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TOWARDS THE REVERSE DECOMPOSITION OF

UNIPOTENTS

Abstract. Decomposition of unipotents gives short polynomial ex-
pressions of the conjugates of elementary generators as products of
elementaries. It turns out that with some minor twist the decompo-
sition of unipotents can be read backwards, to give very short poly-
nomial expressions of elementary generators themselves in terms of
elementary conjugates of an arbitrary matrix and its inverse. For
absolute elementary subgroups of classical groups this was recently
observed by Raimund Preusser. I discuss various generalisations of
these results for exceptional groups, specifically those of types E6

and E7, and also mention further possible generalisations and ap-
plications.

Jesus said to them, “Have you never read in the Scrip-

tures: “The stone that the builders rejected has become

the cornerstone”; this was the Lord’s doing, and it is

marvelous in our eyes.”

Matthew 21:42

§1. Introduction

Decomposition of unipotents [32] was first proposed by Alexei Stepanov
[29] for GL(n,R) in 1987, immediately generalised to other split classical
groups by the present author [40], and soon afterwards announced also for
exceptional Chevalley groups [41,53]. It was then extensively developed in
other contexts by a number of authors, see the recent papers [24,31,45] for
many further references. In its simplest form it can be viewed as an effec-
tive/constructive version of the normality of elementary subgroups,
see [23, 33–35].

Namely, let Φ be an irreducible root system of rank > 2, R be an ar-
bitrary commutative ring with 1, and G(Φ, R) be the simply connected
Chevalley group of type Φ over R. Further, fix a split maximal torus
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T (Φ, R) of G(Φ, R) and the corresponding elementary generators xα(ξ),
where α ∈ Φ, ξ ∈ R. Let E(Φ, R) be the elementary subgroup spanned by
all these elementary generators. Then the above normality theorem asserts
that E(Φ, R) is normal in G(Φ, R).

In its simplest form, decomposition of unipotents provides explicit
polynomial formulae expressing the conjugate gxα(ξ)g

−1 of an elementary
generator by an arbitrary matrix g ∈ G(Φ, R) as a product of elementaries.
Such formulae are especially straightforward and uniform for simply laced
root systems admitting microweights, those of types Al,Dl,E6 and E7.

Specifically, denote by EL(Φ, R) the subset of E(Φ, R) consisting of
products of 6L elementary generators. Then [53] (the details of proofs were
published in [32, 41, 42]) implies in particular that gxα(ξ)g

−1∈EL(Φ, R),
where L takes the following values: 4(l+ 1)l for Al; L = 4 · 2l · 2(l− 1) for
Dl; 4 · 27 · 16 for E6; and 4 · 56 · 27 for E7, respectively [21, 42]

Another keynote classical result in the structure theory of Chevalley
groups is description of E-normalised subgroups, i.e. subgroups of
G(Φ, R) normalised by the elementary group E(Φ, R). Roughly, such a de-
scription asserts that under some mild assumptions for any such subgroup
H there exists a unique ideal IER such that E(Φ, R, I) 6 H 6 C(Φ, R, I),
where E(Φ, R, I) and C(Φ, R, I) are the relative elementary subgroup and
the full congruence subgroups of level I, respectively.

It would be difficult to mention even the most important historical steps
towards this result. The pathbreaking contribution was due to Hyman
Bass [7], who created the setting for such a description, and established it
for finite dimensional rings. There was the whole history of generalisations
to other classical groups, starting with the work of Anthony Bak [5, 8],
see [6, 22] for a detailed survey.

The next fantastic breakthrough, completely unexpected at the time,
came with the work of John Wilson [55], who described E-normalised
subgroups in GL(n,R), n > 4, over an arbitrary commutative ring R. In
1973–1975 Igor Golubchik improved the bound to n > 3 and generalised
this description to some non-commutative rings, and to classical groups.
However, his outstanding results [14, 15] were never properly published in
a form accessible to Western readers [16,17], and are largely ignored1. For

1As an aside: in 1981 I was a Gutachter for Golubchik’s Thesis [16]. I can certify that
complete proofs of the results announced in [14, 15], and, in fact, more general results,
were there at that time. Unlike all subsequent proofs, including those by Vaserstein and
Preusser, they are based on truly non-commutative localisations. In terms of the class
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[almost] commutative rings, several short and transparent proofs of these
results based on different ideas were then proposed by Leonid Vaserstein,
Zenon Borewicz, myself, Alexei Stepanov and others, see, for instance,
[9, 32, 36].

