## В. Г. Журавлев

# ЯДЕРНЫЙ АЛГОРИТМ РАЗЛОЖЕНИЯ В МНОГОМЕРНЫЕ ЦЕПНЫЕ ДРОБИ

### Светлой памяти Олега Мстиславовича Фоменко посвящается

### Введение

**0.1. Симплекс-ядерный алгоритм.** В [1] был построен универсальный симплекс-ядерный алгоритм, применимый к точкам

$$\alpha = (\alpha_1, \ldots, \alpha_d)$$

с любыми вещественными координатами. Хотя во избежание вырождений, в [1] рассматривался только случай иррациональных точек  $\alpha$ , когда числа  $1, \alpha_1, \ldots, \alpha_d$  линейно независимы над кольцом целых рациональных чисел  $\mathbb{Z}$ .

Симплекс-ядерный алгоритм работает по следующей схеме. Выбирается целевая функция  $\varrho$ . Данная функция и точка  $\alpha$  определяют некоторую  $\varrho$ -стратегию построения бесконечной монотонной последовательности

$$\mathbf{s} = \mathbf{s}_0 \supset \mathbf{s}_1 \supset \dots \supset \mathbf{s}_n \supset \dots \ni \alpha, \tag{0.1}$$

состоящей из d-мерных открытых симплексов  $\mathbf{s}_n$  с рациональными вершинами. Симплексы (0.1) обладают свойством минимальности:

1) любая рациональная точка  $\frac{P}{Q} = \left(\frac{P_1}{Q}, \ldots, \frac{P_d}{Q}\right)$  не попадает

$$\frac{P}{Q} \notin \mathbf{s}_n \tag{0.2}$$

в симплекс  $\mathbf{s}_n$ , если ее общий знаменатель  $1 \leq Q < \mathbf{Q}_n$ , где  $\mathbf{Q}_n$  – знаменатель точки Фарея

$$\frac{\mathbf{P}_n}{\mathbf{Q}_n} = \left(\frac{\mathbf{P}_{n1}}{\mathbf{Q}_n}, \dots, \frac{\mathbf{P}_{nd}}{\mathbf{Q}_n}\right) \tag{0.3}$$

симплекса  $\mathbf{s}_n$ , равной сумме Фарея всех его вершин;

*Ключевые слова*: многомерные цепные дроби, наилучшие приближения, симплекс-ядерный алгоритм.

Работа выполнена при финансовой поддержке РНФ, грант No. 14-11-00433.

<sup>32</sup> 

2) единственной точкой  $\frac{P}{Q}$  со знаменателем  $Q = \mathbf{Q}_n$ , содержащейся в симплексе

$$\frac{P}{Q} \in \mathbf{s}_n,\tag{0.4}$$

является точка Фарея  $\frac{P}{Q} = \frac{\mathbf{P}_n}{\mathbf{Q}_n}$ . Из включения  $\alpha \in \mathbf{s}_n$  и свойства минимальности (0.2)–(0.4) симплекса  $\mathbf{s}_n$  следует, что точка Фарея  $\frac{\mathbf{P}_n}{\mathbf{Q}_n}$  дает наилучшее приближение для иррациональной точеки  $\alpha$  относительно  $\mathbf{s}_n$ -нормы, для которой в качестве выпуклого тела выбран сам симплекс  $\mathbf{s}_n$ . В этом состоит геометрический смысл минимальности симплексов  $\mathbf{s}_n$  в последовательности (0.1).

0.2. Ядерный алгоритм. В настоящей работе предлагается универсальный ядерный алгоритм, также применимый к любым вещественным точкам  $\alpha = (\alpha_1, \ldots, \alpha_d)$  и являющийся модификацией указанного выше симплекс-ядерного алгоритма (0.1)-(0.4). Основное отличие состоит в том, что вместо последовательности симплексов (0.1) рассматривается бесконечная последовательность

$$\mathbf{T} = \mathbf{T}_0 \quad \rightarrow \quad \mathbf{T}_1 \quad \rightarrow \dots \rightarrow \quad \mathbf{T}_n \quad \rightarrow \dots \tag{0.5}$$

*d*-мерных параллелоэдров  $\mathbf{T}_n$ , в общем случае не связанных, как (0.1), отношениями включения. Каждый параллелоэдр  $\mathbf{T}_n$  получается из предыдущего  $\mathbf{T}_{n-1}$  с помощью операции дифференцирования

$$\mathbf{T}_n = \mathbf{T}_{n-1}^{\sigma_n} \tag{0.6}$$

В п. 6 указан некоторый алгоритм (*е*-стратегия) выбора бесконечной последовательности  $\sigma = \{\sigma_1, \sigma_2, \ldots, \sigma_n, \ldots\}$  дифференцирований  $\sigma_n$ в (0.6), обеспечивающий сходимость

$$p(\mathbf{T}_n) \longrightarrow 0$$
 при  $n \longrightarrow +\infty$ ,

где  $\rho(\mathbf{T}_n)$  обозначает радиус параллелоэдра  $\mathbf{T}_n$  в метрике  $\rho$ , выбираемой в указанном алгоритме в качестве целевой функции.

В теореме 5.1 доказано, что параллелоэдры  $\mathbf{T}_n$  из последовательности (0.5) также обладают свойством минимальности, аналогичным (0.2)–(0.4), но уже относительно  $\mathbf{T}_n$ -норм, являющихся ядерными нормами. Отсюда проистекает название рассматриваемого здесь ядерного алгоритма (0.5)–(0.6). Параллелоэдры  $\mathbf{T}_n$  предствляют собою ядра некоторых индуцированных торических разбиений. Они подробно исследованны в [2] в случае размерности d = 2 и в [3] для произвольного d.

Количественная оценка скорости приближения содержится в теореме 6.1, где приведена следующая формула:

$$\left| \alpha_1 - \frac{\mathbf{P}_{n1}}{\mathbf{Q}_n} \right| + \dots + \left| \alpha_d - \frac{\mathbf{P}_{nd}}{\mathbf{Q}_n} \right| \leq \frac{1}{\mathbf{Q}_n^{1+\eta'}} \tag{0.7}$$

для всех  $n \ge n_{\eta'}$ . Здесь  $\frac{\mathbf{P}_n}{\mathbf{Q}_n} = \left(\frac{\mathbf{P}_{n1}}{\mathbf{Q}_n}, \dots, \frac{\mathbf{P}_{nd}}{\mathbf{Q}_n}\right)$ ; знаменатели  $\mathbf{Q}_n$  в ап-проксимационной формуле (0.7) обладают свойством

$$\mathbf{Q}_n \longrightarrow +\infty \quad npu \quad n \longrightarrow +\infty,$$

 $\eta'$  – произвольное число, удовлетворяющее неравенству  $\eta' < \eta,$ где

$$\eta = \eta(\alpha, \varrho) = \sup_{n' \ge 0} \inf_{n \ge n'} \frac{-\ln \varrho(\mathbf{T}_n)}{\ln \mathbf{Q}_n}$$

– диофантова экспонента; при этом нижняя граница  $n_{\eta'}$  для п определяется выбором показателя  $\eta'$  и зависит от иррациональной точки  $\alpha = (\alpha_1, \ldots, \alpha_d)$  и метрики  $\varrho$ .

Приближение (0.7) нетривиально, если выполняется неравенство  $\eta' > 0$ . Данное требование можно удовлетворить только в случае, когда диофантова экспонента  $\eta(\alpha, \varrho) > 0$  – это основное требование, которое необходимо выполнить при выборе целевой функции  $\varrho$ .

**0.3.** Связи с другими работами. Применение индуцированных торических разбиений к задачам нахождения наилучших многомерных приближений было найдено в [2,3]. Для двумерных приближений операция сложения Фарея точек в разных вариантах использовалась в [4–10]. Обединение этих двух подходов в виде рассмотренного выше симплекс-ядерного алгоритма (0.1)–(0.4) было осуществлено в [1]. Предлагаемый в настоящей работе универсальный ядерный алгоритм (0.5)–(0.6) основывается на идее индуцированных разбиений из [3].

## §1. Унимодулярный базисный симплекс

1.1. Линейные унимодулярные преобразования. Основной областью для нас будет замкнутый d-мерный  $edunuunuu cumnekc \Delta_e = \Delta_e^d$  с вершинами в точках

$$e_0 = (0, \dots, 0), \quad e_1 = (1, \dots, 0), \quad \dots, \quad e_d = (0, \dots, 1)$$
 (1.1)

из пространства  $\mathbb{R}^d$ .

Пусть, как обычно,  $\operatorname{GL}_{d+1}(\mathbb{Z})$  обозначает унимодулярную группу порядка d+1, состоящую из целочисленных квадратных  $(d+1) \times (d+1)$ матриц с определителем  $\pm 1$ . Выделим в группе  $\operatorname{GL}_{d+1}(\mathbb{Z})$  подгруппу  $G_0 = \operatorname{GL}_{d+1,0}(\mathbb{Z})$ , образованную матрицами вида

$$U = \begin{pmatrix} V & L \\ 0 & 1 \end{pmatrix}, \tag{1.2}$$

35

где  $V \in \operatorname{GL}_d(\mathbb{Z})$  и  $L = \begin{pmatrix} l_1 \\ \vdots \\ l_d \end{pmatrix}$  – произвольный целочисленный стол-

бец. Группа  $G_0$  действует на точки  $\alpha = (\alpha_1, \dots, \alpha_d)$  из  $\mathbb{R}^d$  по формуле

$$U\alpha = V\alpha + L, \tag{1.3}$$

при этом  $\alpha$  рассматривается как столбец  $\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_d \end{pmatrix}$ . Таким образом,

группа  $G_0$  соответствует целочисленным унимодулярным преобразованиям пространства  $\mathbb{R}^d$ .

