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Abstract. We consider the problem of reconstruction of Cauchy
data for the wave equation in R

1 by the measurements of its solu-
tion on the boundary of the finite interval. This is a one-dimensional
model for the multidimensional problem of photoacoustics, which
was studied in [2]. We adapt and simplify the method for one-
dimensional situation and provide the results on numerical testing
to see the rate of convergence and stability of the procedure. We
also give some hints on how the procedure of reconstruction can be
simplified in 2d and 3d cases.

Dedicated to the memory of A. P. Kachalov

§1. Introduction

Photoacoustic is a method of visualization for obtaining optical images
in a scattering medium. Ultrashort pulses of laser radiation causes thermo-
elastic stresses in the light absorption region. Such thermal expansion
causes the propagation of ultrasonic waves in the medium, which can be
registered and measured. After that, using the measurements, mathemati-
cal algorithms and computers one can produce an image, in this case the
technology called Photoacoustic tomography.

In what follows we assume that the visualized medium is homogeneous
with respect to ultrasound, put the speed of sound equal to 1 and write
down the standard wave equation for a pressure wave

{
utt −∆u = 0, x ∈ R

n, t > 0,
u
∣∣
t=0

= a, ut

∣∣
t=0

= b,
(1.1)
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where the functions a = a(x), b = b(x) are the initial conditions describing
spatial distributions of the absorption of laser radiation energy and of
its temporal change. Also we assume that there is a set of transducers
running over a surface S measuring the pressure wave and collecting data.
A transducer at at point x at time t measures the value u(x, t). Then we
can suppose that

F := u
∣∣
S×[0,T ]

. (1.2)

is known for some T > 0. The inverse problem (IP) is to find the initial
data a, b, using data F (x, t) measured by transducers. In our setting we
assume that the surface S is a unit sphere and supp a, supp b are located
inside S.

In the present paper we continue the the work started in [2]. Our goal
here is to develop new algorithms that improve the speed of calculations
and the clarity of the resulting image. In [2] we presented such algorithms
for three (n = 3) and two (n = 2) dimensional situation. The numeri-
cal realization of these algorithms is quite involved in multidimensional
situation, that is why here we restrict ourselves for the case n = 1. On
the one hand, the one-dimensional situation is rather simple, on the other
hand, for numerical simulation in n = 1 we preset the simplified version
of an algorithm described in [2]. And we also point out the way how this
simplifications can be made in cases n = 2 and n = 3.

In the second section we derive the Fourier representation for the for-
ward problem in the cases n = 1, 2, 3. In the third section we describe
the algorithm of solving IP in one-dimensional situation. In the forth sec-
tion the modifications needed for simplifications of the algorithm in mul-
tidimensional cases are described. In the last section we demonstrate the
results of numerical simulation in the case n = 1.

§2. Solving of forward problem

Since supp a, b ⊂ B1 = {x ∈ R
n | |x| < 1} and the speed of sound in

(1.1) equal to one, we have that

u(x, t) = 0, |x| = T + 1, t ∈ (0, T ). (2.1)

We use the separation of variables (Fourier) method to solve the initial
boundary value problem (1.1), (2.1), we look for the solution in a form

u(x, t) =

∞∑

k=1

Xk(x)Tk(t), (2.2)
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where Xk(x) are solution to the following spectral problem
{ −∆Xk = λkXk, |x| < 1 + T,

Xk

∣∣
|x|=1+T

= 0, (2.3)

and Tk(t) are defined by




−T ′′
k = λkTk, 0 < t < T,

∞∑
k=1

Xk(x)Tk(0) = a(x), |x| < 1 + T,

∞∑
k=1

Xk(x)T
′
k(0) = b(x), |x| < 1 + T.