An [almost] complete generalisations to Chevalley groups was obtained
by Eiichi Abe, Kazuo Suzuki and Leonid Vaserstein [1–3, 37]. The last
dots for symplectic groups and G2 were put by Douglas Costa and Gordon
Keller [12, 13]. Then further proofs with very clear geometrical structure
were proposed, inculding [30, 31, 46, 47, 50], etc.

Now, it is natural to ask what would be an effective/constructive version
of that? Until very recently, this was only known in some very special
cases. Thus, for SL(n,Z), n > 3, Joel Brenner [11] established that for
an arbitrary non-central matrix g ∈ SL(n,Z) there is a bounded product
of conjugates of g and g−1 that is a non-trivial elementary transvection
tij(ξ), ξ 6= 0. Brenner’s proof used the theory of elementary divisors, and
even generalisations to other groups over PID were not immediate. And
of course, there was whatsoever no hope to write such similar formulae for
arbitrary commutative rings.

Thus, we were seriously perplexed, when we’ve first seen the preprints
of [26, 27] by Raimund Preusser in Summer 2017. The calculations in [26]
start in exactly the same way as in [32], so predictably our assessment of
these papers came through the following three stages:

• There must be nothing new as compared with [32].

• Gosh, why is it true at all?

• It is a fantastic breakthrough in the structure theory of algebraic-like
groups!

Technically, the twist introduced by Raimund Preusser in the decompo-
sition of unipotents seems to be minor. It consists in expressing a conjugate
of an elementary generator not as a product of factors sitting in proper
parabolics of certain types, but rather sitting in the products of these
parabolics by something small in the unipotent radicals of the opposite
parabolics. We were aware of the idea itself [31] (in fact, it was implicit
already in [7, 38]), but never appreciated the whole significance of this
apparently small variation.

of rings they were never superceded and their publication would make much sense even
today.
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In fact, it allows to reduce degree of the resulting polynomials, and thus
both to completely avoid the cumbersome “main lemma” (see, for instance,
[44] and discussion there), establishing that the coefficients of the occuring
polynomials generate the unit ideal, and drastically lower the depth of
commutators. In particular, Preusser’s idea allows to prove analogues of
Brenner’s lemma for groups of all types over arbitrary commutative rings,
and much more.

In other words, decomposition of unipotents conveys explicit short poly-
nomial factorisations of the root elements gxα(ξ)g

−1 — which are the ob-
vious generators of E(Φ, R)g — in terms of elementary generators. For
classical groups Preusser’s trick achieves also the opposite. It provides
similar explicit short polynomial expressions of the elementary generators
[of the lower level] of gE(Φ,R), in terms of the obvious generators of this last
group, in other words, of the elementary conjugates of g and g−1. Thus,
Preusser’s papers are the first major advance in the direction of what can
be dubbed the reverse decomposition of unipotents.

Immediately after understanding this idea, I and Zuhong Zhang were
able to generalise it to exceptional groups as well, to subgroups normalised
by the relative elementary subgroups E(Φ, R, I), corresponding to an ideal
I E R, and to some other situations. In particular, for Chevalley groups
a slight refinement of the methods of [41, 42], and subsequent works gives
us the following results. For an arbitrary commutative ring R and an ar-
bitrary matrix g ∈ G(Φ, R) one can write explicit formulae, expressing an
elementary generator xα(ξ), where ξ belongs to the level of g, as products
of at most 8 · dim(G) elementary conjugates of g and g−1.

In § 2 we explain the original idea by Preusser in the simplest case of
GL(n,R). In § 3 we sketch how with the methods of [41,42] the same idea
works — with the same length bounds! — for Chevalley groups of types E6

and E7. However, even in these (easy!) cases detailed proofs require some
heed, and will be published elsewhere. Finally, in § 4 we mention further
imminent applications of these ideas.