Точку  $\alpha$  назовем *иррациональной*, если выполняется условие:

числа  $1, \alpha_1, \ldots, \alpha_d$  линейно независимы над кольцом  $\mathbb{Z}$ . (1.4)

#### 1.2. Центрированный унимодулярный симплекс.

**Предложение 1.1.** Если  $\alpha$  – иррациональная точка, то существует такая матрица  $U \in G_0$ , что выполняется включение

$$\alpha \in \left(\triangle_U^d\right)^{\text{int}},\tag{1.5}$$

где  $(\triangle_U^d)^{\text{int}}$  обозначает внутреннюю часть симплекса  $\triangle_U^d = U \triangle_e^d.$ 

**Доказательство.** Выберем матрицу U' с блоком

$$V' = \begin{pmatrix} 1 & a'_{12} & 0 & \dots & 0 & 0 \\ 0 & 1 & a'_{23} & \dots & 0 & 0 \\ & & \dots & & & \\ 0 & 0 & 0 & \dots & 1 & a'_{d-1,d} \\ 0 & 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$

и столбцом L' с последним элементом  $l'_d = 0$ . Имеем

$$U'\alpha = \begin{pmatrix} \alpha_1 + a'_{12}\alpha_2 + l'_1 \\ \alpha_2 + a'_{23}\alpha_3 + l'_2 \\ & \ddots \\ \alpha_{d-1} + a'_{d-1,2}\alpha_d + l'_{d-1} \\ & \alpha_d \end{pmatrix}.$$
 (1.6)

Из иррациональности точки  $\alpha$  следует, что пары чисел  $\alpha_i$ , 1 для всех  $i = 2, \ldots, d$  линейно независимы над  $\mathbb{Z}$ . Поэтому в (1.6) найдутся такие

целые числа  $a'_{ij}$  и  $l'_i$ , что у точки  $\alpha' = U'\alpha = \begin{pmatrix} \alpha'_1 \\ \vdots \\ \alpha'_d \end{pmatrix}$  первые d-1

координат попадут в интервал (0, 1/d). Далее выбираем матрицу U'' с блоком

$$V'' = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 \\ & & \dots & & & \\ 0 & 0 & 0 & \dots & 1 & 0 \\ a''_{d1} & 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$

и столбцом L''с элементам<br/>и $l_1''=0,\ldots,l_{d-1}''=0.$  Так как $\alpha_d'=\alpha_d,$ то получаем

где числа  $\alpha'_1, 1$  снова линейно независимы над Z. Поэтому можно подобрать целые числа  $u''_{d1}$  и  $l''_d$  с условием  $u''_{d1}\alpha'_1 + \alpha_d + l''_d \in (0, 1/d)$  и, значит, точка  $\alpha'' = U''\alpha'$  содержится

$$\alpha'' \in (\Delta_e^d)^{\text{int}} \tag{1.7}$$

внутри симплекса  $\triangle_e^d$ . Остается заметить, что матрица  $U = (U''U')^{-1}$  принадлежит подгруппе  $G_0$  и для нее в силу (1.7) будет выполняться включение (1.5).

Построенный в предложении 1.1 симплекс $\triangle=\triangle^d_U$ обладает следующими свойствами:

1) точка  $\alpha$  содержится внутри  $\triangle^{\text{int}}$  симплекса  $\triangle$ ;

2) векторы, выходящие из одной из вершин симплекса  $\triangle$  во все остальные вершины, образуют *унимодулярный базис*, т.е. некоторый базис *d*-мерной кубической решетки  $\mathbb{Z}^d$ .

Любой симплекс  $\triangle$ , удовлетворяющий этим двум свойствам, будем называть центрированным унимодулярным симплексом, точнее – центрированным точкой  $\alpha$ . Чтобы отличать симплексы  $\triangle_U^d$  из (1.5) от других используемых далее унимодулярных симплексов  $\triangle$ , будем  $\triangle_U^d$ называть общими базисными симплексами. Здесь эпитет "базисный" означает, что симплексы  $\triangle = \triangle_U^d$  будут выбираться в качестве основы на первом шаге некоторого алгоритма, генерирующего бесконечную последовательность центрированных унимодулярных симплексов  $\triangle, \triangle', \triangle'', \ldots$ , диаметры которых стремятся к 0.

**1.3. Критерий унимодулярности симплекса.** Свойство унимодулярности симплекса △ можно переформулировать в более симметричной форме. Пусть

$$\operatorname{ver} \Delta = \{v_0, v_1, \dots, v_d\}$$
(1.8)

 – множество вершин симплекса △. Тогда симплекс △ будет унимодулярным тогда и только тогда, когда матрица симплекса

$$S_{\Delta} = \begin{pmatrix} v_0 & v_1 & \dots & v_d \\ 1 & 1 & \dots & 1 \end{pmatrix}$$
(1.9)

– квадратная матрица порядка d + 1 – является унимодулярной, т.е. принадлежащей группе  $\operatorname{GL}_{d+1}(\mathbb{Z})$ . В первой строке матрицы (1.9) стоят столбцы из координат вершин  $v_i$  симплекса  $\Delta$ .

**1.4.** Распределение дробных долей. Доказательство предложения 1.1 содержит алгоритм построения центрированных унимодулярных симплексов  $\Delta = \Delta_U^d$ . Данный алгоритм опирается на решение следующей аппроксимационной задачи: требуется найти целые числа b и c такие, что выполняются неравенства

$$0 < \alpha + b\beta + c < \frac{1}{d}, \qquad (1.10)$$

где  $\alpha, \beta$  – любые вещественные числа, при этом  $\beta$  иррационально. Задача (1.10) сводится к более привычной задаче о распределении дробных долей

$$\langle \alpha + b\beta \rangle < \frac{1}{d} \tag{1.11}$$

с одной переменной  $b = 0, 1, 2, \ldots$ , где  $\langle x \rangle$  обозначает дробную часть вещественного числа x. По-видимому, в общем случае, самый быстрый способ найти b, удовлетворяющие условию (1.11), состоит в последовательном переборе всех  $b = 0, 1, 2, \ldots$ 

Если воспользоваться техникой разбиений Фибоначчи [12], то можно указать верхнюю границу

$$b < q_n + q_{n+1}, \tag{1.12}$$

в пределах которой существует *b* с условием (1.11). Здесь  $q_n$  – знаменатель первой подходящей дроби для числа  $\beta$ , удовлетворяющий неравенству  $q_n \ge d$ , а  $q_{n+1}$  – соответственно знаменатель следущей подходящей дроби. Заметим, что оценка (1.12) справедлива для всех значений параметра  $\alpha$  в (1.11).

**1.5. Единичные базисные симплексы.** Обозначим вершины единичного *d*-мерного куба  $C^d = [0,1]^d$  через  $\xi = (\xi_1, \ldots, \xi_d)$ , где  $\xi_i = 0$  или 1. Каждой вершине куба  $\xi$  поставим в соответствие *d*-мерный симплекс  $\Delta_{\xi}$  с вершинами

$$\operatorname{ver} \Delta_{\xi} = \{ \xi \pm e_i; \ i = 1, \dots, d \}.$$
(1.13)

Здесь  $e_i$  – единичные векторы из (1.1) и знак ± выбирается из условия, что получающаяся в результате точка  $\xi \pm e_i$  принадлежит кубу  $C^d$ . По определению (1.13) нулевой вершине  $\xi = (0, ..., 0)$  отвечает симплекс  $\Delta_0 = \Delta_e$ .

Представим точку  $\alpha = (\alpha_1, \dots, \alpha_d)$  из  $\mathbb{R}^d$  в приведенном виде

$$\alpha = \alpha' + l, \tag{1.14}$$

где  $\alpha' = (\alpha'_1, \ldots, \alpha'_d)$  имеет координаты  $\alpha'_i = \langle \alpha_i \rangle$  для  $i = 1, \ldots, d$  и, таким образом, вектор l в разложении (1.14) принадлежит решетке  $\mathbb{Z}^d$ . Зададим расстояние между точкой  $\alpha'$  вершиной куба  $\xi$  с помощью полиэдральной метрики

$$|\alpha' - \xi| = |\alpha'_1 - \xi_1| + \dots + |\alpha'_d - \xi_d|.$$
(1.15)

**Предложение 1.2.** 1. Пусть точка  $\alpha$  имеет представление в виde (1.14). Тогда если для некоторой вершины  $\xi$  куба  $C^d$  выполняется неравенство

$$|\alpha' - \xi| \leqslant 1,\tag{1.16}$$

mo

$$\alpha \in \Delta_{\xi,l},\tag{1.17}$$

где  $\triangle_{\xi,l} = \triangle_{\xi} + l$  – унимодулярный симплекс, получающийся сдвигом симплекса  $\triangle_{\xi}$  на вектор l из разложения (1.14).

2. Если при этом точка  $\alpha$  является иррациональной (1.4), то имеет место включение

$$\alpha \in \triangle_{\xi,l}^{\text{int}} \tag{1.18}$$

и, следовательно, унимодулярный симплекс  $\triangle_{\xi,l}$  центрирован точ-кой  $\alpha$ .

**Доказательство.** Не ограничивая общности, можем считать вектор l = 0, т.е. точка  $\alpha = \alpha'$  принадлежит единичному кубу  $C^d$ .

1. В случае нулевой вершины  $\xi = (0, ..., 0)$  симплекс  $\triangle_0 = \triangle_e$  можно задать следующей системой неравенств

$$x_1 \ge 0, \dots, x_d \ge 0, \quad x_1 + \dots + x_d \le 1, \tag{1.19}$$

отвечающих всем его d+1 граням. Данная система равносильна неравенству  $|x| \leq 1$  для точек  $x = (x_1, \ldots, x_d)$  из куба  $C^d$ . Отсюда и неравенства (1.16) вытекает включение  $\alpha = \alpha' \in \Delta_{0,0}$ .

Для произвольной вершины  $\xi$  куба  $C^d$  соответствующий симплекс  $\triangle_{\xi}$  получается из симплекса  $\triangle_0$  с помощью некоторой симметрии куба  $C^d$ , отображающей нулевую вершину 0 в вершину  $\xi$ . При этой симметрии грань |x| = 1 симплекса  $\triangle_0$  переходит в грань  $|x-\xi| = 1$  симплекса  $\triangle_{\xi}$ , что доказывает включение  $\alpha = \alpha' \in \triangle_{\xi,0}$ .

