum inverse scattering based method for proving completeness
was developed in [37,38]. We should note that for proving completeness the
Mellin–Barnes integral representation [17–19] is well-suited [37,38] but the
Gauss–Givental representation is more useful for proving orthogonality.
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In the present paper we have constructed the Gauss-Givental represen-
tation for eigenfunctions of the Sklyanin’s operator for SL(3, C) magnet.
The construction of the Mellin–Barnes integral representation is a separate
open problem.

Finally, one should mention the recent works [39] where the unitarity
of the b-Whittaker transform is proven and [40] where the unitarity of the
SOV-transformation for the modular XXZ magnet is proven.

Note added.

When this paper was written, we learned about the recent work by
J. M. Maillet and G. Niccoli [41] in which an alternative approach to
SOV is suggested. In the paper [41] all representations in the quantum
space are finite-dimensional in contrary to our case of infinite-dimensional
principal series representations. It seems that the detailed investigation of
the possible interrelations will be very instructive.
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