§2. Preusser’s idea for GL(n,R)

In this section, we explain the main idea of [26, 27] in the simplest
example of the general linear group G = GL(n,R) of degree n > 3 over a
commutative ring R. For this, we have to recall some notation.

We use some basic commutator calculus in groups. Our commutators
are always left-normed, [x, y] = xyx−1y−1. Further, xy = xyx−1 and yx =
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x−1yx denote the left and the right conjugates of y by x, respectively. We
use obvious commutator identities such as [x, yz] = [x, y] · y[x, z] without
any specific reference.

For an ideal I E R denote by E(n, I) the corresponding elementary
subgroup, generated by the elementary transvections of level I:

E(n, I) =
〈

tij(ξ), ξ ∈ I, 1 6 i 6= j 6 n
〉

.

Recall, that an [elementary] transvection tij(ξ), corresponding to ξ ∈ R
and 1 6 i 6= j 6 n, equals tij(ξ) = e+ ξeij . Here, as usual, e is the identity
matrix and eij is a standard matrix unit. Further, the relative elementary
subgroup E(n,R, I) of level I is defined as the normal closure of E(n, I)
in the absolute elementary subgroup E(n,R).

Let g ∈ GL(n,R) be an invertible matrix. It is written in terms of its
entries as g = (gij), 1 6 i, j 6 n. Entries of the inverse matrix g−1 = (g′ij),

1 6 i, j 6 n, are denoted by g′ij . A matrix of the form gx = x−1gx, where
x ∈ E(n,R), is called an elementary conjugate of g.

By Rn we denote the free right R-module, consisting of columns of
height n with components in R. The standard base in Rn (consisting of
the columns of identity matrix e) is denoted by e1, . . . , en. The group G =
GL(n,R) acts on Rn by left multiplication. The stabiliser of the coordinate
subspace 〈e1, . . . , em〉 is called a [standard] parabolic [subgroup] and is
denoted Pm = StabG

(

〈e1, . . . , em〉
)

. Its conjugates are called parabolics of
type Pm. In the field case it is indeed a maximal subgroup.

The subgroup of Pm generated by tij(ξ), where ξ ∈ R, 1 6 i 6 m,
m + 1 6 j 6 n, is denoted by Um and is called the unipotent radical of
Pm. Obviously, Um is an abelian normal subgroup of Pm.

Further, consider the reduction homomorphism

ρI : GL(n,R) −→ GL(n,R/I)

modulo the ideal I. By definition, the principal congruence subgroup
GL(n,R, I) is the kernel of ρI , whereas the full congruence subgroup
C(n,R, I) is the preimage of the centre of GL(n,R/I) under ρI .

Recall that the upper level of a matrix g = (gij) ∈ GL(n,R) is the
smallest ideal I = lev(g) such that g ∈ C(n,R, I). Clearly, such an ideal is
generated by the off-diagonal entries gij , 1 6 i 6= j 6 n, and by the pair-
wise differences of its diagonal entries gii − gjj , 1 6 i 6= j 6 n. Clearly, it
suffices to consider only the fundamental differences gi+1,i+1 − gii, where
i = 1, . . . , n−1. Thus, the upper level lev(g) is generated by n2−1 elements,
and by looking at the generic invertible matrix with commuting entries
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(say in the structure ring Z[GLn] of the affine group scheme GLn) one
immediately sees that this bound cannot be improved in general.

Further, denote by gE(n,R) the smallest E(n,R)-normalised subgroup
of GL(n,R) containing g. The lower level I = lol(g) of a matrix g ∈
GL(n,R) is the largest ideal such that E(n,R, I) 6 gE(n,R). The standard
description of E(n,R)-normalised subgroups (which holds, in particular,
when R is commutative and n > 3) is equivalent to the claim that for any
matrix g ∈ GL(n,R) its lower and the upper level coincide, lol(g) = lev(g).
This ideal is usually called simply the level of g.

The proof of the following result in [26], Theorem 12, does not depend
on the standard description and can be regarded as its effective — stronger!
— version.

Theorem 1. Let R be commutative, n > 3, and g ∈ GL(n,R). Then for

any ξ ∈ lev(g) and all 1 6 i 6= j 6 n the elementary transvection tij(ξ) is

a product of 6 8(n2 − 1) elementary conjugates of g and g−1.