По определению (1.1) симплекс  $\triangle_0 = \triangle_e$  унимодулярный. Из приведенных выше рассуждений о симметриях куба или непосредственно из определения (1.13) симплексов  $\triangle_{\xi}$  следует унимодулярность  $\triangle_{\xi}$ , а значит, и симплексов  $\triangle_{\xi,l} = \triangle_{\xi} + l$ .

2. Если точка  $\alpha$  является иррациональной, то в силу (1.4) иррациональной будет и точка  $\alpha' = (\alpha'_1, \ldots, \alpha'_d)$  и, следовательно, все ее координаты  $\alpha'_i \neq 0$ . В случае  $\alpha = \alpha' \in \Delta_{0,0}$  точка  $\alpha'$  не может принадлежать грани |x| = 1 симплекса  $\Delta_0 = \Delta_{0,0}$ , так как иначе выполнялось бы соотношение  $\alpha'_1 + \cdots + \alpha'_d = 1$ , противоречащее определению иррациональности (1.4) точки  $\alpha'$ . Таким образом, точка  $\alpha = \alpha' \in \Delta_{0,0}$  не принадлежит ни одной грани симплекса  $\Delta_{0,0}$  и поэтому она является внутренней точкой данного симплекса. Произвольный случай  $\alpha = \alpha' \in \Delta_{\xi,0}$  рассматривается аналогично, что доказывает включение (1.18), а вместе с этим – центрированность симплекса  $\Delta_{\xi,0}$  точкой  $\alpha$ . Предложение 1.2 доказано.

Построенные симплексы  $\triangle_{\xi,l}$ , в отличие от общих базисных симплексов  $\triangle_U^d$  из (1.5), будем называть единичными базисными симплексами, поскольку векторы, выходящие из вершины  $\xi + l$  симплекса  $\triangle_{\xi,l}$  во все остальные его вершины, имеют вид  $\pm e_1, \ldots, \pm e_d$ , где  $e_i$  – единичные векторы из (1.1). В предложении 1.2 приведена явная конструкция единичных базисных симплексов  $\triangle_{\xi,l}$  для произвольных иррациональных точек  $\alpha$  из  $\mathbb{R}^d$ , удовлетворяющих условию (1.16). Для малых размерностей d этого зачастую бывает достаточно.

#### 1.6. Единичные базисные симплексы малых размерностей.

 $Pазмерности \, d = 1 \, uлu \, d = 2$ – это как раз те случаи, когда имеет место покрытие

$$C^d = \bigcup_{\xi \in \operatorname{ver} C^d} \triangle_{\xi} \tag{1.20}$$

куба  $C^d$  (в данном случае – отрезка  $C^1 = [0,1]$  или квадрата  $C^2 = [0,1] \times [0,1]$ ) единичными базисными симплексами  $\Delta_{\xi} = \Delta_{\xi,0}$ , определенными в (1.13). Из (1.20) следует покрытие

$$\mathbb{R}^{d} = \bigcup_{\xi \in \operatorname{ver} C^{d}} \bigcup_{l \in \mathbb{Z}^{d}} \triangle_{\xi, l}$$
(1.21)

всего пространства  $\mathbb{R}^d$  (прямой  $\mathbb{R}$  или плоскости  $\mathbb{R}^2$ ). Таким образом, в случае размерностей d = 1, 2 для всех иррациональных точек  $\alpha \in \mathbb{R}^d$  найдется единичный симплекс  $\Delta_{\xi,l}$ , для которого данная точка  $\alpha$ является внутренней  $\alpha \in \Delta_{\xi,l}^{int}$ .

*Размерность* d = 3. Начиная с размерности d = 3 отсутствует покрытие (1.20) куба  $C^d$  симплексами  $\Delta_{\xi}$ . В трехмерном случае замыкание разности

$$O^{3} = \left(C^{3} \setminus \bigcup_{\xi \in \operatorname{ver} C^{3}} \bigtriangleup_{\xi}\right)^{c} \tag{1.22}$$

представляет собою вписанный в куб окта<br/>эдр ${\cal O}^3$ с вершинами

$$\begin{pmatrix} \frac{1}{2}, \frac{1}{2}, 0 \end{pmatrix}, \quad \begin{pmatrix} \frac{1}{2}, 0, \frac{1}{2} \end{pmatrix}, \quad \begin{pmatrix} 0, \frac{1}{2}, \frac{1}{2} \end{pmatrix},$$

$$\begin{pmatrix} \frac{1}{2}, \frac{1}{2}, 1 \end{pmatrix}, \quad \begin{pmatrix} \frac{1}{2}, 1, \frac{1}{2} \end{pmatrix}, \quad \begin{pmatrix} 1, \frac{1}{2}, \frac{1}{2} \end{pmatrix}.$$

$$(1.23)$$

Данный октаэдр имеет объем vol $O^3 = 1/6$ , поэтому плотность множества из правой части равенства (1.21) равна 5/6. Это означает, что

доля всех точек  $\alpha \in \mathbb{R}^3$ , для которых найдется содержащий их единичный симплекс  $\alpha \in \triangle_{\xi,l}^{\text{int}}$ , равна  $5/6 \approx 0.83$  всего пространства  $\mathbb{R}^3$ .

### §2. Звезды и их производные

**2.1. Звезды.** Обозначим через  $\Sigma$  совокупность всех сочетаний  $\sigma$  из двух элементов  $\{k_1, k_2\}$  из множества индексов  $\{0, 1, \ldots, d\}$ . Пусть  $v_0$ ,  $v_1, \ldots, v_d$  – произвольные векторы из  $\mathbb{R}^d$  и  $\sigma' = \{k'_1, \ldots, k'_{d-1}\} = \{0, 1, \ldots, d\} \setminus \sigma$  – дополнительное к  $\sigma$  сочетение. Между  $\sigma \in \Sigma$  и дополнительными к ним сочетаниями  $\sigma' \in \Sigma$  существует взаимно однозначное соответствие

$$\sigma \Leftrightarrow \sigma'. \tag{2.1}$$

41

Далее мы будем рассматривать неупорядоченные множества векторов  $\{v_0, v_1, \ldots, v_d\}.$ 

Определение 2.1. Пусть любые d-1 вектора из  $\{v_0, v_1, \ldots, v_d\}$  линейно независимы. Обозначим через

$$H_{\sigma'} = \{\lambda_{k_1'} v_{k_1'} + \dots + \lambda_{k_{d-1}'} v_{k_{d-1}'}; \quad \lambda_{k_1'}, \dots, \lambda_{k_{d-1}'} \in \mathbb{R}\}$$
(2.2)

гиперплоскость, содержащую векторы  $v_{k'_j}$  с индексами  $k'_j$  из  $\sigma'$ . Тогда такое множество векторов  $v = \{v_0, v_1, \ldots, v_d\}$  назовем звездой, если для всех дополнительных (2.1) к  $\sigma'$  сочетаний  $\sigma = \{k_1, k_2\} \in \Sigma$  векторы  $v_{k_1}, v_{k_2}$  из  $\{v_0, v_1, \ldots, v_d\}$  не принадлежат гиперплоскости (2.2) и лежат по отношению к ней в разных полупространствах  $H_{\sigma'}^+$ .

Непосредственно из определения звезды следует, что любые *d* вектора из  $\{v_0, v_1, \ldots, v_d\}$  будут линейно независимы. Объяснением названия звезды может служить следующий критерий.

Критерий 2.1. Обозначим через

$$\Delta(v) = \{\lambda_0 v_0 + \dots + \lambda_d v_d; \ \lambda_0 + \dots + \lambda_d \leqslant 1, \ \lambda_0, \dots, \lambda_d \geqslant 0\}, \quad (2.3)$$

где коэффициенты  $\lambda_0, \ldots, \lambda_d \in \mathbb{R}$ , натянутый на векторы звезды v симплекс, и пусть  $\Delta^{\text{int}}(v)$  – внутренняя часть симплекса (2.3). Тогда условие на множество векторов v быть звездой равносильно условию

$$0 \in \Delta^{\text{int}}(v). \tag{2.4}$$

**2.2. Производные звезды.** Далее мы будем использовать обозначения

$$X = X_1 \sqcup X_2, \quad X = X_1 \cup X_2 \tag{2.5}$$

для строгого и нестрогого разбиений множества X в случае, если  $X_1 \cap X_2 = \emptyset$  и  $X_1^{\text{int}} \cap X_2^{\text{int}} = \emptyset$  соответственно, где  $X_k^{\text{int}}$  – множество внутренних точек из  $X_k$ .

Из определения 1.1 вытекает следующее утверждение.

Лемма 2.1. Предположим, что для некоторого сочетания

$$\sigma = \{k_1, k_2\}$$

из  $\Sigma$  сумма векторов  $v_{\sigma} = v_{k_1} + v_{k_2}$  звезды  $v = \{v_0, v_1, \ldots, v_d\}$  не принадлежит плоскости  $H_{\sigma'}$  из (2.2), где  $\sigma'$  – дополнительное сочетание (2.1) для  $\sigma$ . Тогда при этом условии только одно из множеств

$$v(\sigma) \sqcup v(\sigma') \tag{2.6}$$

будет согласованным. Здесь

$$v(\sigma) = \{v_{k_1}, v_{\sigma}\}$$
 unu  $v(\sigma) = \{v_{\sigma}, v_{k_2}\}$  (2.7)

в зависимости от того, какие из пар векторов  $v_{k_1}$ ,  $v_{\sigma}$  или  $v_{k_2}$ ,  $v_{\sigma}$  принадлежат разным полупространствам  $H_{\sigma'}^{\pm}$ ,  $u v(\sigma')$  – дополнительное для  $v(\sigma)$  множество векторов из звезды v.

Заметим, что однозначность выбора множества  $v(\sigma)$  в (2.7) гарантирована ограничением на сумму векторов  $v_{\sigma} \notin H_{\sigma'}$ .

