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Abstract. A problem of the coordinatization of the manifold con-
structed via the Marsden–Weinstein quotient is considered. Rational
canonical coordinates on the symplectic reduction with respect to
the diagonal action of the general linear group on the Cartesian

product of coadjoint orbits in the case of the complex general linear
group are constructed. The coordinates on the algebraically-open
subset of the quotient space are presented. The method is based on
the iteration process used for the construction of the projection-flag
coordinates, and works if the matrices forming the orbits have a rich
enough set of the invariant subspaces.
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§1. Momentum map

Let Lie group G acts on the Poisson manifold M in such a way that
the vector-fields generated by the elements G ∈ g of the Lie algebra of
G are Hamiltonian vector-fields generated by Hamiltonians HG, and the
map G → HG is the homomorphism to the Lie algebra of the Hamilton
functions. Such action of G is called a Poisson action.

This action define a momentum map µ : M → g∗ of the manifold to
the dual algebra. By definition a value µ(X) ∈ g∗ at point X ∈ M is a
linear map µ(X) : G → HG(X).

Consider a set of Poisson manifolds M(1),M(1), . . .M(N) and their
Cartesian product

M := M(1) ×M(1) × · · · ×M(N).

Key words and phrases: symplectic reduction, momentum map, Lie–Poisson–
Kirillov–Kostant form, Deligne–Simpson problem, projection-flag coordinates.
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Manifold M inherits the Poisson structure. Consider a function f (k) :
M(k) → C. It can be lifted to a function on M as the pullback of f (k) by
the projection of the Cartesian product on factor M(k). We set a Poisson
bracket {, } on M between such functions lifted from the different orbits
equal to zero, and equal to the Poisson bracket between pre-images if
the functions were lifted from one orbit. This definition we extend on the
algebra of functions on M by the linearity and Leibnitz rule.

Let group G act on each M(k), and the actions are Poisson actions. It
is easy to see that the diagonal action is Poisson too. The tangent space
in every point X = (X(1), . . . , X(N)) ∈ M is a direct sum of the tangent

spaces TX(k)M(k). The Hamiltonian H
(k)
G lifted from each M(k) defines

the Hamiltonian field. Vectors of this field belong to the corresponding
summand TX(k)M(k), they have no projections on other TX(i)M(i), i 6= k.

The diagonal action generates such fields in all summands TX(k)M(k),

their Hamiltonians are H
(k)
G . The sum of these fields is produced by the

Hamiltonian HG :=
N∑

k=1

H
(k)
G that is the sum of the lifted on M functions.

Each summand generates the flow on its own cartesian summand M(k).

Proposition. The momentum map µ : M → g∗ for the diagonal Poisson
action of the Lie group on the Cartesian sum of manifolds M(1) × · · · ×
M(N) =: M is the sum of the momentum maps of the Cartesian summands
M(k):

µ =
N∑

k=1

µ(k)

Let G be a (semi)simple matrix group. Consider the coadjoint action
of G on its orbit O. An element G ∈ g generates the vector-field [∗, G],
on the orbit. It is the Poisson action, its Hamiltonian is G ∈ g, treated as
the (linear) function on g∗. The momentum map in this case µad(A) = A,
where A ∈ g∗ : G → trAG. It implies:

Proposition. The momentum map µ : M → g∗ for the diagonal (co)adjo-
int action of the simple matrix Lie group on the Cartesian sum coadjoint
orbits O(1) × · · · × O(N) ∋ {A(1), . . . , A(N)} is the sum of the matrices:

µ({A(1), . . . , A(N)}) =

N∑

k=1

A(k).
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§2. Projection-flag coordinates

In the works [1,2] projection-flag coordinates on the coadjoint orbits of
the general linear group were introduced. The method of their construction
is based on the observation that the representation of matrix A from the
orbit:

A =

(
I 0
Q I

)(
λ P

0 Ã

)(
I 0
Q I

)−1

produce the skew-orthogonal with respect to Lie-Poisson-Kirillov-Kostant
structure { , }LP families of functions on the orbit:

{Pij , Pkl}LP = {Qij, Qkl}LP = {Pij , Ãkl}LP = {Qij , Ãkl}LP = 0.

Matrix Ã belongs to the orbit of the smaller dimension that makes possible
to organize the iteration process.