In view of the above definition of level, this astonishing result asserts
that any elementary generator tij(ghk), where 1 6 i 6= j 6 n, 1 6 h 6=
k 6 n, is a product of not more than 8 elementary conjugates of g and
g−1. Similarly, tij(ghh−gkk) require not more than 8 such elementary con-
jugates, modulo the previous generators. Of course, here we express the
elementary generators of E(n, lev(g)), rather than those of the relative sub-
group E(n,R, lev(g)) itself. However, passage to the E(n,R)-normalised
subgroup simply amounts to another elementary conjugation, and does not
change the number of such factors.

Recall that after [7] virtually all proofs of the standard description relied
on the two following reductions2. First, the level reduction that asserts
that to establish the standard description it suffices to prove that the lower
level of any non-central matrix g ∈ GL(n,R) is 6= 0. Second, the parabolic

reduction that asserts that the lower level of any non-central matrix g
contained in a proper parabolic is 6= 0. Thus, one only non-trivial step was
to prove that for any non-central g the intersection of gE(n,R) with some
proper parabolic is non-central.

2This does not apply to the proofs by Igor Golubchik [16, 17], though. He worked
in the situation where the standard commutator formulae were not known at the time,
and had to rely on more oblique and sophisticated forms of level reduction. This alone
would justify publication of updated versions of his proofs.
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Now, the proof of the above result in [26] starts in essentially the same
way, as the proofs of the standard description in [9, 32]. However, there is
an important twist.

Recall that the proofs in [9, 32] both start as follows. Let i, j, h be any
pair-wise distinct indices and r be any index between 1 and n. Set xr =
tij(g

′

hr)tih(−g′jr). Then xrg
−1 has the same r-th column as g−1 and, thus,

gxrg
−1 hits the parabolic subgroup P = StabG(〈er〉) of type P1. This

shows that in the case r 6= j, h the commutator [x−1
r , g] = x−1

r ·gxrg
−1 sits

in the same parabolic P .
If this commutator is non-central, we are done. If all such commutators

are central, it imposes certain equations on the entries of our initial matrix
g. For GL(n,R) it is easy to analyse these equations directly to conclude
that then g itself was in a proper parabolic, this is exactly what is done
in [9]. Entries of the above commutators are polynomials of degree 3 or 4
in the entries of g and g−1. One had to do some work to lower the degree
of the resulting equations, to eventually verify that certain entries of the
matrix g were 0 from the very start.

The approach of [32] was more systematic. Namely, there it is observed
that in the above calculation one can replace xr by another elementary
matrix yr = tij(grhg

′

hr)tih(−grhg
′

jr), whose parameters are multiples of

those of xr, and that (since R is commutative!) the product of yr over
r = 1, . . . , n equals tij(1). Thus, for a matrix g, such that all [y−1

r , g] are
central, also the commutator [tij(1), g] is central, and (since E(n,R) is
perfect), g commutes with tij(1). Again, this means that g itself was in a
proper parabolic.

In these calculations we had to circumvent the cases r 6= j, h, where
the commutator [x−1

r , g] was not sitting in a proper parabolic. However,
retrospectively, this means exactly rejecting the cornerstone. Below I repli-
cate the proof from [26], with minimal changes. To simplify the notation,
we interchange g and g−1 in the above recapitulation. Thus, from now
on xr = tij(ghr)tih(−gjr). The following argument by Preusser in partic-

ular provides a new proof of the standard description. This is the first
such proof after Igor Golubchik [16,17] that does not directly invoke stan-
dard commutator formulae. Unlike all preceding proofs — including those
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by Golubchik! — it does not hinge on any form of level reduction3, but
directly proves the equality lol(g) = lev(g).

Proof. The commutator [x−1
r , g−1] ∈ gE(n,R) is the product of two ele-

mentary conjugates of g and g−1. When r = j, the r-th column of this
commutator differs from the column er of the identity matrix in exactly
one position. Namely, its entry in the position (i, j) equals −ghj. This
means that even not being in the above parabolic P = StabG(〈ej〉), this
commutator has the form tij(−ghj)x, for some x ∈ P .