Определение 2.2. Обозначим через

$$v^{\sigma} = v(\sigma) \sqcup v(\sigma') \tag{2.8}$$

то множество векторов из (2.6), которое является звездой. Если существуют множества векторов  $v^{\sigma}$  для всех сочетаний  $\sigma \in \Sigma$ , m.e. для всех  $\sigma$  выполняется условие леммы 2.1, то будем говорить, что звезда  $v = \{v_0, v_1, \ldots, v_d\}$  невырождена.

Таким образом, согласно определению 1.3 для всех сочетаний  $\sigma = \{k_1, k_2\}$  из  $\Sigma$  на множестве невырожденных звезд  $v = \{v_0, v_1, \ldots, v_d\}$ определено отображение

$$v \xrightarrow{\sigma} v^{\sigma} = \{v_0^{\sigma}, v_1^{\sigma}, \dots, v_d^{\sigma}\},$$
 (2.9)

где

$$v_{k_1}^{\sigma} = v_{k_1}, \quad v_{k_2}^{\sigma} = v_{\sigma}$$

или

$$v_{k_1}^{\sigma} = v_{\sigma}, \quad v_{k_2}^{\sigma} = v_{k_2}$$

в зависимости от выполнения условия из (2.7), и

 $v_{k'}^{\sigma} = v_{k'}$  для всех  $k' \in \sigma'$ .

Звезду  $v^{\sigma}$  из (2.9) назовем  $\sigma$ -производной нерывожденой звезды v. Если нужно выделит индексы  $k_1$ ,  $k_2$  из сочетания  $\sigma = \{k_1, k_2\}$ , то будем для  $\sigma$ -производной (2.9) использовать еще и другое развернутое обозначение

$$v^{\sigma} = v^{\{k_1, k_2\}}.\tag{2.10}$$

По определению (2.9) имеет место формула коммутирования

$$v^{\{k_1,k_2\}} = v^{\{k_2,k_1\}}.$$

Поэтому для невырожденной звезды v существуют

$$C_{d+1}^2 = \frac{(d+1)d}{2} \tag{2.11}$$

ее производных звезд  $v^{\sigma}$ .

## §3. Индуцированные разбиения тора

#### 3.1. Перекладывающиеся развертки тора. Пусть

$$L = \mathbb{Z}[l_1, \dots, l_d] \tag{3.1}$$

– полная решетка в пространстве  $\mathbb{R}^d$  с базисом  $l_1, \ldots, l_d$ , т.е. векторы  $l_1, \ldots, l_d$  линейно независимы на полем вещественных чисел  $\mathbb{R}$ ; и пусть T – некоторое подмножество из  $\mathbb{R}^d$ . Будем говорить, что T является разверткой тора  $\mathbb{T}^d_L = \mathbb{R}^d/L$ , если отображение

$$T \xrightarrow{\sim} \mathbb{T}_L^d : x \mapsto x \mod L$$

– биекция. Развертка *T* называется *перекладывающейся*, если задано ее разбиение

$$T = T_0 \sqcup T_1 \sqcup \cdots \sqcup T_d \tag{3.2}$$

и перекладывание

$$T \xrightarrow{S'} T: S'(x) = x + v_{\operatorname{col}(x)}$$
 (3.3)

на векторы  $v_0, v_1, \ldots, v_D$ , связанные с базисом (3.1) решетки L равенствами

$$l_k = v_k - v_0$$
 для  $k = 1, \dots, d.$  (3.4)

В формуле (3.3) использовано обозначение col(x) = k для цвета точек x, принадлежащих подмножеству  $T_k$  из разбиения (3.2), где  $k = 0, 1, \ldots, d$ .

Заметим, что при переходе (3.4) от векторов переклыдывания  $v_0$ ,  $v_1, \ldots, v_d$  к базизу  $l_1, \ldots, l_d$  решетки L нарушается симметрия, когда выделяется вектор  $v_0$ . Удобно ввести для него дополнительное обозначение

$$v_0 = \alpha'. \tag{3.5}$$

В частности, из равенств (3.4) и (3.5) вытекают сравнения

$$v_k \equiv \alpha' \mod L$$

для всех  $k = 0, 1, \ldots, d$ . Поэтому перекладывание (3.3) эквивалентно сдвигу тора  $S' = S'_{\alpha'}$ :

$$T \xrightarrow{S'} T: \quad S'(x) \equiv x + \alpha' \mod L$$
 (3.6)

на вектор  $\alpha' \mod L$ .

**3.2. Перекладывающиеся параллелоэдры.** Определим для  $m = 0, 1, \ldots, d$  замкнутые *d*-мерные параллелепипеды

$$\overline{T}_m = \{\lambda_{k_1} v_{k_1} + \dots + \lambda_{k_d} v_{k_d}; \ 0 \leqslant \lambda_{k_i} \leqslant 1\},\tag{3.7}$$

где  $k_1, \ldots, k_d$  – дополнительные к m индексы в  $\{0, 1, \ldots, d\}$ . Если множество векторов  $v = \{v_0, v_1, \ldots, v_d\}$  является звездой (см. определение 2.1), то объединение

$$\overline{T} = \overline{T}_0 \cup \overline{T}_1 \cup \dots \cup \overline{T}_d \tag{3.8}$$

параллелепипедов (3.7) образует *параллелоэдр* [13,14] – многогранник, разбивающий пространство

$$\mathbb{R}^d = \bigcup_{l \in L} \overline{T}[l] \tag{3.9}$$

с помощью параллельных переносов  $\overline{T}[l] = \overline{T} + l$  на векторы l решетки L. Причем различные многогранники  $\overline{T}[l]$  из (3.9) не имеют общих внутренних точек. Здесь и далее будем пользоваться соглашением (2.5).

Для d = 2 параллелоэдр  $\overline{T}$  из (3.7) является выпуклым шестиугольником с попарно равными и параллельными сторонами, для d = 3 – ромбододекаэдром Федорова [15], а для d = 4 – параллелоэдром Вороного [16]. По *i-алгоритму* из [13] вершины, ребра и грани параллеленипедов  $\overline{T}_m$  можно распределить между собою так, чтобы получалось разбиение  $T = T_0 \sqcup T_1 \sqcup \cdots \sqcup T_d$ , имеющее внутреннюю часть  $T^{\text{int}} = (\overline{T})^{\text{int}}$  такую же, как и параллелоэдр (3.8), и разбивающее пространство

$$\mathbb{R}^d = \bigsqcup_{l \in L} T[l] \tag{3.10}$$

45

в строгом смысле (2.5), т.е. в (3.10) многогранники  $T[l'] \cap T[l''] = \emptyset$ , если  $l' \neq l''$ . Существование разбиения (3.10) равносильно условию незамкнутому параллелоэдру T быть разверткой тора  $\mathbb{T}_{L}^{d} = \mathbb{R}^{d}/L$ .

Исходя из *i*-алгоритма [13], можно считать, что выполнены условия

$$0 \in T_0, v_0 \in T_1, v_0 + v_1 \in T_2, \dots, v_0 + v_1 + \dots + v_{d-1} \in T_d.$$
 (3.11)

Если дополнительно предположить выполненными условия (3.11), то в результате каждой звезде  $v = \{v_0, v_1, \ldots, v_d\}$  ставится в соответствие перекладывающийся параллелоэдр

$$T = T(v) = T_0 \sqcup T_1 \sqcup \cdots \sqcup T_d, \tag{3.12}$$

являющийся разверткой тора  $\mathbb{T}_L^d$  с векторами перекладывания  $v_0, v_1, \ldots, v_d$  в (3.3).

**3.3. Вмещающее пространство.** Кроме тора  $\mathbb{T}_L^d$ , нам потребуется еще один тор  $\mathbb{T}_L^d = \mathbb{R}^d / \mathcal{L}$  для другой полной решетки  $\mathcal{L} \subset \mathbb{R}^d$ . Зададим сдвиг  $S = S_\alpha$  тора  $\mathbb{T}_L^d$  на вектор  $\alpha \in \mathbb{R}^d$ , полагая

$$\mathbb{T}^d_{\mathcal{L}} \xrightarrow{S} \mathbb{T}^d_{\mathcal{L}} : \quad x \mapsto S(x) \equiv x + \alpha \operatorname{mod} \mathcal{L}.$$
(3.13)

Далее торы  $\mathbb{T}^d_{\mathcal{L}}$  будут использоваться, как вмещающие пространства для вложений различных торов  $\mathbb{T}^d_L$  с изменяющимися решетками L.

## 3.4. Вкладывающиеся в тор развертки.

**Определение 3.1.**  $\triangleright$  *Перекладывающаяся развертка Т* из (3.2) вкладывается

$$T \stackrel{\text{em}}{\hookrightarrow} \mathbb{T}^d_{\mathcal{L}}$$
 (3.14)

в тор  $\mathbb{T}^d_{\mathcal{L}}$  относительно сдвига  $S=S_{\alpha},$  если выполняются следующие условия.

1. Подмножество  $T \subset \mathbb{R}^d$  является  $\mathcal{L}$ -различимым, т.е. для любых элементов x, y из T, связанных сравнением  $x \equiv y \mod \mathcal{L}$ , следует их равенство x = y. Значит, отображение

$$T \xrightarrow{\sim} T \operatorname{mod} \mathcal{L} : \quad x \mapsto x \operatorname{mod} \mathcal{L}$$
 (3.15)

будет взаимно однозначным; и поэтому используя отображение (3.15) можем считать развертку T вложенной как множество

$$T \subset \mathbb{T}^d_{\mathcal{L}} \tag{3.16}$$

 $e mop \mathbb{T}^d_{\mathcal{L}}.$ 

2. Векторы перекладывания (3.3) имеют вид

$$v_k \equiv m_k \alpha \mod \mathcal{L} \tag{3.17}$$

для всех  $k=0, 1, \ldots, d$  с некоторыми коэффициентами  $m_k=1, 2, 3, \ldots$ , называемыми порядками векторов  $v_k$ .