(2.4)

From (2.4) we have that

Tk(t) = ak cos
√
λkt+

bk√
λk

sin
√
λkt, (2.5)

where

ak =
(a,Xk)L2

‖Xk‖L2

, bk =
(b,Xk)L2

‖Xk‖L2

. (2.6)

Solution to (2.3) has the following form in different dimensions:

Xk(x) = sin
(x+ (1 + T )

2(1 + T )
kπ

)
, λk =

( kπ

2(1 + T )

)2

, n = 1, (2.7)

Xkl(x) = Jk

( νlkr

1 + T

)
eikϕ, λkl =

( νlk
1 + T

)2

, n = 2, (2.8)

Xklm(x) =
1√
r
Jk+1/2

( ξlkr

1+T

)
eimϕPm

k (cos θ), λklm=
( ξlk
1+T

)2

, n=3,

(2.9)

where Jk, Jk+1/2 – Bessel functions of the first kind, νlk and ξlk – their
roots, Pm

k – associated Legendre polynomials:

Jα(x) =

∞∑

m=0

(−1)m

m!Γ(m+ α+ 1)

(x
2

)2

,

Pm
k (x) =

(−1)m

2kk!
(1− x2)m/2 dl+k

dxl+k
(x2 − 1)k.

Thus the representation (2.2) gives a solution to (1.1), (2.1) in the re-
gion {(x, t) | |x| < T + 1, t ∈ (0, T )}, with Xk defined by (2.7)–(2.9) and
Tk by (2.5).
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§3. Solving of IP for n = 1

The IP is to find the initial values a(x), b(x) of (1.1) using the observa-
tion F (x, t) measured on unit sphere:

F (x, t) = u(x, t), |x| = 1, 0 < t < T.

In 1d case the solution u in {(x, t) | |x| < T + 1, t ∈ (0, T )} is given by
(2.2), (2.5), (2.6), (2.7). The latter yields the following equality

∞∑

k=1

Xk(x)(ak cos
√
λkt+

bk√
λk

sin
√
λkt)=F (x, t), |x| = 1, t < T. (3.1)

We would like to determine coefficients ak and bk from (3.1) and restore
functions a and b as Fourier series:

a(x) =
∑

k

akXk(x), b(x) =
∑

k

bkXk(x).

We restrict ourselves to the case n = 1 and b = 0, the numerical testing
in the last section was conducted specifically in this situation. Other cases
require some modifications, we postpone them for further consideration.

In one dimensional case (3.1) becomes




∞∑
k=1

sin
(

2+T
2(1+T )kπ

)
(ak cos

kπ
2(1+T ) t+

bk√
λk

sin kπ
2(1+T ) t)=F (1, t),

∞∑
k=1

sin
(

T
2(1+T )kπ

)
(ak cos

kπ
2(1+T ) t+

bk√
λk

sin kπ
2(1+T ) t)=F (−1, t).

(3.2)

Using the equality T
2(1+T )kπ = kπ − 2+T

2(1+T )kπ we get what

F (1, t) = u1(t) + u2(t), F (−1, t) = −u1(2(T +1)− t) + u2(2(T +1)− t),

where

u1(t) =

∞∑

k=1

ak sin
( 2 + T

2(1 + T )
kπ

)
cos

kπ

2(1 + T )
t,

u2(t) =

∞∑

k=1

bk sin
( 2 + T

2(1 + T )
kπ

)
sin

kπ

2(1 + T )
t.

On assuming that b = 0 and introducing the notation

F̂ (t) =

{
F (1, t), 0 < t < 1 + T,

F (−1, 2(1 + T )− t), 1 + T < t < 2(1 + T ),
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we then arrive at the following relation

F̂ (t) =

∞∑

k=1

ak sin
( 2 + T

2(1 + T )
kπ

)
cos

kπ

2(1 + T )
t. (3.3)

The left hand side of the last equatity is known, therefore we can find ak

as a Fourier coefficients of the basis
{
cos kπ

2(T+1) t
}∞

k=0
in L2(0, 2(T +1)): .

