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Abstract. In 1997 B. I. Plotkin introduced the notion of geometric
equivalence of algebraic structures and posed the question: Is it true
that every nilpotent torsion-free group is geometrically equivalent to
its Mal’cev’s closure? A negative answer was given by V. V. Bludov
and B. V. Gusev in 2007 in the form of three counterexamples.
In this paper we present an infinite series of counterexamples of
unbounded Hirsch rank and nilpotency degree.

§1. Introduction

A great deal of “universal algebraic geometry” have been developed by
B. I. Plotkin and V. N. Remeslennikov and their collaborators in the last
two decades, see [21–24,26,27] and [4,20]. In particular, in [27] Plotkin in-
troduced an important concept of geometrically equivalent algebraic struc-
tures. It turns out that two groups are geometrically equivalent if and only
if every finitely generated subgroup of each of these groups can be embed-
ded into a suitable Cartesian power of the other group [23].

In this paper we study the geometric equivalence of nilpotent groups.
Following P. Hall, we call a finitely generated torsion-free nilpotent group
an f -group. An f -group of nilpotence degree c is called an fc-group. The
following is known due to [29]:

(1) Two nilpotent groups are geometrically equivalent if and only if
they satisfy the same quasi-identities.

(2) If Γ is an f2-group then it is geometrically equivalent to its Mal’cev’s

closure
√
Γ.
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(3) Let Γ1,Γ2 be two f2-groups with cyclic center. Then Γ1,Γ2 are
geometrically equivalent if and only if their Mal’cev’s closures are
isomorphic.

(4) Let Γ1,Γ2 be two f2-groups whose centers have rank 2. Then Γ1 ∼
Γ2 if and only if either

√
Γ1 ≃ √

Γ2 or else there is an f2-group N
with the cyclic center and such that Γ1 ∼ N ∼ Γ2.

(5) A nilpotent torsion free relatively free group is geometrically equiv-
alent to its Mal’cev’s closure.

For the case of two Abelian groups it is shown that they are geometri-
cally equivalent if and only if for every prime number p the exponents of
their p-Sylow subgroups coincide and if one of these groups is not periodic
then the other group is not periodic either [2]. Every two non-abelian 2-step
nilpotent graph Q-groups are geometrically equivalent [19]. A torsion-free

nilpotent group Γ is geometrically equivalent to its Mal’cev’s closure
√
Γ

if and only if Γ ∼ nΓ for every natural n, where nΓ denotes the subgroup
of Γ generated by all n-th powers of all of elements of Γ [3].

In [27] Plotkin and his coauthors formulate the following problem.

Problem 1.1. Is it true that every torsion-free nilpotent group is geomet-
rically equivalent to its Mal’cev’s closure? If not, consider the conditions
when geometrical equivalence takes place.

Examples of finitely generated nilpotent groups of degree three, four
and five, which are not geometrically equivalent to their Mal’cev’s closures,
were constructed by V. V. Bludov and B. V. Gusev in [3].

We can now formulate our main result.

Theorem 1.2. In each odd dimension n > 7 there is an f -group Γ of
Hirsch rank n and of nilpotence degree n − 1, which is not geometrically
equivalent to its Mal’cev’s closure

√
Γ.

§2. Radicals, closure and geometric equivalence

For an arbitrary collection of groups Sα, α ∈ I, we denote by S =
Πα∈ISα the set of functions f : I → ∪α∈ISα satisfying the condition
that f(α) ∈ Sα for all α ∈ I. It is readily checked that the set S with
multiplication defined by the rule (fg)(α) = f(α)g(α), is a group; it is
also called the Cartesian product of the groups Sα. The value of a function
f at the element α is called the projection of f on the factor Sα, or the
component of f in Sα. In case all Sα coincide, say Sα = S, we call Πα∈ISα
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the Cartesian power and denote it by SI . Thus SI is the set of all functions
f : I → S.

A group G is approximable by a group S if there is an embedding ι :
G ֌ SI of G into some Cartesian power of S. Equivalently, there is a
family of homomorphisms si : G → S (i ∈ I) such that ∩I ker (si) = {1}.
In fact it is the “universal” Cartesian power

SHom(G,S) (2.1)

that is responsible for the approximability.