Next, observe that for any s 6= i, j the elementary transvection tjs(1)
sits in the unipotent radical U of the parabolic subgroup P . Obviously,
[xy, z]x = [y, z] · [x, z]x = [y, z] · [z, x−1]. Thus,

y = [tij(−ghj)x, tjs(−1)]tij(−ghj) = [x, tjs(−1)]·[tjs(−1), tij(ghj)] ∈ gE(n,R)

is the product of four elementary conjugates of g and g−1. In the above ex-
pression of y the first commutator z = [x, tjs(−1)] belongs to the unipotent
radical U , while the second commutator equals tis(ghj).

Finally, since tji(1) ∈ U and U is abelian, one can conclude that

[tji(1), y] = [tji(1), ztis(ghj)] = tjs(ghj) ∈ gE(n,R)

is the product of eight elementary conjugates of g and g−1. Since j and
h here are arbitrary, and the group gE(n,R) is normalised by the absolute
elementary subgroup E(n,R), which contains classes of all permutation
matrices modulo the diagonal subgroup diag(±1, . . . ,±1), this proves the
claim for the off-diagonal entries.

To finish the proof of the theorem it only remains to observe that the
entry of the matrix gthk(1) ∈ gE(n,R) in the position (h, k) equals ghk+ghh−
gkk−gkh, it follows from the above that tij(ghk+ghh−gkk−gkh) ∈ gE(n,R) is
the product of eight elementary conjugates of g and g−1. Since tij(ghk) and
tij(gkh) are already accounted for, it follows that we need at most eight

further elementary conjugates of g and g−1 to express tij(ghh − gkk) ∈

gE(n,R). �

3Almost simultaneously Alexei Stepanov [31] proposed another drastic simplification
of the known proofs for standard description, kind of a universal level reduction [30].
It was one of the major tools in the proof of normal structure for isotropic reductive
groups in the recent joint paper by Stavrova and Stepanov [28]. However, Stepanov’s
idea seems to me to be an upswing in a completely different direction. As of today, it
only works for algebraic groups. Also, when Preussers approach can be effectuated, it
gives more specific results.
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§3. Reverse decomposition of unipotents

in Chevalley groups of types E6 and E7

Now I briefly sketch how this idea works, without any major remoulding,
for Chevalley groups of simply laced type Φ. For Φ = Dl this is already
done by Preusser himself in [26], Theorem 27. Remarkably, for Φ = E6 and
Φ = E7 we have to use the initial A5-proof and A7-proof, respectively, see
[41, 42], rather than the subsequent technically less demanding A2-proofs
and their descendants, [44, 46, 47]. Reverse decomposition of unipotents
works also for the type Φ = E8. In fact in this case it is based on the
original D8-proof, and is easier than direct decomposition of unipotents.
However, many details of proofs are rather different from the cases E6 and
E7, and will be described separately.

I use the same notation as in [41, 42, 45]. We fix a reduced irreducible
root system Φ of rank l = rk(Φ) and a commutative ring R. As above,
G(Φ, R) denotes the simply connected Chevalley group of type Φ over R.
We choose an order on Φ and let Π = {α1, . . . , αl} be the corresponding set
of fundamental roots, while s1, . . . , sl are the correspodning fundamental
reflections in the Weyl group W (Φ). Our numbering of the fundamental
roots complies with [10]. In the sequel, δ denotes the maximal root corre-
sponding to this choice of Π.

Further, we fix a split maximal torus T (Φ, R) in G(Φ, R) and parametri-
sations of the root subgroups Xα, α ∈ Φ, elementary with respect to this
torus. The elements xα(ξ), α ∈ Φ, ξ ∈ R, are called elementary root unipo-

tents . For an ideal I ER we consider the elementary subgroup

E(Φ, I) =
〈

xα(ξ) | α ∈ Φ, ξ ∈ I
〉

and denote by E(Φ, R, I) its normal closure in the absolute elementary
subgroup E(Φ, R).

In the sequel, we view the groups G = G(Φ, R) as linear groups acting in
a rational representation (V, π). Usually, we identify an element g ∈ G with
its image π(g) ∈ GL(V ) in this representation. The most handy for Φ =
E6,E7 are the fundamental representations V = V (̟1) and V = V (̟7),
respectively. These are faithful microweight representations of dimensions
27 and 56, respectively, and we denote by Λ(π) the corresponding sets of
weights, which are all extremal, and thus of multiplicity one.

