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ON THE BATEMAN–HÖRMANDER SOLUTION OF

THE WAVE EQUATION, HAVING A SINGULARITY AT

A RUNNING POINT

Abstract. Hörmander have presented a remarkable example of a
solution of the homogeneous wave equation, which has a singularity
at a running point. We are concerned with analytic investigation

of this solution for the case of three spatial variables. We describe
its support, study its behavior near the singular point and estab-
lish its local integrability. We observe that the Hörmander solution
is a specialization of a solution found by Bateman five decades in
advance.

§1. Introduction

We are concerned with solutions of the wave equation with three spatial
variables

�u ≡ uxx + uyy + uzz −
1

c2
utt = 0, c = Const > 0, (1)

of which we speak as of functions of spatial variables r = (x, y, z) ∈ R
3,

dependent on the parameter t. Hörmander’s theory of wave front propa-
gation [1] admits the existence of solutions of (1) which are smooth with
respect to r at each instant of time t ∈ R everywhere except for a single
spatial point which runs with the velocity c along a spatial straight line.
An example of such a solution was presented in [1] for the case of m > 1
spatial variables. The approach was based on abstract PDE theory and
analytic properties of the solution were not discussed. Here, we consider
this solution in the case of m = 3 and establish that it is a specification of
the classical relatively undistorted Bateman solution, see [2,3]. We investi-
gate in detail its behavior near the singular point. Our approach is purely
analytical and quite elementary.

We start by recalling the result due to Bateman.
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§2. The classical Bateman solution

Denote a quadratic form known in physics as the space–time interval
(see, e.g., [4]) by

ℓ2 = ℓ2(x, y, z, t) = c2t2 − x2 − y2 − z2. (2)

On the basis of group theory, Bateman established that the transformation

u(x, y, z, t) 7→ U =
1

ℓ2
u

(

x

ℓ2
,
y

ℓ2
,
z

ℓ2
,
t

ℓ2

)

(3)

bearing now his name1 maps a solution of the wave equation (1) into a
solution of the same equation. Applying this transformation to the plane
wave

u = F(z − ct),

where F(·) is an arbitrary function of one real variable, we get a solution
u = 1

ℓ2
F( z−ct

ℓ2
). Further, putting f(s) = sF(1/s), we come up with a

solution of the form

u =
1

z − ct
f

(

ℓ2

z − ct

)

(4)

with arbitrary function f(·), see [2, 3]. The expression (4) is known as the
Bateman relatively undistorted wave solution, the function f(·) is called
the waveform.

Bateman was not concerned with imposing any condition on the func-
tion f(·) and was not interested whether the function (4) (which is singular
at z = ct) satisfies the equation (1) in the whole space–time R

3 × R.
Other approaches to derivation of the Bateman solution (4) and its gen-

eralizations are described, e.g., in [5–8]. Until recently, this solution found
no direct application whereas its complexified versions play an important
role in description of highly localized solutions of the wave equation (see,
e.g., [6–9]).

§3. Hörmander’s construction

Henceforth, we understand the equation (1) in the sense of generalized
functions. Recall the Hörmander derivation. [1] Let E+ and E− be the

1Some authors, however, call it the Kelvin transformation.
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advanced and retarded fundamental solutions of the wave equation (1),
satisfying

�E± = δ(y)δ(z)δ(x)δ(t), (5)

E+|t<0 = 0, E−|t>0 = 0,

where δ(·) is the one-dimensional delta function. Explicit expressions for
E+ and E− are well known (see, e.g., [10]):

E± =
h(±t)

2πc
δ
(

ℓ2
)

. (6)

Here, ℓ is given by (2) and h(·) is the Heaviside function, h(t) = 0 for
t 6 0, h(t) = 1 for t > 0. Obviously, the function

E = E+ − E− =
sgn(t)

2πc
δ
(

ℓ2
)

(7)

satisfies the homogeneous wave equation in whole space–time R
3 × R.