Lemma 2.1. Let ι : G → SHom(G,S) be the canonical homomorphism,
given by

(ιg) (σ) = σ (g) (2.2)

for all σ ∈ Hom(G,S). Then G is approximable by S if and only if ι is
injective.

Proof. If ι : G → SHom(G,S) is injective then G is clearly approximable
by S. Conversely, suppose that there is an embedding G ֌ SI . Then
∩I ker (si) = {1}, and thus ∩{ker (σ) : σ ∈ Hom(G,S)} = {1} , which
means that ι is injective. �

If the canonical homomorphism ι : G → SHom(G,S) is not injective then
the non-approximability of G by S can be measured by the kernel ker ι.
The following definition is due to Plotkin (see [10]).

Definition 2.2. The kernel of the canonical homomorphism ι : G →
SHom(G,S) is called the S-radical of the group G and is denoted by RSG,

RSG = ker ι = ∩{kerσ : σ ∈ Hom(G,S)} . (2.3)

Lemma 2.3 (minimality). The radical RSG = ker ι is the “minimal” pos-
sible kernel among the kernels of the homomorphisms of the form κ : G →
SI. Precisely, for every homomorphism κ : G → SI the kernel kerκ con-
tains the kernel ker ι.

Proof. We may assume that the set I is a singleton, so κ is a homo-
morphism κ : G → S. Then clearly kerκ ⊇ ∩{kerσ : σ ∈ Hom(G,S)} =
ker ι. �

Another important definition by Plotkin is that of “S-closure operator”
ClS , which acts on the set of normal subgroups of a fixed group G. The
operator ClS assigns to each normal subgroup N of an arbitrary group
G a certain normal subgroup ClS(N,G) 6 G, called the S-closure of N
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in G. Precisely, RS (G/N) is a (normal) subgroup of G/N , hence it is of
the form RS (G/N) = G0/N for uniquely defined subgroup G0 and we set

ClS(N,G)
def
= G0.

Thus, we have the formula

RS (G/N) = ClS(N,G)/N, (2.4)

which expresses the closure via the radical. Conversely, putting N = {1}
in this formula we obtain

RS (G) = ClS (1, G) . (2.5)

The direct formula for the closure is:

ClS (N,G) = ∩{kerσ : σ ∈ Hom(G,S) , kerσ ⊇ N} . (2.6)

A subgroup N 6 G is S-closed in G if ClS (N) = N . For instance, kerσ is
S-closed for every σ ∈ Hom(G,S).

Remark 2.4. In general the S-closed sets do not form a topology on G.
For instance, take as S the additive group of the field Z/pZ and G =
(Z/pZ)

n
, n > 2. Then the S-closed sets are precisely the linear subspaces

in G and the union of two linear subspaces is not linear in general.

The closure operator immediately leads to Plotkin’s definition of geo-
metrically equivalent groups, see [27]. The groups S and T are geometrically
equivalent, written S ∼ T , if for every free group F of finite rank the closure
operators ClS , ClT coincide on F .

Lemma 2.5. The groups S and T are geometrically equivalent if and only
if RSK = RTK for every finitely generated group K.

Proof. Suppose S and T are geometrically equivalent and let K = F/N
be a finitely generated group with F a free group of finite rank. Then by
definition RS (F/N) = ClS (N,F ) /N and RT (F/N) = ClT (N,F ) /N ,
so RSK = RTK. Conversely, suppose RSK = RTK for every finitely
generated group K. Let F be a free group of finite rank and N be a
normal subgroup in F . Then by definition

RS (F/N) = ClS (N,F ) /N, RT (F/N) = ClT (N,F ) /N, (2.7)

so

ClS (N,F ) /N = RS (F/N) = RT (F/N) = ClT (N,F ) /N, (2.8)

that is the closure operators ClS , ClT coincide on F . �
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Lemma 2.6 ([23]). The groups S, T are geometrically equivalent if and
only if every finitely generated subgroup of S can be approximated by T
and vice versa.