We fix a crystal base vλ, λ ∈ Λ(π), in V , which is a positive admissible
base. With respect to this base an element g ∈ G(Φ, R) may be identified
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with its matrix g = (gλµ), λ, µ ∈ Λ(π), in GL(27, R) or GL(56, R), de-
pending on whether Φ = E6 or E7. The µ-th column of g will be denoted
by g∗,µ.

Now, the first significant departure from the linear case occurs. There,
the Weyl group acted transitively on pairs of distinct weights. This is
not the case anymore. In a milder form this additional complication was
already visible in the case of the even orthogonal group SO(2n,R), also
considered by Preusser in [26].

In fact, there are three orbits of W (E6) on pairs of weights in Λ(̟1) and
four such orbits of W (E7) on pairs of weights in Λ(̟7), distinguished by
the distance d(λ, µ) between λ and µ in the weight graph (not the weight
diagram!). Namely, for E6 two weights are i) equal λ = µ, in which case
d(λ, µ) = 0; ii) adjacent λ−µ ∈ Φ, in which case d(λ, µ) = 1; or iii) distant,
λ− µ /∈ Φ ∪ {0}, which implies that there is a weight ν adjacent to both,
in which case d(λ, µ) = 2. For E7 yet another possibility can occur, when
λ and µ are iv) opposite, λ = −µ, in which case d(λ, µ) = 3.

However, the lower level I = lol(g) of an element g ∈ G(Φ, R) is de-
scribed exclusively in terms of elementary unipotents xα(ξ), α ∈ Φ, ξ ∈ R,
belonging to the E(Φ, R)-normalised subgroup generated by g. As above,
it is just the largest ideal I ER such that E(Φ, R, I) 6 gE(Φ,R).

On the other hand, it seems that the upper level I = lev(g) of g has to
be defined in terms of all pairs of weights (λ, µ). However, this is not the
case. As for GL(n,R) the upper level is fully determined by those matrix
positions that actually do occur in the corresponding Lie algebra. In other
words, by the positions corresponding to the pairs of weights (λ, µ) at
distance d(λ, µ) 6 1. In a suitable admissible base the diagonal positions
exhibit the elements of the Cartan subalgebra, corresponding to our choice
of maximal torus, whereas positions (λ, µ) at distance 1 display respective
root elements, associated with the root α = λ− µ.

A construction of (generalised) congruence subgroups based on this ob-
servation was essentially contained already in our joint paper with Eugene
Plotkin [51]. Following Zenon Borewicz, we considered nets of ideals σ =
(σα), α ∈ Φ, subject to the condition σασβ ⊆ σα+β , for all α, β, α+β ∈ Φ.
But in that paper no congruences were imposed on diagonal entries. In [51]
this simplifying condition was expressed as σλλ = R, for all diagonal ideals
of the corresponding net. Also, in [51] we required that the structure con-
stants are invertible in R. A general construction of congruence subgroups
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G(Φ, R,A,B) and C(Φ, R,A,B), in terms of such congruences was later
given in [20].

Using the constructions from [20, 51] one can check that to define the
upper level of g = (gλµ), λ, µ ∈ Λ(π), one can take the following elements:

• gλµ for any set of pairs (λ, µ), one with the difference α = λ− µ, for
each root α ∈ Φ;

• gλλ−gµµ for any set of pairs (λ, µ), one with the difference αi = λ−µ,
for each fundamental root αi ∈ Π.

Checking correctness of this definition is a rather straightforward but te-
dious exercise. Now we are all set to state the main new result of the
present paper.

Theorem 2. Let g ∈ G(Φ, R), where Φ = E6 or Φ = E7, and let I E R
be the level of g. Then for any ξ ∈ I and all α ∈ Φ the elementary root

unipotent xα(ξ) is the product of 6 8·78 or 6 8·133 elementary conjugates

of g and g−1, respectively.