3. Пусть

$$Orb^{+}(T_k) = \{S^{j}(T_k); j = 1, \dots, m_k - 1\}$$
(3.18)

обозначает орбиту подмножества  $T_k \subset T$ . В силу включения (3.16) будем полагать  $\operatorname{Orb}_k^+ \subseteq \mathbb{T}_{\mathcal{L}}^d$ . Тогда по определению считается, что орбиты (3.18) удовлетворяют условию

$$\operatorname{Orb}^+(T_k) \cap T = \emptyset \tag{3.19}$$

для  $k = 0, 1, \ldots, D$ .  $\lhd$ 

Чтобы сформулировать следующий результат, нам потребуется в дополнение к (3.18) определить еще *полные орбиты* 

$$Orb(T_k) = \{S^j(T_k); \quad j = 0, 1, \dots, m_k - 1\}.$$
 (3.20)

Кроме того, будем предполагать вектор сдвига  $\alpha = (\alpha_1, \ldots, \alpha_d)$ из (3.13) *иррациональным*, когда выполняется условие:

числа  $1, \alpha_1, \ldots, \alpha_d$  линейно независимы над кольцом  $\mathbb{Z}$ . (3.21)

Здесь  $\alpha_k$  – координаты вектора  $\alpha$  в некотором базисе полной решетки  $\mathcal{L}$ .

**Теорема 3.1.** Пусть развертка T вкладывается (3.14) в тор  $\mathbb{T}^d_{\mathcal{L}}$ , развертка T имеет внутреннюю точку, и пусть вектор  $\alpha$  для сдвига  $S = S_{\alpha}$  из (3.13) будет иррациональным (3.21). Тогда выполняются следующие утверждения.

1. Множества из полных орбит  $Orb(T_k)$  не пересекаются, т.е.

$$S^{j_1}(T_{k_1}) \cap S^{j_2}(T_{k_2}) \neq \emptyset \tag{3.22}$$

только при условии  $j_1 = j_2$  и  $k_1 = k_2$ .

2. Имеет место разбиение тора  $\mathbb{T}^d_{\mathcal{L}}$ :

$$\mathcal{T} = \mathcal{T}_0 \sqcup \mathcal{T}_1 \sqcup \cdots \sqcup \mathcal{T}_d, \tag{3.23}$$

где

$$\mathcal{T}_k = T_k \sqcup S^1(T_k) \sqcup \cdots \sqcup S^{m_k - 1}(T_k)$$

– орбитное разбиение, составленное из множеств, входящих в полную орбиту  $Orb(T_k)$  из (3.20).

Доказательство. См. [3].

**3.5.** Индуцированные отображения и ядро разбиения. Из теоремы 3.1 следует, что сдвиг тора  $S': T \longrightarrow T$  из (3.6) является индуцированным отображением или иначе – отображением первого возвращения, отображением Пуанкаре – для сдвига тора  $S: \mathbb{T}^d_{\mathcal{L}} \longrightarrow \mathbb{T}^d_{\mathcal{L}}$ из (3.13), что символически будем обозначать в виде равенства

$$S' = S|_T. \tag{3.24}$$

Обозначим

$$T = T(v), \quad \mathcal{T} = \mathcal{T}(v) = \mathcal{T}_0 \sqcup \mathcal{T}_1 \sqcup \cdots \sqcup \mathcal{T}_d$$
 (3.25)

соответственно развертку T из (3.2), (3.12) и *индуцированное разбиение* (3.23) тора  $\mathbb{T}^d_{\mathcal{L}}$ , порождаемое вкладывающейся в тор  $T \stackrel{\text{em}}{\hookrightarrow} \mathbb{T}^d_{\mathcal{L}}$  разверткой T.

Множество T по отношению ко всему разбиению тора  $\mathcal{T}$  называется (ср. [17, 18]) *ядром* (*karyon*) разбиения  $\mathcal{T}$ . Чтобы указывать на такую связь между T и  $\mathcal{T}$  используется обозначение  $T = \text{Kr} = \text{Kr}(\mathcal{T})$ . Ядро Кг характеризуется следующим свойством: ядро – это такое подмножество Kr  $\subset \mathbb{T}^{D}_{\mathcal{L}}$ , для которого отображение первого возвращения

$$S' = S|_{\mathrm{Kr}},\tag{3.26}$$

индуцированное сдвигом тора  $S = S_{\alpha}$  из (3.13), эквивалентно перекладыванию D + 1 подмножеств из разбиения

$$\mathrm{Kr} = \mathrm{Kr}_0 \sqcup \mathrm{Kr}_1 \sqcup \cdots \sqcup \mathrm{Kr}_D. \tag{3.27}$$

В определении ядра Kr важно, что количество областей в разбиении (3.27) на единицу больше размерности вмещающего его тора  $\mathbb{T}^{D}_{\mathcal{L}}$ . Отсюда, в частности, следует, что Kr является разверткой некоторого тора  $\mathbb{T}^{D}_{L}$ , а индуцированное отображение (3.26) изоморфно сдвигу этого тора.

#### 3.6. Критерий вложимости развертки тора.

**Теорема 3.2.** Определенная в (3.12) развертка тора T = T(v) вкладывается (3.14) в тор  $T \stackrel{\text{em}}{\hookrightarrow} \mathbb{T}^d_{\mathcal{L}}$  тогда и только тогда, когда выполняется одно из следующих двух эквивалентных утверждений:

1) множество  $\mathcal{T} = \mathcal{T}(v) = \mathcal{T}_0 \sqcup \mathcal{T}_1 \sqcup \cdots \sqcup \mathcal{T}_d$  из (3.25) является разбиением тора  $\mathbb{T}^d_{\mathcal{L}}$ ;

2) внутренняя часть  $T^{\text{int}}$  развертки  $T \subset \mathbb{T}^d_{\mathcal{L}}$  не содержит ни одной из точек  $x_i$  орбиты

Orb<sup>+</sup>(0, m) = {
$$x_j = S^j(0); \quad j = 1, 2, \dots, m-1$$
} (3.28)

порядка

$$m = m_0 + m_1 + \dots + m_d. \tag{3.29}$$

Доказательство. См. [3].

Число m из (3.29) называется *порядком* развертки тора T = T(v). Саму развертку T = T(v) и порождающую ее звезду v назовем *мини-мальными*, если выполняется условие 2) из теоремы 3.2.

#### 3.7. Производные вкладывающихся звезд.

Определение 3.2. Пусть  $v = \{v_0, v_1, \ldots, v_D\}$  – звезда и T = T(v) – отвечающая ей развертка (3.25) тора  $\mathbb{T}^d_L$  с векторами перекладываения  $v_0, v_1, \ldots, v_D$ . Если данная развертка T вкладывается  $T \stackrel{\text{ет}}{\hookrightarrow} \mathbb{T}^d_L$  в тор  $\mathbb{T}^d_L$  относительно некоторого сдвига  $S = S_\alpha$ , то в этом случае будем говорить, что такая звезда v вкладывается

$$v \stackrel{\text{em}}{\hookrightarrow} \mathbb{T}^d_{\mathcal{L}}$$
 (3.30)

в тор  $\mathbb{T}^d_{\mathcal{L}}$  относительно сдвига S.

**Теорема 3.3.** Пусть невырожденная звезда  $v = \{v_0, v_1, \ldots, v_d\}$  вкладывается (3.30) в тор  $\mathbb{T}^d_{\mathcal{L}}$  относительно сдвига  $S = S_{\alpha}$  с иррациональным (3.21) вектором  $\alpha$ . Тогда любая ее  $\sigma$ -производная

$$v^{\sigma} = \{v_0^{\sigma}, v_1^{\sigma}, \dots, v_d^{\sigma}\}$$

для  $\sigma \in \Sigma$  также вкладывается

$$v^{\sigma} \stackrel{\text{em}}{\hookrightarrow} \mathbb{T}^d_{\mathcal{L}} \tag{3.31}$$

в тот же тор  $\mathbb{T}^d_{\mathcal{L}}$  относительно сдвига S.

Доказательство см. [3].

## §4. Матрицы звезд и специализации дифференцирований

**4.1. Матрица звезды.** За начальный выберем базисный симплекс  $\triangle = \triangle_U^d$  из (1.5), центрированный точкой  $\alpha_-$ , где

$$\alpha_{-} = -\alpha = (-\alpha_1, \dots, -\alpha_d).$$

Определим звезду  $r = r^{[\sigma]_0}$ , состоящую из лучей

$$r_i^{[\sigma]_0} = v_i - \alpha_- = v_i + \alpha, \tag{4.1}$$

где  $v_i$  – вершины (1.8) симплекса  $\triangle$  и  $i = 0, 1, \ldots, d$ . Таким образом, полагаем

$$r^{[\sigma]_0} = \{r_0^{[\sigma]_0}, r_1^{[\sigma]_0}, \dots, r_d^{[\sigma]_0}\} = \{v_0 + \alpha, v_1 + \alpha, \dots, v_d + \alpha\}.$$
 (4.2)

Согласно предложению 1.1 выполняется включение  $\alpha_{-} \in \triangle^{\text{int}}$ , поэтому применяя критерий (2.4) убеждаемся, что множество векторов из (4.2) действительно образует звезду. Определим *матрицу* 

$$S^{[\sigma]_0} = \begin{pmatrix} P_{01}^{[\sigma]_0} & P_{11}^{[\sigma]_0} & \dots & P_{d1}^{[\sigma]_0} \\ & & \ddots & & \\ P_{0d}^{[\sigma]_0} & P_{1d}^{[\sigma]_0} & \dots & P_{dd}^{[\sigma]_0} \\ Q_0^{[\sigma]_0} & Q_1^{[\sigma]_0} & \dots & Q_d^{[\sigma]_0} \end{pmatrix}$$
(4.3)

звезды  $r = r^{[\sigma]_0}$  как матрицу (1.9) симплекса  $\triangle$ ; а именно, каждый столбец матрицы  $S^{[\sigma]_0}$  состоит из координат вершин  $v_i$  симплекса  $\triangle$  и коэффициента  $Q_i^{[\sigma]_0} = 1$  при  $\alpha$  в правой части (4.1). Согласно (1.9) матрица  $S^{[\sigma]_0}$  звезды  $r = r^{[\sigma]_0}$  является унимодулярной, поэтому определенные в (4.2) звезды будем называть унимодулярными.