Proof. Suppose S ∼ T and let S0 be a finitely generated subgroup of S.
Fix a free group F of finite rank and an epimorphism φ : F ։ S0. By
definition kerφ is S-closed, hence kerφ is also T -closed. Consequently,

kerφ = ∩{kerφi| φi : F → T, i ∈ I} (2.9)

for some index set I. Hence the family of homomorphisms (φi) forms a

homomorphism F
(φi)→ T I whose kernel equals kerφ in view of (2.9). There-

fore, (φi) induces an embedding S0 = F/ kerφ ֌ T I , thus S0 is approx-
imable by T . Similarly, one shows that every finitely generated subgroup
of T can be approximated by S.

Conversely, suppose that every finitely generated subgroup of S can be
approximated by T and vice versa. By symmetry of S, T it is enough to
show that RSG > RTG for every finitely generated group G. By definition

RSG = ∩{kerφ : φ ∈ Hom(G,S)} (2.10)

hence the inclusion RSG > RTG would follow from the inclusion kerφ >

RTG for every φ ∈ Hom(G,S). For every such φ by assumption there
is an embedding φ (G) ֌ T I . The composition ι′ : G → φ (G) ֌ T I

has a kernel ker ι′ = kerφ so by minimality Lemma 2.3 kerφ > RTG as
desired. �

§3. Mal’cev’s closure and geometric equivalence

Let Γ be a torsion-free nilpotent group. Recall that a group Γ is divisible
if for every element g and every positive integer m the equation xm = g
can be solved in Γ. Extraction of n-th roots in Γ is a “partial operation”
on the group; i.e. it is single-valued but not everywhere defined. We call
a divisible, torsion-free nilpotent group a (nilpotent) Mal’cev’s (=divisible)
closure of Γ if it contains Γ but has no proper divisible subgroups con-
taining Γ. Divisible closure of Γ exists, has the same nilpotency class, and
further any two nilpotent divisible closures of Γ (i.e. “minimal” divisible
overgroups of Γ) are isomorphic and consist entirely of roots of elements of
Γ. Moreover, given any automorphism φ of Γ there is an isomorphism be-
tween the two divisible closures which extends φ ( for all above statements
see [13, Theorem 16.2.8]).
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Define

ζ0Γ = 1, ζi+1Γ/ζiΓ = Z (Γ/ζiΓ) , i = 0, 1, 2, . . . ; (3.11)

The groups ζiΓ are called the higher centers of Γ. The ascending series

1 6 ζ1Γ6ζ2Γ6 · · · (3.12)

is the upper (or ascending) central series of Γ.

Theorem 3.1 ([13], Theorem 17.3.1). Let ∆ be a subgroup of a divisible,

torsion-free nilpotent group Γ. The set
√
∆ of all elements of Γ some powers

of which lie in ∆ (the “radical closure” of ∆ in Γ), is a subgroup of Γ, and
therefore a divisible closure of ∆. The higher centers of the subgroups ∆
and

√
∆ are related in the following way:

ζi
√
∆ =

√

ζi∆, ζi∆ = ∆ ∩
√

ζi∆. (3.13)

The following theorem by Bludov and Gusev is the key to proving the
geometric non-equivalence [3].

Theorem 3.2. A torsion-free nilpotent group Γ is geometrically equivalent
to its Mal’cev’s closure

√
Γ if and only if Γ ∼ nΓ for every natural n.

A family a = {aij : 1 6 i < j 6 n, aij ⊆ Q} of additive subgroups of Q
is called a carpet if aijajk ⊆ aik for all i, j, k. It is easily verified that the
set

∆n (a) = {x|x∈Matn (Q) , xij ∈aij for i<j and xij = 0 for i>j} (3.14)

is a nilpotent matrix ring. The set

Γn (a) = e+∆n (a) (3.15)

is a nilpotent matrix group; we shall call it the (unitriangular) congruence
subgroup modulo the carpet a. If every aij is either zero or Q then Γn (a) is

divisible; indeed if g=e+x, then g
1

m =
n−1
∑

i=0

(

1/m
i

)

xi is an mth root of g. The

closure of a group aij is defined as
√
aij = Q if aij 6= {0} and

√
aij = {0}

otherwise. Note that if aij 6= {0} then the quotient group Q/aij is periodic.
Define the closure carpet of a as

√
a =

{√
aij : 1 6 i < j 6 n, aij ⊆ Q

}

.