The geometrical interpretation of the flight of the iteration is the pro-
jection of the action of A ∈ End(Cn) along the eigenspace corresponding

to λ on a coordinate subspace. The projection induce Ã ∈ End(Cñ), and
the pair P,Q.

Let us construct Q. Consider the projection of a subset e
′ of the set

(e′, e′′) of the basic vectors on the eigenspace corresponding to the eigen-
value λ parallel to the coordinate subspace L (e′′) and then project a result
to L (e′′) parallel to L (e′). It gives matrix Q:

e
′ → e

′ + e
′′Q → e

′′Q.

The projection on the eigenspace and the subsequent projection on L (e′′)
can be treated as a linear map Q ∈ Hom(L (e′),L (e′′)). The family of
the conjugated functions (P )ij can be treated as coordinates coming from
the opposite direction map P ∈ Hom(L (e′′),L (e′)):

A =

(
∗ P
∗ ∗

)
.

The pairing trPQ coincides with the pairing of functions on the orbit
generated by the Lie-Poisson-Kirillov-Kostant structure.

The transposed equality

B =

(
I −Qb

0 I

)(
λ 0

Pb B̃

)(
I −Qb

0 I

)−1
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can be treated as the contraction of B on the co-eigenspace im(B − λI)
and the corresponding transformations of the coordinate subspaces that
give Pb, Qb.

These interpretations are fundamental for the symplectic reduction

O(1) × · · · × O(N) → O(1) × · · · × O(N)//GL(n,C),

N∑

k=1

A(k) = AΣ. (1)

Consider the iteration process of the construction of the projection-flag
coordinates on the orbits O(k). The lengths of the flights of the itera-
tions may be arbitrary. These lengths are equal to the dimensions of the
eigenspaces used. Nevertheless it is possible to treat such long flights as a
series of the flights of the unique length, but with the dependent compo-
nents of the vectors.

Let a flight use ∆-dimensional subspace, for example. The Grassmanian
coordinates q... form the matrix elements of (n−∆)×∆ matrix Q. Let us
denote its columns by q′i:

(
I 0
Q I

)
=




1 0 . . . 0 0
0 1 . . . 0 0

0 0
. . . 0 0

0 0 . . . 1 0
q′1 q′2 . . . q′∆ I




,

and represent this matrix as a product of ∆ (comuting) matrices



1 0 . . . 0 0

0 1 . . . 0 0

0 0
.

.

. 0 0

0 0 . . . 1 0

q
′

1 0 . . . 0 I







1 0 . . . 0 0

0 1 . . . 0 0

0 0
.

.

. 0 0

0 0 . . . 1 0

0 q
′

2 . . . 0 I




. . .




1 0 . . . 0 0

0 1 . . . 0 0

0 0
.

.

. 0 0

0 0 . . . 1 0

0 0 . . . q
′

∆ I




.

We introduce vectors qi’s in such a way that the factors in this product

become



I 0 0
0 I 0
0 qi I


 . It is the same form as a unit-length flight has: qi ∈

Cn−i. The only difference is the first ∆− i vanishing components of qi.
The similar situation take place for p-coordinates too. The first ∆ − i

components of the corresponding pi will be a linear combinations of the
last ∆ components. The specific form of the dependence is not essential
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for us. We just keep in mind that the first ∆ − i elements of the vectors
qi, pi constructed using multidimensional subspace are dependent. These
components do not belong the coordinate set of functions.

Nevertheless all the components of the last pair p∆, q∆ constructed from
the ∆-dimensional subspace are independent. It is very important for the
presenting theory. Such last vectors p∆, q∆ do not differ from the vectors
constructed using one-dimensional eigenspaces and will be used for the
solving of the constant-momentum-equation (1).

Let all N orbits are parameterized, and all the flights of the itera-
tions are rewritten as series of unit-length flights. Let the set of matri-
ces {A(k)}Nk=1 is “enough rich”. Namely, for each of n − 1 steps m =
1, 2, . . . , n− 1 of the iteration process

A
(k)
m−1 =

(
I 0

q
(k)
m I

)(
λ
(k)
m p

(k)
m

0 A
(k)
m

)(
I 0

q
(k)
m I

)−1

or

A
(k)
m−1 =

(
I −q

(k)
m

0 I

)(
λ
(k)
m 0

p
(k)
m A

(k)
m

)(
I −q

(k)
m

0 I

)−1

,

there are at least two matrices, say A
(κm)
m−1 and A

(κ̂m)
m−1, such that the eigen-

spaces corresponding λ
(κm)
m and λ

(κ̂m)
m are one-dimensional.