**4.2. Специализации дифференцирований.** Дифференцированиям  $\sigma = \{k, l\}$  из множества  $\Sigma$  с произвольными индексами  $0 \leq k < l \leq d$  (см. п. 2.1) поставим в соответствие матрицы

$$D_k^{kl} = E + E_{lk}, \quad D_l^{kl} = E + E_{kl}, \tag{4.4}$$

где  $E = E_{d+1}$  – единичная матрица порядка d+1, а матрицы  $E_{ij}$  имеют нулевые элементы, кроме  $1 = 1_{ij}$  на (i, j)-месте. Матрицы M из (4.4)имеют целые коэффициенты и определители  $\det M = \pm 1$ , поэтому принадлежат группе  $\operatorname{GL}_{d+1}(\mathbb{Z})$ . По определению (2.9) производная звезда  $r^{\sigma} = \{r_0^{\sigma}, r_1^{\sigma}, \dots, r_d^{\sigma}\}$ имеет вид

$$r^{\sigma} = \{r_0, \dots, \underbrace{r_k + r_l}_k, \dots, \underbrace{r_l}_l, \dots, r_d\}$$
(4.5)

или

$$r^{\sigma} = \{r_0, \dots, \underbrace{r_k}_k, \dots, \underbrace{r_k + r_l}_l, \dots, r_d\}.$$
(4.6)

Скажем, что относительно звезды rдиф<br/>ференцирование  $\sigma = \{k,l\}$ имеет cnequanus<br/>aquю

$$\operatorname{sp}(\sigma, r) = \operatorname{sp}_k^{kl}$$
 или  $\operatorname{sp}(\sigma, r) = \operatorname{sp}_l^{kl}$  (4.7)

в зависимости от того, какой случай (4.5) или (4.6) имеет место. Каждой специализации (4.7) поставим в соответствие

$$D(\operatorname{sp}_{k}^{kl}) = D_{k}^{kl} \quad \text{или} \quad D(\operatorname{sp}_{l}^{kl}) = D_{l}^{kl}$$
(4.8)

свою матрицу из (4.4). Таким образом, в силу (4.7) и (4.8) однозначно определена *матрица специализации* 

$$D(\sigma, r) = D(\operatorname{sp}(\sigma, r)) \tag{4.9}$$

дифференцирования  $\sigma \in \Sigma$ относительно произвольной невырожденной звезды r.

## 4.3. Матрицы производных звезд. Пусть

$$S = \begin{pmatrix} P_{01} & P_{11} & \dots & P_{d1} \\ & & \dots & \\ P_{0d} & P_{1d} & \dots & P_{dd} \\ Q_0 & Q_1 & \dots & Q_d \end{pmatrix}$$
(4.10)

– матрица некоторой невырожденной звезды r и  $\sigma$  – некоторое дифференцирование из множества  $\Sigma.$ Выясним, какова матрица

$$S^{\sigma} = \begin{pmatrix} P_{01}^{\sigma} & P_{11}^{\sigma} & \dots & P_{d1}^{\sigma} \\ & & \dots & \\ P_{0d}^{\sigma} & P_{1d}^{\sigma} & \dots & P_{dd}^{\sigma} \\ Q_0^{\sigma} & Q_1^{\sigma} & \dots & Q_d^{\sigma} \end{pmatrix}$$
(4.11)

производной звезды  $r^{\sigma}$ .

**Лемма 4.1.** Матрицы исходной звезды (4.10) и ее производной (4.11) связаны между собою формулой

$$S^{\sigma} = S \cdot D(\sigma, r), \tag{4.12}$$

где  $D(\sigma, r)$  – матрица специализации (4.9) дифференцирования  $\sigma$  относительно звезды r.

**Доказательство.** Пусть матрица-строка  $(r_0r_1...r_d)$  состоит из лучей звезды r и аналогично  $(r_0^{\sigma}r_1^{\sigma}...r_d^{\sigma})$  для производной звезды  $r^{\sigma}$ . Тогда из равенств (4.5), (4.6) и определения (4.8), (4.9) матрицы специализации  $D(\sigma, r)$  вытекает формула

$$(r_0^{\sigma} r_1^{\sigma} \dots r_d^{\sigma}) = (r_0 r_1 \dots r_d) \cdot D(\sigma, r), \qquad (4.13)$$

из которой, если ее перенести на матрицы звез<br/>д $S^{\sigma}$ и S, следует формула (4.12).  $\hfill \Box$ 

## §5. Аппроксимация

## 5.1. Бесконечные итерации дифференцирований. Рассмотрим

$$\Xi = \Sigma^{\mathbb{N}} \tag{5.1}$$

51

- множество всех бесконечных последовательностей

$$\sigma = \{\sigma_1, \sigma_2, \dots, \sigma_n, \dots\}$$

состоящих из произвольных сочетаний σ<sub>i</sub> из Σ; и пусть

$$[\sigma]_n = \{\sigma_1, \sigma_2, \dots, \sigma_n\}$$
(5.2)

обозначает *отрезок* из первых n членов последовательности  $\sigma$ , при этом полагаем, что  $[\sigma]_0 = \emptyset$ . Используя определение производной звезды (2.9), индукцией по n = 0, 1, 2, ... определим  $[\sigma]_n$ -*производные* 

$$r^{[\sigma]_n} = (r^{[\sigma]_{n-1}})^{\sigma_n} \tag{5.3}$$

произвольной звезды r; при этом условимся  $r^{[\sigma]_0} = r$  для n = 0.

**5.2.** Радиус производных разверток. Пусть  $[\sigma]_n$ -производные  $r^{[\sigma]_n}$  звезды r состоят из лучей

$$r^{[\sigma]_n} = \{ r_0^{[\sigma]_n}, r_1^{[\sigma]_n}, \dots, r_d^{[\sigma]_n} \}.$$
(5.4)

Если T = T(r) – развертка (3.25) для звезды r, то обозначим через

$$T^{[\sigma]_n} = T(r^{[\sigma]_n}) \tag{5.5}$$

соответствующие развертки, порождаемые производными звездами  $r^{[\sigma]_n}.$ 

Размер развертки (5.5) будем контролировать с помощью *радиуса* развертки

$$\varrho^{[\sigma]_n} = \varrho(T^{[\sigma]_n}) = \max_{v \in \operatorname{ver} T^{[\sigma]_n}} |v|, \tag{5.6}$$

где ver  $T^{[\sigma]_n}$  – множество вершин развертки  $T^{[\sigma]_n}$  и  $|v| = |v_1| + \cdots + |v_d|$  для  $v = (v_1, \ldots, v_d)$  из  $\mathbb{R}^d$ . Из определений развертки (3.25) и ее радиуса (5.6) следует равенство

$$\varrho^{[\sigma]_n} = \max_v |v|. \tag{5.7}$$

Здесь максимум берется по всем векторам v, представимым в виде суммы k различных лучей  $r_i^{[\sigma]_n}$  звезды  $r^{[\sigma]_n}$  из (5.4), где k пробегает все значения от 1 до d. Таким образом, радиус развертки  $\varrho^{[\sigma]_n}$  равен радиусу минимальной сферы в полиэдральной метрике (1.15) с центром в точке 0, содержащей развертку  $T^{[\sigma]_n}$ .

#### 5.3. Основная теорема об аппроксимации.

**Лемма 5.1.** 1. Для произвольной бесконечной последовательности дифференцирований  $\sigma = \{\sigma_1, \sigma_2, \dots, \sigma_n, \dots\}$  из множества  $\Xi$ , матрицы

$$S^{[\sigma]_n} = \begin{pmatrix} P_{01}^{[\sigma]_n} & P_{11}^{[\sigma]_n} & \dots & P_{d1}^{[\sigma]_n} \\ & & \dots & \\ P_{0d}^{[\sigma]_n} & P_{1d}^{[\sigma]_n} & \dots & P_{dd}^{[\sigma]_n} \\ Q_0^{[\sigma]_n} & Q_1^{[\sigma]_n} & \dots & Q_d^{[\sigma]_n} \end{pmatrix}$$
(5.8)

производных звезд  $r^{[\sigma]_n}$  из (5.4) вычисляются по формуле

$$S^{[\sigma]_n} = S^{[\sigma]_0} \cdot D^{[\sigma]_n}(r).$$
(5.9)

Здесь  $S^{[\sigma]_0} = S$  – матрица (4.3) начальной звезды  $r = r^{[\sigma]_0}$  и

$$D^{[\sigma]_n}(r) = D(\sigma_1, r^{[\sigma]_0}) \cdot D(\sigma_2, r^{[\sigma]_1}) \cdot \dots \cdot D(\sigma_n, r^{[\sigma]_{n-1}}),$$
(5.10)

где  $D(\sigma^*, r^*)$  – матрицы специализации (4.9) дифференцирований  $\sigma^*$  относительно звезд  $r^*$ .

2. Производные звезды  $r^{[\sigma]_n} = \{r_0^{[\sigma]_n}, r_1^{[\sigma]_n}, \dots, r_d^{[\sigma]_n}\}$  состоят из лучей

$$r_i^{[\sigma]_n} = Q_i^{[\sigma]_n} \alpha + P_i^{[\sigma]_n} \tag{5.11}$$

порядков  $Q_i^{[\sigma]_n} \ge 1$  для i = 0, 1, ..., d, где  $P_i^{[\sigma]_n} = (P_{i1}^{[\sigma]_n}, ..., P_{id}^{[\sigma]_n})$  - вектор из  $\mathbb{Z}^d$ .

**Доказательство.** Формула (5.9) вытекает из формулы (4.12), а из (5.9) следует явный вид (5.8) матрицы  $S^{[\sigma]_n}$ . Равенство (5.11) для лучей  $r_i^{[\sigma]_n}$  выводится из определения (4.1) лучей  $r_i^{[\sigma]_0}$  начальной звезды  $r = r^{[\sigma]_0}$  и из (5.8).