Theorem 3.3. For every carpet a the group Γn

(√
a
)

is the Mal’cev’s
closure of Γn (a).
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Proof. Indeed ∆n

(√
a
)

is a Q-algebra thus Γn

(√
a
)

is closed under root

extraction, so is divisible. It remains to show that for each x ∈ ∆n

(√
a
)

some power of e+x lies in Γn (a). There is a natural m such that x = 1
my,

where y ∈ ∆n (a) . We have

(

e+
1

m
y

)N

=e+
N

m
y+

N (N − 1)

2m2
y2+. . .+

N (N − 1) · · · (N − n+ 1)

mn−1 (n− 1)!
yn−1.

(3.16)

Now, take N = mn−1 (n− 1)!, then
(

e+ 1
my

)N ∈ e+∆n (a) = Γn (a). �

Theorem 3.4. For every carpet a the group Γn (a) is geometrically equiv-
alent to Γn

(√
a
)

.

Proof. It is enough to show that every finitely generated subgroup Γ of
Γn

(√
a
)

embeds into Γn (a). For a matrix dr = diag
{

1, r, r2, . . . , rn−1
}

we
have

drΓn (a) d
−1
r =

{

x| x ∈ UTn (Q) , xij ∈
ri

rj
aij , i < j

}

. (3.17)

It follows that for sufficiently large r the group Γ is contained entirely
in drΓn (a) d

−1
r . Hence the homomorphism g 7→ d−1

r gdr embeds Γ into
Γn (a). �

Conclusion. Geometric equivalence follows from the fact that Γ is “com-
pressible” from Γn

(√
a
)

. This means that negative examples must be
searched among “incompressible” groups.

§4. Mal’cev’s correspondence and incompressibility

An f -group is called incompressible (=co-Hopfian) if it contains no proper
subgroup isomorphic to itself or, equivalently, if every its injective endo-
morphism is in fact an automorphism. Yet another formulation is that
every endomorphism either is automorphic or else has a nontrivial kernel.

A. I. Mal’cev established the correspondence between f -groups and
finite-dimensional nilpotent Lie algebras over Q. It allows to translate cer-
tain group-theoretic questions into the Lie algebra language, where they
are often easier to handle. As an example I. O. Belegradek managed to
give a criterion for incompressibility in terms of Lie algebras [1].
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Recall that the Campbell–Hausdorff formula asserts that, e.g. if one
considers the algebra of formal power series in two non-commuting inde-
terminants x, y, then

exey = eF (x,y) (4.18)

where

F (X,Y ) = X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]] +

1

12
[Y, [Y,X ]] + . . . (4.19)

is a (universal) formal Lie series in X,Y . Write F (X,Y ) = X+Y +τ(X,Y ).
By the identity (4.19) one sees that τ has no terms in X alone or in Y
alone.

Given a nilpotent Lie algebra g over R, we define the Lie group structure
on g by the Campbell–Hausdorff formula. For x, y ∈ g , define τ(x, y) by
substitution in the formal Lie series τ(X,Y ). Since g is nilpotent, this
defines a polynomial map τ : g× g → g with τ(0, y) = τ(x, 0) = 0. Set

x · y = x+ y + τ(x, y) (4.20)

By the formal identity (4.18) it follows that this composition gives a
group structure to g. The straight line t 7→ tx, t ∈ R, is the one-parameter
group generated by x ∈ g. Denote by Gg = (g, ·) the space g with this Lie
group structure. Note that Gg is connected and simply connected nilpotent
Lie group. The exponential mapping exp : g →Gg is identical and so the
inverse log is also identical.

Suppose g has rational structure constants, i.e. g ≃ R⊗gQ for some Lie
algebra gQ over Q. Then the group GgQ

= (gQ, ·) is a divisible subgroup
of Gg. According to the classical papers by Mal’cev [17, 18] the group Gg

has cocompact discrete f -subgroup ΓgQ
containing in GgQ

. More precisely,
Γ = ΓgQ

is of the form

ΓgQ
=

∑ 1

ni
Zei , (4.21)

for a suitable basis (ei) of gQ and suitable tuple (ni) of natural numbers. It
follows immediately from this description that the Q-span of Γ is gQ and

that GgQ
is Mal’cev’s closure of Γ, i.e.