It means that they are either actually unit-length flights of the process
or they are the last flights of the representation of the long-length flight
as a series of unit-length flights, like the step number ∆ in the example.

Moreover, in the initial set A(k), k = 1, . . . , N there must be not two, but
three matrices with one-dimensional eigenspaces. We denote them A(κ1),
A(κ̂1) and one more matrix A(κ0) with the one-dimensional eigenspace

corresponding to some λ
(κ0)
1 . This matrix will play a special role in the

process.
Finally we distinguish a set of matrices with the one-dimensional ker-

nels. The set consists of the triple of n×n matrices A(κ0)−λ
(κ0)
1 I, A(κ1)−

λ
(κ1)
1 I, A(κ̂1) − λ

(κ̂1)
1 I from the initial set, a couple of (n − 1) × (n − 1)

matrices A
(κ2)
1 − λ

(κ2)
2 I, A

(κ̂2)
1 − λ

(κ̂2)
2 I constructed after the first flight

of the iteration, a couple of (n − 2) × (n − 2) matrices A
(κ3)
2 − λ

(κ3)
3 I,

A
(κ̂3)
2 − λ

(κ̂3)
3 I constructed on the second flight, and so on. The last couple

is two degenerated but non-vanishing 2 × 2 matrices A
(κn−1)
n−2 − λ

(κn−1)
n−1 I,

A
(κ̂n−2)
n−2 − λ

(κ̂n−1)
n−1 I.



12 M. V. BABICH

We fix the following representation of the matrices from the set:

A
(κm)
m−1 =

(
I 0

q
(κm)
m I

)(
λ
(κm)
m p

(κm)
m

0 A
(κm)
m

)(
I 0

q
(κm)
m I

)−1

A
(κ̂m)
m−1 =

(
I −q

(κ̂m)
m

0 I

)(
λ
(κ̂m)
m 0

p
(κ̂m)
m A

(κ̂m)
m

)(
I −q

(κ̂m)
m

0 I

)−1

for m = 1, 2, . . . , n− 1, and

A(κ0) =

(
I 0

q
(κ0)
1 I

)(
λ
(κ0)
1 p

(κ0)
1

0 A
(κ0)
1

)(
I 0

q
(κ0)
0 I

)−1

.

Theorem 1. Equations

q(κm)
m = 0, q(κ̂m)

m = 0, m = 1, . . . , n− 1, q
(κ0)
1 = (1, . . . , 1)T

define a section of the fiber-bundle

O(1) ×O(2) × · · · × O(N) −→ O(1) ×O(2) × · · · × O(N)/GL(N,C)

on the algebraically-open set of configurations {A(1), A(2), . . . , A(N)} ∈ O(1)

×O(2) × · · · × O(N).

Proof. These equations have a simple geometrical sense. Namely this set
of the conditions uniquely fix a projective frame of Cn : A(n) ∈ End(Cn).

Matrices A
(k)
m act on the coordinate subspace that envelopes basic vec-

tors em+1, em+1, . . . , en. They are the projections of A(k) along the sum

of m eigenspaces corresponding to λ
(k)
1 , λ

(k)
2 , . . . , λ

(k)
m , or they are the pro-

jections along the sums of the kernels of the corresponding powers (A(k) −

λ
(k)
i I)j in the Jordanian case.

The equalities q
(κm)
m = 0, q

(κ̂m)
m = 0 uniquely fix the direction of

em and the hyperplane containing em+1, . . . en on the coordinate subspace
enveloping em, . . .en.

For example the equality q
(κ1)
1 = 0 means that the direction of the

first basic vector is chosen to be parallel to the kernel A(κ1) − λ
(κ1)
1 I. The

equality q
(κ̂1)
1 = 0 means that all the basic vectors except e1 belong to the

image of A(κ̂1) − λ
(κ̂1)
1 I.