Therefore, the convolution of E and an arbitrary generalized function F ,

U = E ∗ F, (8)

also satisfies homogeneous equation

�U = 0. (9)

Taking in (8)

F = F (x, y, z, τ) = 2πcδ(x)δ(y)δ(z − ct)f(z), (10)

where f( · ) is an arbitrary compactly supported infinitely differentiable
function of one variable, yields

U(x, y, z, t) =

∫

R4

E (x− ξ, y − η, z − ζ, t− τ)F (ξ, η, ζ, τ)dξdηdζdτ

=

∫

R2

δ
(

c2(τ − t)2 − x2 − y2 − (ζ − z)2
)

sgn(t− τ)δ(ζ − cτ)f(ζ)dζdτ. (11)

Hörmander [1] was satisfied with the observation that the function (11)
belongs to the class C∞(R3 × R\{x = y = 0, z = ct}) and is not infinitely
differentiable for x = y = 0, z = ct. We aim at finding and exploring a
simple expression for it.
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§4. Evaluation of the integral in (11)

Evaluating the integral with respect to ζ, we get

U =

∫ ∞

−∞

δ
(

ℓ2 + 2cτ(z − ct)
)

sgn(t− τ)f(cτ)dτ. (12)

Observing that the argument of the delta function in (12) vanishes when

τ = − ℓ2

2c(z−ct) and that δ(Cτ) = 1
|C|δ(τ), where C = Const ∈ R, we obtain

U =
1

2c|z − ct|
f

(

ℓ2

2(z − ct)

)

sgn

(

t+
ℓ2

2c(z − ct)

)

. (13)

Note that

sgn

(

t+
ℓ2

2c(z − ct)

)

= sgn

(

−x2 − y2 − (z − ct)2

2c(z − ct)

)

= − sgn(z − ct),

whence

U = −
1

2c(z − ct)
f

(

ℓ2

2(z − ct)

)

. (14)

The expression (14) can be recognized as the Bateman solution (4) with a
compactly supported smooth function

f(σ) = −
1

2c
f
(σ

2

)

. (15)

For this reason we find it fair to call the function (14) the Bateman–
Hörmander solution of the wave equation.

The above argument proves that in spite of the considerable singularity
at z = ct, the Bateman solution (4) satisfies homogeneous wave equation
(1) in the whole space-time R

3 × R.2

The function (14) is obviously smooth for z 6= ct. On the plane z = ct,
since the waveform f(·) is compactly supported, U = 0 unless ℓ2 = 0,
which holds at the running point

s(t) = {r : x = y = 0, z = ct}. (16)

The behavior of the function (14) near the point (16) will be discussed in
Section 7. First we describe its support.

2This fact was recently established in [11] by a different method.
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Figure 1. Support of U at different instants of time: (a)
t = −2A, (b) t = A/2, (c) t = 2A.

§5. The support of U

Let the function of one variable f(·) have the support supp f=[−A,A]⊂
R, A > 0. Then supp U ⊂ R

3 is described by inequalities

−A 6
ℓ2

2(z − ct)
6 A. (17)

Let t be an arbitrarily fixed instant of time. Introduce two balls B±(t) by

B±(t0) = {r : x2 + y2 + (z ∓A)2 6 (ct0 ∓A)2}.

and denote by b±(t) = ∂B±(t) their boundaries, i.e., the spheres

b±(t) = {r : x2 + y2 + (z ∓A)2 = (ct∓A)2}. (18)

Consider the intersections of suppU with the half-spaces z > ct and z 6 ct,

S> = supp U ∩ {r : z > ct}, S< = supp U ∩ {r : z 6 ct}.

For z > ct, the inequality (17) is equivalent to
{

x2 + y2 + (z −A)2 6 (ct−A)2,

x2 + y2 + (z +A)2 > (ct+A)2,
(19)

whence S> = B+(t) \B−(t), where stands for closure. Analogously, for

z 6 ct, the inequality (17) implies that S< = B−(t) \B+(t).
At any instant, t, suppU is a compact domain, restricted by spheres

b+(t) and b−(t), which are tangent to each other and to the plane z = ct
at the point s(t) described by (16). Depending on whether ct < −A, ct > A
or −A < ct < A, these spheres may lie one in the other (see Figs. 1(a), 1(c))
or have a single common point s(t) (see Fig. 1(b)).
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§6. Local integrability

It is easy matter to establish that the function U (14) is integrable on
R

3. One needs to show that

I :=

∫

R3

|U(x, y, z, t)| dxdydz < Const = Const(t). (20)

Consider the case of ct < −A, where the domain of integration in (20)
reduces to the ball B+(t). After the shift z 7→ z +A, the left-hand side of
the equation (20) becomes

I =

∫

x2+y2+z26R2

|U(x, y, z +A, t)| dxdydz,

where R = |ct−A|. Let

M(t) = max
r∈B+(t)

f

(

ℓ2

2(z − ct)

)

.