√
Γ = GgQ

. The group Γ is uniquely
determined by gQ up to commensurability.

This correspondence between f -groups and nilpotent Lie algebras over
Q allowed I. O. Belegradek to obtain the following criterion of incom-
pressibility of an f -group [1] (definitions are found below).

Theorem 4.1 ([1] (see [11] for an alternative proof)). If a Lie algebra gQ

over Q is derivationally nilpotent, then the group ΓgQ
is incompressible.
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A Lie algebra g is called derivationally nilpotent (= characteristically-
nilpotent) if the algebra of its derivations Der g consists of nilpotent op-
erators [8]. If this is so, then the inner derivations are nilpotent as well
and by Engel’s theorem we conclude that g is nilpotent. If g is a finite-
dimensional Lie algebra over the field K = R or C, then it is derivationally
nilpotent if and only if the Lie group (Aut g)◦ is unipotent [8].

As observed in [16], the property of being characteristically nilpotent
does not depend on the ground field. More precisely: if the Lie algebra g is
derivationally nilpotent as F -algebra (here it is not necessary to suppose
that it has characteristic zero) and K/F is a field extension, then g is also
derivationally nilpotent as K-algebra.

§5. Strong incompressibility and filiform Lie algebras

It is plausible that incompressibility does not suffice for an f -group
Γ to provide the non-equivalence Γ 6∼

√
Γ. An f -group Γ 6= 1 is called

strongly incompressible if every its endomorphism φ is either automorphic
or else kerφ contains the center ZΓ. A strongly incompressible group is
incompressible since then center of nontrivial nilpotent group is nontrivial.
This notion has already occurred implicitly in [3].

Theorem 5.1. If Γ is a strongly incompressible f -group then Γ is not
geometrically equivalent to every of its proper subgroup. Furthermore, Γ
is not geometrically equivalent to Mal’cev’s closure

√
Γ.

Proof. If there were a geometric equivalence Γ ∼ ∆ for a proper subgroup
∆ < Γ then we could get the equality

RΓΓ = R∆Γ. (5.22)

By definition

RΓΓ = ∩{kerφ : φ ∈ Hom(Γ,Γ)} = 1 (5.23)

since ker idΓ = 1. On the other hand

R∆Γ = ∩{kerφ : φ ∈ Hom(Γ,∆)} . (5.24)

Every homomorphism φ ∈ Hom(Γ,∆) is not injective by incompressibility
of Γ, so it has a non-trivial kernel kerφ which, by assumption, contains ZΓ.
But this implies that R∆Γ > ZΓ 6= 1 that would contradict (5.22).

As for the second assertion is concerned by Bludov and Gusev Theo-
rem 3.2 the equivalence Γ ∼

√
Γ would imply Γ ∼ nΓ for all n. But nΓ is

a proper subgroup for all n > 1, contradicting the first assertion. �
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Lemma 5.2. If Γ is an incompressible f -group and ZΓ ≃ Z then Γ is
strongly incompressible.

Proof. Let φ : Γ → Γ be a homomorphism with nontrivial kernel kerφ.
Since kerφ is a normal subgroup of Γ, the intersection kerφ ∩ ZΓ is non-
trivial [13]. Hence kerφ ∩ ZΓ = n (ZΓ) for some natural number n. The
embedding φ̄ : Γ/ kerφ ֌ Γ takes the quotient

ZΓkerφ/ kerφ ≃ ZΓ/ kerφ ∩ ZΓ ≃ Z/nZ (5.25)

into finite subgroup of Γ. Since Γ is torsion-free, n = 1 and kerφ > ZΓ as
required. �

The last Lemma shows that it is important to work in the class of
nilpotent algebras with 1-dimensional center. This class is not well behaved
under natural operations. For this reason we find out that the subclass of
filiform Lie algebras is more appropriate. Let g be a Lie algebra over a field
and Z (g) its center. Define

ζ0g = 0, ζi+1g/ζig = Z (g/ζig) , i = 0, 1, 2, . . . ; (5.26)

The subalgebras ζig are called the higher centers of the algebra g. The
ascending series

0 6 ζ1g 6 ζ2g 6 · · · (5.27)

is the upper (or ascending) central series of g. A Lie algebra g is nilpotent
if and only if ζkg = g for some k > 0. The smallest number k such that
ζkg = g is said to be the nilpotency class 1 or the nilpotence degree of the
Lie algebra of g. Similar notions and definitions may be introduced for
(Lie) groups.