Sketch of proof. The strategy of the proof is exactly the same as for the case
GL(n,R) above. But instead of the elements xr sitting in a P1 parabolic
of the subgroup SL(3, R) 6 G(E6, R) of type ∆ = A2, now we have to
consider classical subgroups of much larger rank. Namely, a subgroup of
type ∆ = A5 in G(E6, R) and a subgroup of type ∆ = A7 in G(E7, R),
see [41, 42, 47].

Since the Weyl group W (Φ) acts transitively on roots, for the purpose of
exposition one may fix a specific choice of ∆. For E7 it is exactly the same
choice as in the above papers, ∆ = 〈δ, α1, α3, α4, α5, α6, α7〉. However, in
the meantime I noticed that for E6 many details of computation become
slightly easier for ∆ = 〈α1, α3, α4, α5, α6〉, whereas for historical reasons
all of the above papers used ∆ = 〈δ, α2, α4, α5, α6〉.

In the case of E6 the elements xr, 1 6 r 6 n, in the above argument for
GL(n,R) are replaced by

xρ = xβ1
(z1)xβ2

(z2)xβ3
(z3)xβ4

(z4)xβ5
(z5),

one for each weight ρ ∈ Λ(̟1), where

β1 = α1, β2 = α1 + α2, β3 = α1 + α2 + α3,

β4 = α1 + α2 + α3 + α4, β5 = α1 + α2 + α3 + α4 + α5,
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whereas

z1 = gτ,ρ, z2 = ±gτ+β3,ρ, z3 = ±gτ+β3+β4,ρ,

z4 = ±gτ+β3+β4+β5,ρ, z5 = ±gτ+β3+β4+β5+β6,ρ.

Here τ = −̟6 + α6 + α5 + α4 + α2, while the signs are choosen in such a
way that all additions of the components of the column g∗,ρ in positions

τ, τ + α3, τ + α3 + α4, τ + α3 + α4 + α5, τ + α3 + α4 + α5 + α6

to the ten components of the column g∗,ρ in positions between ̟1 − α1 −
α2 − α3 − α4 and ̟1 − δ + α2 pair-wise cancel. That such a choice is
possible is established as part of the proof of [42], Theorem 5. The two
other components of g∗,ρ affected by xρ are those in positions ̟1 and
̟1 − δ. However, a direct computation shows that the expressions added
to these components are

± gτ+α3+α4+α5+α6,ρg−̟6,ρ

± gτ+α3+α4+α5,ρg−̟6+α6,ρ ± gτ+α3+α4,ρg−̟6+α5+α6,ρ

± gτ+α3,ρg−̟6+α4+α5+α6,ρ ± gτ,ρg−̟6+α3+α4+α5+α6,ρ

and, respectively,

± gτ,ρg̟1−α1,ρ ± gτ+α3,ρg̟1−α1−α3,ρ ± gτ+α3+α4,ρg̟1−α1−α3−α4,ρ

± gτ+α3+α4+α5,ρg̟1−α1−α3−α4−α5,ρ

± gτ+α3+α4+α5+α6,ρg̟1−α1−α3−α4−α5−α6,ρ.

Up to signs, these are exactly two of the 27 quadratic equations defining
the highest weight orbit in V (̟1), see [42] and further details in [43, 48].
Again, it is verified as part of the proof of [42], Theorem 5, that the above
choice of signs is compatible with the signs with which terms occur in these
equations. Thus, multiplication by xρ does not alter g∗,ρ. In other words,
g−1xρg sits in a proper parabolic subgroup P of type P1.

Since W (E6) acts transitively on pairs of adjacent weights in Λ(̟1),
one can for the purposes of exposition take ρ = ̟ − α1. Then P = P s1

1

and, exactly as in the case of GL(n,R) the commutator [x−1
̟−α1

, g−1] can
be written as xα1

(−gτ,̟−α1
)x, for some x ∈ P .

Now, since the unipotent radical of P is abelian, one can easily emulate
the same argument, as in the proof of Preusser’s Theorem, to express
the elementary unipotent xα1+α3

(gτ,̟−α1
) as the product of 8 elementary

conjugates of g and g−1. Since W (E6) transitively acts on pairs of weights
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(λ, µ) at the same distance, whereas the group gE(Φ,R) is normalised by
E(Φ, R), this shows that xα(gλ,µ) is a product of 8 elementary conjugates
of g and g−1, for any pair of weights (λ, µ) such that d(λ, µ) = 2.