After the finishing the process, the directions of all vectors will be fixed.
The scales on the axes are fixed by the last condition, that is the direction

of the kernel of A(κ0) − λ
(κ0)
1 I is a direction of the vector (1, . . . , 1)T .

The projective frame is fixed in Cn. �



ON PARAMETRIZATION OF SYMPLECTIC 13

Let us write down the constant-momentum-equation (1):

N∑

k=1

A(k) =




1 0 . . . 0
1 1 0 0
... 0

. . . 0
1 0 0 1







λ
(κ0)
1 p

(κ0)
1

0
... A

(κ0)
1

0







1 0 . . . 0
1 1 0 0
... 0

. . . 0
1 0 0 1




−1

+

(
λ
(κ1)
1 p

(κ1)
1

0 A
(κ1)
1

)
+

(
λ
(κ̂1)
1 0

p
(κ̂1)
1 A

(κ̂1)
1

)
+

∑

16k6N
k/∈{κ0,κ1,κ̂1}

A(k)=AΣ=const∈gl(n,C).

It is n2 scalar equations, but we must satisfy not n2, but n2−1 equations.
One equation, namely

∑
k

trA(k) = trAΣ, should be satisfied in advance,

we call it a traces identity. Let it be.
Let us denote the lower-right (m − 1) × (m − 1) block of any m × m

matrix B by [B]. It is evident that the constant-momentum-equation is
equivalent to one scalar equation

(
AΣ
)
11

=

N∑

k=1

(
A(k)

)
11

,

two vector equations:

p
(κ1)
1 =

(
AΣ
)
1,∗

−

N∑

k=1

(
A(k)

)
1,∗

p
(κ̂1)
1 =

(
AΣ
)
∗,1

−

N∑

k=1

(
A(k)

)
∗,1

,

and one (n− 1)× (n− 1) matrix equation:

[AΣ] =
N∑

k=1

A
(k)
1 +

∑

16s6N
s/∈{κ0,κ1,κ̂1}

q
(s)
1 p

(s)
1 + ~1p

(κ0)
1 . (2)

In these formulas indexes “1, ∗” and “∗, 1” mean the first row and the first

column of the off-diagonal part of the corresponding matrix, q
(s)
1 p

(s)
1 and

~1p
(κ0)
1 are matrices of the unit rank: (q

(s)
1 p

(s)
1 )ij = (q

(s)
1 )i(p

(s)
1 )j , (~1p

(κ0)
1 )ij

= (p
(κ0)
1 )j .

First of all let us discuss the scalar equation. If the sums (
n∑

k=1

A(k))ii are

equal to the corresponding (AΣ)ii for all i except one, then the diagonal

elements of
n∑

k=1

A(k) and AΣ coincide for this missed element too because
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of the traces identity. We leave the scalar equation
(
AΣ
)
11

=
N∑

k=1

(
A(k)

)
11

for this “automatic” solution.
The couple of the vector equations we set as definitions of vectors

p
(κ1)
1 , p

(κ̂1)
1 .

Consider the matrix equation (2). It does not contain the components

of vectors p
(κ1)
1 , p

(κ̂1)
1 because the corresponding q

(κ1)
1 , q

(κ̂1)
1 vanish, conse-

quently q
(κ1)
1 p

(κ1)
1 = p

(κ̂1)
1 q

(κ̂1)
1 = 0 and the summation index “s” does not

equal to κ1, κ̂1. We solve equation (2) first and then substitute the result,

that is some expressions for (A
(k)
1 )i,j , (q

(s)
1 )i, (p

(s)
1 )i, κ1 6= s 6= κ̂1 into the

definition of p
(κ1)
1 , p

(κ̂1)
1 . No additional equations arise.