It is easy to see that the nilpotence degree of g is smaller than or equal
to dim g−1. A nilpotent Lie algebra g of dimension n and nilpotence degree
n − 1 is called filiform or of maximal degree. Equivalently, a nilpotent Lie
Algebra g is said to be filiform if dim ζig = i for 0 6 i 6 n− 2 (n = dim g)
and ζn−1g = g.

The sequence of integers pi = dim (ζig/ζi−1g) is called the type of a
nilpotent Lie algebra g. The filiform Lie algebras are just the algebras of
type {1, 1, . . . , 1, 2}. (This explains the name ”filiform” which means

1"...The use of the word "class" for this number is unfortunate but firmly established;
some adroitness is needed in order to avoid stylistic masterpieces like "class of nilpotent
groups of a given class."" [13].
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threadlike.) In particular, the center of the filiform Lie algebra of dimen-
sion > 3 is 1-dimensional.

5.1. Constructing ΓgQ
with infinite cyclic center.

Proposition 5.3 ([8]). Let G be a Lie group and let g be its tangent Lie
algebra. The tangent algebras to the groups ζkG are ζkg, the terms of the
uppercentral series.

Proposition 5.4 ( [28, Chap. II, Prop. 2.17]). Let Γ be a cocompact dis-
crete subgroup in a simply connected nilpotent Lie group G. Then ζiΓ is a
lattice in ζiG for all i. In particular, the intersection of ZΓ with the centre
of G is a cocompact discrete subgroup in the centre.

Theorem 5.5. If gQ is a filiform Lie Q-algebra of dimension > 3 then
the center of ΓgQ

is infinite cyclic.

Proof. The algebra g = R⊗ gQ is a filiform Lie R-algebra since the nilpo-
tence degree can not increase under scalar extensions. Thus dimZg=1.
Hence ZGg ≃ R by Proposition 5.3. Thus ZΓgQ

≃ Z by Proposition 5.4.
�

§6. Proof of the main result

Theorem 6.1. If gQ is a rational filiform derivationally nilpotent Lie
algebra of dimension > 3 then the group ΓgQ

is not geometrically equivalent
to its Mal’cev’s closure.

Proof. By Theorem 4.1, ΓgQ
is incompressible. By Theorem 5.5, the center

of ΓgQ
is infinite cyclic. Hence, by Lemma 5.2, ΓgQ

is strongly incompress-
ible. By Theorem 5.1, ΓgQ

is not geometrically equivalent to Mal’cev’s

closure
√

ΓgQ
. �

The above theorem implies that for the proof of the main Theorem 1.2
we need to construct for every odd n > 7 a Q-rational Lie algebra gn of
dimension n which satisfies

(1) gn is derivationally nilpotent,
(2) gn is filiform i.e. gn has nilpotence degree n− 1.

By definition the algebra gn has a basis e1,. . . , en, n > 7 and relations
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[e1, ek] = ek+1 k = 2, . . . , n
[e2, ek] = ek+3 k = 3, . . . , n− 3
[ek, en−k] = (−1)k+1en k = 1, . . . ,m
[ei, ej ] = 0 for all other i < j.

(6.28)

In fact, the real nilpotent Lie algebra rn = R ⊗ gn was defined by
S. Yamaguchi [30].

Lemma 6.2. For every odd n > 7 the Lie algebra rn is derivationally
nilpotent in the sense that every its derivation is nilpotent.

Proof of Lemma 6.2. It is shown in [30] that A = Aut (rn) is a con-
nected unipotent Lie group. Thus A−E consists of n-nilpotent elements,
i.e. (a− E)

n
= 0 for each a ∈ A. The Lie algebra Lie (A) is isomorphic to

the algebra of derivations Der (rn). Let δ be a derivation of rn. An auto-
morphism exp (tδ) of rn is unipotent for all real t hence (exp (tδ)− 1)n = 0.
We have

lim
t→0

(

exp (tδ)− 1

t

)n

= δn = 0, (6.29)

thus δ is nilpotent. Hence Der(rn) consists of nilpotent derivations so rn is
derivationally nilpotent. �

Lemma 6.3. For every odd n > 7 the Lie Q-algebra gn is derivationally
nilpotent.