Далее нам потребуется матрица-столбец

$$\begin{pmatrix} P_{\max}^{[\sigma]_n} \\ Q_{\max}^{[\sigma]_n} \end{pmatrix} = \begin{pmatrix} P_{01}^{[\sigma]_n} + P_{11}^{[\sigma]_n} + \dots + P_{d1}^{[\sigma]_n} \\ \dots \\ P_{0d}^{[\sigma]_n} + P_{1d}^{[\sigma]_n} + \dots + P_{dd}^{[\sigma]_n} \\ Q_0^{[\sigma]_n} + Q_1^{[\sigma]_n} + \dots + Q_d^{[\sigma]_n} \end{pmatrix},$$
(5.12)

равная сумме всех столбцов матрицы (5.8), и соответствующая точка

$$r_{\max}^{[\sigma]_n} = Q_{\max}^{[\sigma]_n} \alpha + P_{\max}^{[\sigma]_n}$$
(5.13)

порядка  $Q_{\max}^{[\sigma]_n} = Q_0^{[\sigma]_n} + Q_1^{[\sigma]_n} + \dots + Q_d^{[\sigma]_n} \ge 1$ . Из определений (5.12) и (5.13) следует, что  $r_{\max}^{[\sigma]_n}$  получается как сумма

$$r_{\max}^{[\sigma]_n} = r_0^{[\sigma]_n} + r_1^{[\sigma]_n} + \dots + r_d^{[\sigma]_n}$$
(5.14)

всех лучей (5.11) производной звезды  $r^{[\sigma]_n}$ .

**Теорема 5.1.** Пусть  $\alpha$  – иррациональная точка (1.4), r – звезда (4.2) и  $\sigma = \{\sigma_1, \sigma_2, \dots, \sigma_n, \dots\}$  – произвольная бесконечная последовательность дифференцирований  $\sigma_i$  из множества  $\Sigma$ . Тогда справедливы следующие утверждения.

1. Звезда  $r = \{r_0, r_1, \ldots, r_d\}$  является бесконечно дифференцируемой и, значит, существуют  $[\sigma]_n$ -производные звезды  $r^{[\sigma]_n}$  из (5.4) всех порядков  $n = 0, 1, 2, \ldots$ 

2. Порождаемые производными звездами  $r^{[\sigma]_n}$  развертки  $T^{[\sigma]_n}$  из (5.5) обладает свойством минимальности:

$$Q\alpha + P \notin (T^{[\sigma]_n})^{\text{int}},\tag{5.15}$$

если  $1 \leqslant Q < Q_{\max}^{[\sigma]_n}$  и P – любая точка из  $\mathbb{Z}^d;$  единственная точка

$$Q\alpha + P \in (T^{[\sigma]_n})^{\text{int}} \tag{5.16}$$

порядка  $Q = Q_{\max}^{[\sigma]_n}$  есть точка  $r_{\max}^{[\sigma]_n} = Q_{\max}^{[\sigma]_n} \alpha + P_{\max}^{[\sigma]_n}$ , определенная в (5.14).

3. Имеют место неравенства

$$\left| \alpha - \frac{P_{\max}^{[\sigma]_n}}{Q_{\max}^{[\sigma]_n}} \right| \leqslant \frac{\varrho^{[\sigma]_n}}{Q_{\max}^{[\sigma]_n}}$$
(5.17)

для всех n = 0, 1, 2, ... Здесь  $\varrho^{[\sigma]_n} = \varrho(T^{[\sigma]_n})$  обозначает радиус развертки  $T^{[\sigma]_n}$  [ $\sigma$ ]\_n-производной  $r^{[\sigma]_n}$  звезды r, определенный в (5.6).

4. Знаменатели  $Q_{\max}^{[\sigma]_n}$  в аппроксимационной формуле (5.17) обладают свойством

$$Q_{\max}^{[\sigma]_n} \longrightarrow +\infty \quad npu \quad n \longrightarrow +\infty.$$
(5.18)

Доказательство. Утверждения 1 и 4 были доказаны в [3] и [1].

Согласно определению 2.1 начальная звезда  $r = r^{[\sigma]_0}$ , определенная в (4.2), вкладывается

$$r^{[\sigma]_0} \stackrel{\text{em}}{\hookrightarrow} \mathbb{T}^d$$
 (5.19)

в тор  $\mathbb{T}^d = \mathbb{T}^d_{\mathbb{Z}^d}$  относительно сдвига  $S = S_{\alpha_-}$ . По утверждению 1 для звезды  $r = r^{[\sigma]_0}$  существуют производные звезды  $r^{[\sigma]_n}$  всех порядков  $n = 1, 2, 3, \ldots$  Тогда из (5.19) и теоремы 3.3 следуют вложения

$$r^{[\sigma]_n} \stackrel{\text{em}}{\hookrightarrow} \mathbb{T}^d$$
 (5.20)

в тор  $\mathbb{T}^d$  производных звезд  $r^{[\sigma]_n}$  относительно того же сдвига  $S = S_{\alpha_-}$ . Теперь из существования вложений (5.20) звезд  $r^{[\sigma]_n}$  и критерия вложимости отвечающих им разверток тора  $T^{[\sigma]_n} = T(r^{[\sigma]_n})$  (см. теорему 3.2) вытекает минимальность (5.15), (5.16) разверток  $T^{[\sigma]_n}$ .

Что касается неравенств (5.17), то они непосредственно получаются из (5.16) и определения (5.6) радиуса развертки  $\varrho^{[\sigma]_n} = \varrho(T^{[\sigma]_n})$ .  $\Box$ 

**5.4.** Минимальное свойство и  $T^{[\sigma]_n}$ -нормы. Минимальное свойство (5.15)–(5.16) указывает на наилучшее ядерное приближение (каryon approximation). Это означает, что точки  $r_{\max}^{[\sigma]_n} = Q_{\max}^{[\sigma]_n} \alpha + P_{\max}^{[\sigma]_n}$  наилучшим образом приближаются к 0 mod  $\mathbb{Z}^d$  относительно  $T^{[\sigma]_n}$ -норм (ядерных норм)  $||\cdot|| = ||\cdot||_{\alpha}^{[\sigma]_n}$ , в качестве выпуклых тел для которой выбраны выпуклые многогранники  $\operatorname{Kr}^n = T^{[\sigma]_n}$  – ядра (3.27) индуцированных разбиений *d*-мерного тора  $\mathbb{T}^d$ . Так определенные  $T^{[\sigma]_n}$ -нормы обладают следующими свойствами:

$$||x|| = 0 \Leftrightarrow x = 0,$$
  

$$||ax|| = a ||x||, \quad a \ge 0,$$
  

$$c_1 ||x|| \le || - x|| \le c_2 ||x||,$$
  

$$||x + y|| \le c_3 (||x|| + ||y||),$$
  
(5.21)

55

где  $0 < c_1 \leq c_2, c_3 > 0$  – некоторые константы. Как видно из (5.21),  $T^{[\sigma]_n}$ -нормы не удовлетворяют свойству || - x|| = ||x|| – это следствие того, что 0 не находится в центре симметрии многогранников  $\mathrm{Kr}^n = T^{[\sigma]_n}$ , хотя сами они являются центрально симметричными.

Неравенство (5.17) записано в фиксированной многогранной норме  $|x|_s = |x_1| + \cdots + |x_d|$ . Можно было взять и любую другую норму, например, – шаровую или евклидову  $|x|_e = (|x_1|^2 + \cdots + |x_d|^2)^{1/2}$ . Фиксированные нормы удобны для количественных оценок скорости приближений, но они не прослеживают наилучшие приближения.

Замечание 5.1. Приближения (5.17) будут нетривиальны только в случае, когда радиус разверток

$$\varrho^{[\sigma]_n} = \varrho(T^{[\sigma]_n}) \longrightarrow 0 \quad \text{при} \quad n \longrightarrow +\infty.$$
(5.22)

Описанию того, как можно обеспечить выполнение последнего свойста, посвящен следующий раздел.

### §6. Локальные стратегии

**6.1. Целевая функция.** Из неравенств (5.17) видно, что приближение иррациональной точки  $\alpha = (\alpha_1, \ldots, \alpha_d)$  подходящими дробями  $\frac{P_{\max}^{[\sigma]_n}}{Q_{\max}^{[\sigma]_n}}$  полностью зависит от величины радиуса  $\varrho^{[\sigma]_n} = \varrho(T^{[\sigma]_n})$  разверток тора  $T^{[\sigma]_n} = T(r^{[\sigma]_n})$ , порождаемых производными звездами  $r^{[\sigma]_n}$ . В свою очередь, сами производные звезды  $r^{[\sigma]_n}$  определяются бесконечной последовательностью дифференцирований  $\sigma = \{\sigma_1, \sigma_2, \ldots, \sigma_n, \ldots\}$  из множества  $\Xi = \Sigma^{\mathbb{N}}$ .

Воспользуемся функцие<br/>й $\varrho$ для формирования стратегии выбора дифференцировани<br/>й $\sigma_n \in \Sigma$ в последовательности

$$\sigma = \{\sigma_1, \sigma_2, \ldots, \sigma_n, \ldots\},\$$

применяя индукцию по n = 0, 1, 2, ...:

$$\varrho(T^{[\sigma]_n}) = \min_{\sigma'_n \in \Sigma} \varrho(T^{[\sigma']_n}), \tag{6.1}$$

где через  $[\sigma]_n = \{\sigma_1, \sigma_2, \ldots, \sigma_n\}$  и  $[\sigma']_n = \{\sigma_1, \sigma_2, \ldots, \sigma'_n\}$  обозначены отрезки длины *n*. Смысл стратегии (6.1) состоит в том, что если отрезок  $[\sigma]_{n-1} = \{\sigma_1, \sigma_2, \ldots, \sigma_{n-1}\}$  уже определен, то дифференцирование  $\sigma_n \in \Sigma$  выбрается из условия минимизации (6.1). Определенную в (6.1) стратегию будем называть *ρ*-*стратегией*, явно указывая на ее зависимость от целевой функции  $\rho(T)$  из (5.6).