Now, one could finish the proof of Theorem 2, with the coefficient 8
replaced by 16, in exactly the same way, as the proof of Theorem 1. Namely,
passing from g to gxγ(1), one can in the same way conlcude, that xα(gλ,µ) is
a product of 16 elementary conjugates of g and g−1 for any pair of weights
(λ, µ) such that d(λ, µ) = 1. Similarly, the elements xα(gλ,λ − gµ,µ), where
d(λ, µ) = 2, are expressed by 8 additional elementary conjugates, which
then would give 16 additional elementary conjugates to express xα(gλ,λ −
gµ,µ) for d(λ, µ) = 1.

In the case of E7 to stabilise the ρ-th column of g we again take exactly
the same elements xρ = xβ1

(z1)xβ2
(z2) . . . xβ7

(z7), as in [41,42,47]. These
elements sit in the unipotent radical of a parabolic subgroup of type P1

in G(∆, R), where ∆ is a subsystem of type A7 in E7. Their parameters
zi are again (up to sign) exactly respective components of g∗,ρ. Then cal-
culations in V (̟7) allow us to get in a parabolic of type P7 in G(E7, R),
see [42]. Again, these calculations rely both on the explicit knowledge of
action structure constants, and of the equations on the highest weight
orbit, see [42, 43, 49]. The apposite choice of ρ then allows to extract in-
dividual elementary unipotents to conclude that xα(gλ,µ) is a product of
8 elementary conjugates of g and g−1, for any pair of weights (λ, µ) such
that d(λ, µ) = 2.

To get the theorem with the coefficient 8 one has to work a little harder,
by looking at a different column and a different parabolic, allowing more
than one addition from the opposite unipotent radical. The details are rou-
tine and elementary, but rather lengthy, and will be published elsewhere.

§4. Further variations and final remarks

Similar, but slightly fancier arguments work also for E8. In fact, in
this case the reverse decomposition of unipotents is easier than the usual
one. The reason is that working in the adjoint representation V (̟8) to
get the usual decomposition of unipotents we have to stabilise not just the
columns corresponding to roots, but also the columns corresponding to zero
weights! In several respects, this is technically more demanding. Firstly,
these columns satisfy only part of the equations on the highest weight orbit,
see [4, 19]. Secondly, their stabilisers are not parabolics, which requires
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much trickier versions of Whitehead’s lemma, and affects the resulting
bounds.

Since in the reverse decomposition of unipotents everything is consid-
ered up to an elementary conjugation, we can limit ourselves to parabolics
of type P8. Thus, the usual D8-proof sketched in [41,52] suffices to obtain
the analogues of Theorems 1 and 2. Also, since in this case the unipotent
radical is special, and its centre commutes with the commutator of the
Levi subgroup, this allows to spare one commutator at the final stage, to
give the same overall bound, as in the cases E6 and E7.

As another variation, I could mention that description of subnormal
subgroups requires essentially the same calculations, but with the absolute
elementary subgroupE(Φ, R) replaced by the relative elementary subgroup
E(Φ, R, I), corresponding to an ideal I E R. In other words, now we are
interested in the relation between the upper level, and the lower level of
the subgroup gE(Φ,R,I). However, in general E(Φ, R, I) does not contain
elements that act as Weyl group elements.

This means that expressing an elementary unipotent xα(gλ,µ) as the
product of a certain number of elementary conjugates of g and g−1, for
some root α, does not necessarily imply that the elementary unipotent
xβ(gλ,µ) can be expressed as the product of the same number of such
elementary conjugates, for another root β. One has to use the Chevalley
commutator formula instead, which with each commutation doubles the
number of requisite elementary conjugates. The details are described in
our joint papers with Zuhong Zhang, where we establish similar formulae
at the relative level.

The author thanks Victor Petrov and Alexei Stepanov for extremely illu-
minating and productive discussions of Preusser’s work. I am very grateful
to Alex Lubotzky, who explained me the importance of what they call
Brenner’s lemma in the study of word maps, and further related areas.
Last, but not least, I am very indebted to Zuhong Zhang, for ongoing
discussion of the relative case, over the last years.
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