Let us rewrite equation (2) in the following form:

N∑

k=1

A
(k)
1 = AΣ

1 − ~1p
(κ0)
1 , (3)

where AΣ
1 := [AΣ]−

∑
16s6N

s/∈{κ0,κ1,κ̂1}

q
(s)
1 p

(s)
1 . It has the same form as (1) except

the summand ~1p
(κ0)
1 . The dimension of this matrix equation is (n − 1)×

(n− 1). We will make the same trick once more and write (3) as

∑

16k6N
k/∈{κ2,κ̂2}

A
(k)
1 +

(
λ
(κ2)
2 p

(κ2)
2

0 A
(κ2)
2

)
+

(
λ
(κ̂2)
2 0

p
(κ̂2)
2 A

(κ̂2)
2

)
= AΣ

1 −~1p
(κ0)
1 . (4)

The difference between this case (n− 1)× (n− 1) and the previous one

is the presence of ~1p
(κ0)
1 in the right-hand side, and the absence of the

distinguished value of index like κ0 for A
(k)
1 . One more difference is the

fact that the trace identity is already used, consequently we need to solve
the scalar equation

∑

16k6N
k/∈{κ2,κ̂2}

(
A

(k)
1

)
11

+ λ
(κ2)
2 + λ

(κ̂2)
2 =

(
AΣ

1

)
11

− (p
(κ0)
1 )1.

It fix the value of (p
(κ0)
1 )1 as a function of the matrix elements of A

(k)
1

and
(
AΣ

1

)
11

. The correctness of the theory is based on the fact that the

values of the components of (p
(κ0)
1 )1 do not take part in another steps of

the process. Some matrix values of A
(k)
1 will be expressed as functions of
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another values but that expressions do not use (p
(κ0)
1 )1. The value s = κ0

of the index in the definition of AΣ
1 containing the sum

∑
s
q
(s)
1 p

(s)
1 do not

used too.
Let us denote a set of matrices AΣ

m:

AΣ
m = [AΣ

m−1]−
∑

16s6N
s/∈{κm,κ̂m}

q(s)m p(s)m , AΣ
1 := [AΣ]−

∑

16s6N
s/∈{κ0,κ1,κ̂1}

q
(s)
1 p

(s)
1

with the decreasing sizes (n−m)× (n−m), m = 2, 3, . . . , n− 2.
The constant-momentum-equation generates a sequence of equations

∑

16k6N
k/∈{κm,κ̂m}

A
(k)
m−1 +

(
λ
(κm)
m p

(κm)
m

0 A
(κm)
m

)
+

(
λ
(κ̂m)
m 0

p
(κ̂m)
m A

(κ̂m)
m

)

= AΣ
m−1 − ~1[p

(κ0)
1 ]m−1,

where [p
(κ0)
1 ]r :=

(
(p

(κ0)
1 )r, (p

(κ0)
1 )r+1, . . . , (p

(κ0)
1 )n

)
denote a vector that is

a last part of vector p
(κ0)
1 , [p

(κ0)
1 ]1 := p

(κ0)
1 . Any equation from the sequence

is equivalent to one scalar equation, two vector equations and the equation
that is the next in the sequence. It means that the following theorem take
place.

Theorem 2. The constant-momentum equation
∑
k

A(k) = AΣ is satisfied

if we set

(
p
(κ0)
1

)
m
=
(
A(Σ)

m

)
11
+

∑

16s6N
s/∈{κm+1,κ̂m+1}

p
(s)
m+1q

(s)
m+1−

N∑

k=1

λ
(k)
m+1, m=1, . . . , n− 2,

(
p
(κ0)
1

)
n−1

=
(
A

(Σ)
n−2

)
22

−

N∑

k=1

λ(k)
n −

∑

16s6N
s/∈{κn−1,κ̂n−1}

p
(s)
n−1q

(s)
n−1,

and

p(κm)
m :=

(
AΣ

m−1

)
1,∗

−
∑

16s6N
s/∈{κm,κ̂m}

(
A

(s)
m−1

)
1,∗

− [p
(κ0)
1 ]m
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p(κ̂m)
m :=

(
AΣ

m−1

)
∗,1

−
∑

16s6N
s/∈{κm,κ̂m}

(
A

(s)
m−1

)
∗,1

− (p
(κ0)
1 )m−1

~1.

Proof. The constant-momentum-equation follows from these equalities
by the construction, so what we need to prove is the correctness of the
procedure. It is the absence of additional equations.

We solve the scalar equations first. It gives the dependence of p
(κ0)
1 from

the different variables, but there are no p
(κm)
m , p

(κ̂m)
m among them, because

the components of the vectors p
(κm)
m , p

(κ̂m)
m do not take place in the first

two lines (the scalar equations). That is why the substitution of p
(κ0)
1 into

the vector equations do not give new equations. �
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