Proof of Lemma 6.3. Let δ be a derivation of gn. Extend δ to a deriva-
tion δ̄ of rn by continuity. Thus δ̄ is nilpotent hence δ is nilpotent also. �

Lemma 6.4. For every odd n > 7 the Lie Q-algebra gn is filiform.

Proof of Lemma 6.4. The relation [e1, [e1, ..., [e1, e2]]] = en of length
n− 2 shows that the nilpotence degree of gn equals n− 1. �

Theorem 1.2 is proved.

Remark 6.5. We note that Yamaguchi also considered the even-dimensio-
nal algebras gn for n > 8, introduced by analogous relations. However, they
are not Lie algebras (this fact was not noticed by the author). Precisely,
in g8 the Jacobi identity is not satisfied, for instance,

[e1, [e3, e4]] + [e3, [e4, e1]] + [e4, [e1, e3]] = [e3,−e5] = −e8 6= 0, (6.30)
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see [14]. Unfortunately, it is stated in [8, page 60] that odd dimensional gn
also do not satisfy the Jacobi identity, precisely, that in g7 the identity is
not satisfied for e1, e2, e4. However,

[e1, [e2, e4]] + [e2, [e4, e1]] + [e4, [e1, e2]] (6.31)

= [e1, e7] + [e2,−e5] + [e4, e3] = 0− (−e7)− (e7) = 0. (6.32)

§7. Questions and problems

(1) We will denote by Lm the set of Lie algebra laws on Cm,m > 1.
The set Lm is naturally an affine algebraic Q-defined variety. Let
Nm ⊆ Lm be a (Q-defined ) subvariety of all m-dimensional nilpo-
tent Lie algebras. Let Fm ⊆ Nm be a (Zariski open) subset of fili-

form Lie algebras. As Fm = Nm−N (m−2)
m , this subset is a Zariski

open subset of Nm. For any m > 7 every irreducible component
C of Fm contains a non-empty Zariski open set DNFm consisting
of derivationally nilpotent Lie algebras [7, Chapter 7, Theorem 2].
Even more is obtained, namely that in every nonempty open set a
derivationally nilpotent Lie algebra can be found.

(2) Do all the properties from paragraph 1 hold also over reals ? For
instance, is DNFm (R) non-empty and open in the real Zariski
topology on Nm (R)? Is the set DNFm (Q) is dense in DNFm (R)
in the Euclidean topology? As J. M. Ancochea explained to the
author of [1], in each dimension m > 7 there are infinitely many
pairwise non-isomorphic characteristically nilpotent Lie algebras
over Q. Does there exist an algebra L ∈ DNFm (R) that is isolated
in Nm (R) in the Euclidean topology?

(3) Show the example of incompressible f -group Γ such that Γ ∼
√
Γ.

(4) Let Γ be an f -group and GΓ is its Mal’cev’s completion. For
simply-connected nilpotent Lie groups the exponential map exp
is a diffeomorphism with globally defined inverse log. The Q-span
of log(Γ) is a nilpotent Lie subalgebra over Q, which we denote by
L(Γ). Can one decide whether an f -group Γ is incompressible by
looking at L(Γ) (I. Belegradek)? A related question is whether the
incompressible property for Γ can be read off R ⊗ L(Γ), which is
the Lie algebra of GΓ.

(5) The input of the Group Isomorphism problem GroupIso consists
of two finite groups G1 and G2 of order n given by multiplication
tables (n×n matrices of integers between 1 and n) and it is asked
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whether the groups are isomorphic. A partial outstanding ques-
tion is whether there exists a polynomial (in n) algorithm solving
GroupIso. Let GeomEquiv be the problem whose input consists of
two finite groups G1 and G2 and it is asked whether the groups
are geometrically equivalent. An easier problem EmbedPower is to
find a number m such that G1 is embedable into Gm

2 .
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