ak =
F̂k

sin
(

2+T
2(1+T )kπ

) , where F̂k =
(F̂ , cos kπ

2(1+T ) t)L2(0,2(T+1))

T + 1
. (3.4)

From (3.4) we can easily see that if, we take T = 2 then the denominator
in the first formula vanishes for k = 3, 6, 9, . . .. Therefore we could not use
(3.4) to reconstruct a. It is also the case if k = (T + 1)n for some n ∈ N.
To improve this we need the following lemma:

Lemma 1. Let T ∈ N be fixed, the function a with suppa ⊂ (−1, 1) admits

the expansion

a(x) =

∞∑

n=1

an sin
(x+ 1

2
nπ

)
.

Define ã(x) by the rule:

ã(x) =

{
a(x), −1 < x < 1,

0, 1 < |x| < T + 1,

so ã(x) admits the representation

ã(x) =
∞∑

k=1

ãk sin
(x+ 1 + T

2(T + 1)
kπ

)
.

Then

a(x) =

{
T+1
T A(x), T is even

A(x), T is odd,
(3.5)

where

A(x) =
∑

k∈N,
k 6=(T+1)n

ãk sin
(x+ 1 + T

2(T + 1)
kπ

)
. (3.6)
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Proof. We express ãk via an:

ãk =
1

T + 1

T+1∫

−(T+1)

ã(x) sin
(x+ 1 + T

2(T + 1)
kπ

)
dx

=
1

T + 1

∞∑

n=1

1∫

−1

an sin
(x+ 1

2
nπ

)
sin

(x+ 1 + T

2(T + 1)
kπ

)
dx

=





2
π sin

(
kπT

2(T+1)

) ∞∑
n=1

nan

(T+1)2n2−k2 , n+ k is even,

0, n+ k is odd.

The last formula works if only (T + 1)n 6= k for any n, if for some n0 we
have (T + 1)n0 = k, then

ãk =
1

T + 1
an0

cos
(Tn0

2
π
)
.

From the last equality we derive that

ã(x) = A(x) +
1

T + 1

∞∑

n=1

an cos
(Tn

2
π
)
sin

(x+ 1 + T

2
nπ

)

= A(x) +
1

T + 1

∞∑

n=1

an
2

(
sin

(x+ 1

2
nπ

)
+ sin

(x+ 1

2
nπ + Tnπ

))

= A(x) +
1

(T + 1)2

(
a(x) + (−1)Ta(x)

)
.

Taking here |x| < 1 yields (3.5), which completes the proof. �

Applying this result to our situation, we can make the following

Proposition 1. Let T ∈ N be fixed. The unknown function a can be

recovered by formula (3.5), where coefficients ãk in representation (3.6)
are given by (3.4).

§4. Remarks on solving of IP for n = 2, 3.

We make use of (2.8), (2.5), (2.2) to write down an Fourier expansion
of observation (1.2) in 2d case:

∑

k, l

Jk

( νlk
1 + T

)
eikϕ

(
akl cos

( νlk
1 + T

t
)
+ bkl

1 + T

νlk
sin

( νlk
1 + T

t
))

= F (t, ϕ),
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where F (t, ϕ) is a given boundary measurements and akl and bkl are
Fourier coefficients subjected to determination. Multiplying in L2(0, 2π)
by 1√

2π
eikϕ we obtain:

∑

l

Jk

( νlk
1 + T

)(
akl cos

( νlk
1 + T

t
)
+bkl

1 + T

νlk
sin

( νlk
1 + T

t
))

= Fk(t), (4.1)

where Fk(t) is a Fourier coefficient of F (t, ϕ) w.r.t. family
{

1√
2π

eikϕ
}
k∈Z

in L2(0, 2π).
Equation (4.1) is a 2d analog of (3.3), but the arguments of cosine and

sine functions are different: instead of kπ
2(T+1) we have

νl

k

T+1 , where νlk is a

root of Bessel function Jk.