Then

I 6
M(t)

2c

∫

x2+y2+z26R2

1

|ct−A| − z
dxdydz

=
M(t)

2c

∫

x2+y2+z26R2

1

R− z
dxdydz

=
M(t)

2c

∫ R

−R

1

R− z

(
∫

x2+y26R2−z2

dxdy

)

dz

=
πM(t)

2c

∫ R

−R

R2 − z2

R − z
dz =

πR2

c
M(t),

which completes the proof for the case under consideration.
The proof of the integrability for ct < −A and |ct| < A is similar to

above, and we omit it.

§7. Analytic behavior of the solution U in a
neighborhood of the singular point

The function (14) is obviously infinitely differentiable with respect to x,
y, and z at each value of t, except for the running spatial point (16). Con-
sider the behavior of the function (14) in its vicinity. We will demonstrate
that the solution (14) has no limit as we approach this point.
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Fix a time instant t. Consider the plane

y = 0. (21)

First, discuss the case of
|ct| 6 A, (22)

see Fig. 1(b). Let us approach s(t) along a straight line

z = ct+ kx, k 6= 0. (23)

The argument of f( · ) takes the form

θ =
ℓ2

2(z − ct)
=

−kx(kx+ 2ct)− x2

2kx
= −ct+O(x), x → 0. (24)

Because of (22), in the case of a general position

f(−ct) 6= 0. (25)

Under this assumption

U = −
f(−ct)

2c(z − ct)
=

f(−ct)

2ckx
+ O(1), x → 0. (26)

We see that when approaching the singular point along the line (23), U
tends to ±∞, depending on the sign of kx. Therefore, for those t where (25)
holds lim

r→s(t) U along lines (23) does not exist. For the case of |ct| > A,
as immediately seen from Figs. 1(a), 1(c), the limit along lines (23) equals
zero.

For any value of t, let us approach the point s(t) along a parabola

P(p) = {r : z = px2 + ct}, p 6= 0. (27)

The argument of f( · ) becomes

θ =
ℓ2

2(z − ct)
=

1

2

(

z + ct+
x2

z − ct

)

= ct+
1

2p
+O(x2), x → 0. (28)

Having in mind (17), we note that for p satisfying

−(A+ ct) <
1

2p
< A− ct, (29)

in the vicinity of s(t), the curve (27) belongs to suppU and

U = −
1

2cp x2
f

(

ct+
1

2p
+O(x2)

)

→ ∞, x → 0. (30)

Due to the fact that f( · ) is compactly supported, we conclude that for p
not satisfying (29), the limit along the curve (27) exists and equals zero.
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Figure 2. Snapshots of the function (14) at the plane y = 0.

Figure 3. The function (31).

We thus established that the function (14) is not continuous at the point
s(t) described by (16).
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Fig. 2 illustrates the behavior of the solution (14) for a nonnegative
waveform

f(θ) =

{

exp
(

1 + A2

θ2−A2

)

, |θ| < A,

0, otherwise,
(31)

pictured in Fig. 3.
Behavior of the solution (4) near the point s(t) has much in common

with that of another simple solution with singularity at a running point,
described by a specialized complexified Bateman solution presented in [12].

§8. Conclusions

The above results can be extended to the case of arbitrary number
of spatial variables, where the Bateman solution is described in [9]. The
condition that the function f( · ) is compactly supported can be replaced
by a requirement that f(θ) → 0 quickly enough as θ → ±∞.

Authors are indebted to M. I. Belishev and P. A. Martin for helpful
comments.
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