On observing that the system
{
cos

(
kπ

2(T+1) t
)}∞

k=0
is orthogonal in

L2(0, 2(T + 1)), we derived formula for ak (3.4) from (3.3). But now the

system
{
cos

(
νl

k

T+1 t
)}∞

l=1
is not a basis. At the same time this family is not

”very bad".
We remind that

Jk(x) =

√
2

πx
cos

(
x− kπ

2
− π

4

)
+Ox→∞

( 1

x3/2

)
,

and therefore

νlk ≈ kπ

2
+

π

4
+

2l− 1

2
π, l = 1, 2, . . . ,

which means that

νlk − νl+1
k → π if l → ∞.

All aforesaid and [1], (see Chapter 4, Theorem II.4.1) allows us to conclude

that the system
{
cos

(
νl

k

T+1 t
)}∞

l=1
is minimal in L2(0, T + 1) and system

{
cos

(
νl

k

T+1 t
)
, sin

(
νl

k

T+1 t
)}∞

l=1
is minimal in L2(−T − 1, T + 1). If b = 0

then

akl =
Fkl

Jk

(
νl

k

1+T

) , Fkl =

(
Fk(t), ukl(t)

)
L2(0,T+1)

‖ukl(t)‖L2(0,T+1)
, (4.2)

where the system {ukl(t)}∞l=1 is bi-orthogonal to
{
cos

(
νl

k

T+1 t
)}∞

l=1
in

L2(0, T+1). Formula (4.2) is 2d analog of (3.4), but instead of sin
(

2+T
2(1+T )kπ

)
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in denominator we have Jk

(
νl

k

1+T

)
. It has an advantage over one-dimen-

sional case because the denominator of (4.2) does not vanish for integer
values of T . Disadvantage is that denominator tend to zero while l → ∞
which makes calculation sensitive to accuracy.

Similar reasoning can be used in a three-dimensional situation, but in-
stead of (2.8) we use (2.9).

§5. Numerical experiment

In this section we provide the results on numerical testing for the one-
dimensional problem. Namely, we consider (1.1) with n = 1, b = 0, take
T = 2 in (2.1). First we generate data for IP i.e. observation (1.2), by
solving forward problem with the use of (2.2), (2.5), (2.6), (2.7).

After solving forward problem we discretized obtained data (function
F (±1, t)) to get closer to the case where the data is the result of a real
experiment, i.e. we replace F (±1, t) by F (±1, k

N ), k = 1, . . . , 2N for some
large N , we also add some noise to the data to be more realistic.

−3 −1 1 3supp a

x

t

F 1

F
−1

T =2
u (x, T )

Figure 1. Space-
time cylinder.
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Figure 2. Observation.

For a(x) = 1/2 + 1/2 cos(2πx) observation F±1 is represented on a pic-
ture. Before applying our algorithm, we checked the possibility of solving
this problem by brute force, i.e. minimizing the least-square-error for a
Fourier polynomial. As it is shown on the picture, the result was negative:
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Figure 3. Minimizing least-square-error.

We applied our algorithm, described in section 3 with T = 2. As was
mentioned, the reconstruction of Fourier coefficients ak using (3.4) is possi-
ble only for k 6= 3n where n = 1, 2, . . . because for k = 3n the denominator
in (3.4) vanishes. Making use of Lemma 1 and Proposition 1 we get the
following answer:

a(x) =
3

2
A(x), where A(x) =

∑

k 6=3n

ak sin
(x+ 3

6
kπ

)
.

Reconstructed data in the ’error’ case with a 50 Fourier coefficients are
represented on figures
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Figure 4. Smooth wave.
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Figure 5. Step function.
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The last two figures demonstrate comparison of our algorithm (first
row) with the reconstruction by solving wave equation backward in time
by finite-difference scheme (second row). On the right figure we reconstruct
initial condition a(x) having nonsmooth profile.
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