**6.2.** Диофантовы экспоненты. Из неравенства (5.17) следует, что выбранная  $\rho$ -стратегия применительно к данной точке  $\alpha$  срабатывает, если выполняется условие (5.22). Если же попытаться как-то количественно оценить  $\rho$ -стратегию, то с этой целью можно использовать, например,  $\partial uo \phi ahmo by$  экспоненту

$$\eta = \eta(\alpha, \varrho) = \sup_{n' \ge 0} \inf_{n \ge n'} \frac{-\ln \varrho(T^{[\sigma]_n})}{\ln Q_{\max}^{[\sigma]_n}}.$$
(6.2)

Ее роль видна из следующего утверждения.

**Теорема 6.1.** Пусть выполняются условия теоремы 5.1, выбрана целевая функция  $\varrho(T)$  из (5.6) и по  $\varrho$ -стратегии (6.1) построена бесконечная последовательность производных  $\sigma = \{\sigma_1, \sigma_2, \ldots, \sigma_n, \ldots\}$  из множества  $\Xi = \Sigma^{\mathbb{N}}$ . Кроме того, пусть  $\eta'$  – произвольное число, удовлетворяющее неравенству  $\eta' < \eta$ , где  $\eta = \eta(\alpha, \varrho)$  – диофантова экспонента (6.2). Тогда в метрике (1.15) справедлива оценка

$$\left|\alpha - \frac{P_{\max}^{[\sigma]_n}}{Q_{\max}^{[\sigma]_n}}\right| \leqslant \frac{1}{(Q_{\max}^{[\sigma]_n})^{1+\eta'}} \tag{6.3}$$

для всех  $n \ge n_{\eta'}$ . Здесь нижняя граница  $n_{\eta'}$  для n определяется выбором показателя  $\eta'$  и зависит от иррациональной точки  $\alpha = (\alpha_1, ..., \alpha_d)$  и целевой функции  $\varrho(T)$ .

Доказательство. непосредственно следует из неравенства (5.17) в теореме 5.1 и определения (6.2) диофантовой экспоненты *η*. □

**6.3.** Многошаговые стратегии. Определенную в (6.1) *ρ*-стратегию, естественно назвать *одношаговой*. Если возникнет задача увеличения значения диофантовой экспоненты (6.2) и, значит, увеличения скорости приближения в неравенстве (6.3), то для этого можно попытаться применить многошаговую стратегию:

$$\min_{\substack{\sigma_{n+1}\in\Sigma, \\ \cdots \\ \sigma_{n+\omega-1}\in\Sigma}} \varrho(T^{[\sigma]_{n+\omega-1}}) = \min_{\substack{\sigma'_n\in\Sigma, \\ \cdots \\ \sigma_{n+1}\in\Sigma, \\ \cdots \\ \sigma_{n+\omega-1}\in\Sigma}} \varrho(T^{[\sigma']_{n+\omega-1}}),$$
(6.4)

57

где через

$$[\sigma]_{n+\omega-1} = \{\sigma_1, \sigma_2, \dots, \sigma_n, \sigma_{n+1}, \dots, \sigma_{n+\omega-1}\}, \\ [\sigma']_{n+\omega-1} = \{\sigma_1, \sigma_2, \dots, \sigma'_n, \sigma_{n+1}, \dots, \sigma_{n+\omega-1}\}$$

обозначены отрезки длины  $n + \omega - 1$  в последовательности

$$\sigma = \{\sigma_1, \sigma_2, \ldots, \sigma_n, \ldots\}.$$

Если отрезок  $[\sigma]_{n-1}$  уже построен, то следующий отрезок  $[\sigma]_n$  находится по правилу (6.4). Определенную таким образом стратегию будем называть  $\omega$ -шаговой стратегией с оценочной функцией  $\varrho(T)$  или кратко –  $\varrho^{\omega}$ -стратегией. Стратегия из (6.1) – это одношаговая  $\varrho^1$ -стратегия.

Замечание 6.1. Все определяемые таким образом стратегии относятся к классу *локальных*, когда каждый шаг определяется по возможным результатам конечного отрезка следующих за ним шагов.

## §7. Числовые примеры

7.1. Степень точки и локальные экспоненты. Определим *степень* deg  $\alpha$  точки  $\alpha = (\alpha_1, \ldots, \alpha_d)$  равенством

$$\deg \alpha = \deg \mathbb{Q}(\alpha) / \mathbb{Q} = [\mathbb{Q}(\alpha) : \mathbb{Q}], \tag{7.1}$$

где  $\mathbb{Q}(\alpha)$  – поле, полученное расширением поля рациональных чисел  $\mathbb{Q}$  добавлением к нему чисел  $\alpha_1, \ldots, \alpha_d$  и deg  $\mathbb{Q}(\alpha)/\mathbb{Q}$  обозначает степень расширения  $\mathbb{Q}(\alpha)$  над полем  $\mathbb{Q}$ .

Пусть точка  $\alpha$  имеет алгебраические координаты. Будем говорить, что она является *полной*, если выполненяетя соотношение

$$\mathbb{Q}[\alpha] = \mathbb{Q}(\alpha). \tag{7.2}$$

Здесь  $\mathbb{Q}[\alpha] = \mathbb{Q}[1, \alpha_1, \dots, \alpha_d]$  обозначает *модуль* с базисом  $\{1, \alpha_1, \dots, \alpha_d\}$  над полем  $\mathbb{Q}$ . Если  $\alpha$  – полная точка, то ее степень (7.1) равна

$$\deg \alpha = d + 1. \tag{7.3}$$

Определенная в (6.2) диофантова экспонента  $\eta = \eta(\alpha, \varrho)$  имеет в большей степени чисто теоретическое значение. При работе с числовыми данными удобнее опираться на локальные диофантовы экспоненты

$$\eta_n = \eta_n(\alpha, \varrho) = \frac{-\ln \varrho(r^{[\sigma]_n})}{\ln Q_{\max}^{[\sigma]_n}}$$
(7.4)

с индексами  $n = 1, 2, 3, \ldots$ 

**7.2. Кубические иррациональности.** Сначала рассмотрим точки  $\alpha = (\sqrt[3]{a}, \sqrt[3]{a^2})$ , где a = 7 и 10. Согласно определению (7.1) их степени равны

$$\deg\left(\left(\sqrt[3]{7}, \sqrt[3]{49}\right)\right) = \deg \mathbb{Q}\left(\sqrt[3]{7}\right)/\mathbb{Q} = 3, \deg\left(\left(\sqrt[3]{10}, \sqrt[3]{100}\right)\right) = \deg \mathbb{Q}\left(\sqrt[3]{10}\right)/\mathbb{Q} = 3.$$

$$(7.5)$$

Поэтому согласно (7.2) они будут полными точками и для них выполняется свойство (7.3).



Рис. 8.1. График локальных диофантовых экспонен<br/>т $\eta_n$ для полной точки  $\alpha=(\sqrt[3]{7},\sqrt[3]{49})$ степен<br/>и $\deg\alpha=3.$ 



Рис. 8.2. График локальных диофантовых экспонент  $\eta_n$  для полной точки  $\alpha = (\sqrt[3]{10}, \sqrt[3]{100})$  степени deg  $\alpha = 3$ .

На рис. 8.1 и 8.2 по горизонтальной оси отложены значения последовательных итераций  $1 \leq n \leq 10^2$ , а по вертикальной – соответствующие значения локальных экспонент  $\eta_n = \eta_n(\alpha, \varrho)$  из (7.4) с ограничением на знаменатели

$$Q_{\max}^{[\sigma]_n} \ge 10^3 \tag{7.6}$$

подходящих двумерных дробей  $\frac{P_{\max}^{[\sigma]_n}}{Q_{\max}^{[\sigma]_n}}$  в неравенствах (5.17) и (6.3). Условие (7.6) введено для начальной стабилизации процесса приближения

$$\frac{P_{\max}^{[\sigma]_n}}{Q_{\max}^{[\sigma]_n}} \to \alpha \quad \text{при} \quad n \to +\infty$$

подходящими дробями точек  $\alpha$ . Ниже приведены приближенные наименьшее  $\underline{\eta}$ , среднее  $\underline{\overline{\eta}}$  и наибольшее  $\overline{\eta}$  значения экспонент  $\eta_n$  для  $n \leq 10^2$ :

$$a = 7: \quad \underline{\eta} = 0.324, \quad \overline{\underline{\eta}} = 0.450, \quad \overline{\overline{\eta}} = 0.733; \\ a = 10: \quad \underline{\eta} = 0.310, \quad \overline{\underline{\eta}} = 0.468, \quad \overline{\overline{\eta}} = 0.7.$$
(7.7)

**7.3. Биквадратичные иррациональности.** Выберем биквадратичную точку  $\alpha = (\sqrt{7}, \sqrt{10})$ . По определению (7.1) ее степень равна

$$\deg\left((\sqrt{7},\sqrt{10})\right) = \deg \mathbb{Q}(\sqrt{7},\sqrt{10})/\mathbb{Q} = 4.$$

Следовательно в отличие от рассмотренных выше полных кубических точек, данная точка  $\alpha = (\sqrt{7}, \sqrt{10})$  не является полной (7.2) и для нее свойство (7.3) уже не выполняется.



Рис. 8.3. График локальных диофантовых экспонен<br/>т $\eta_n$ для неполной точки  $\alpha=(\sqrt{7},\sqrt{10})$ степен<br/>и $\deg\alpha=4.$ 

Для точки  $\alpha = (\sqrt{7}, \sqrt{10})$  наименьшее  $\underline{\eta}$ , среднее  $\underline{\overline{\eta}}$  и наибольшее  $\overline{\eta}$  значения экспонент  $\eta_n$  соответственно равны:

$$\underline{\eta} = 0.276, \quad \underline{\overline{\eta}} = 0.456, \quad \overline{\overline{\eta}} = 0.620. \tag{7.8}$$

**7.4.** Выводы. 1. Из результатов (7.7) и (7.8) видно, что для всех приведенных выше точек  $\alpha$  наименьшие значения экспонент  $\underline{\eta} > 0$  и, следовательно, то же самое справедливо для всех значениях  $\eta_n > 0$  локальных диофантовых экспонент (7.4). Поэтому оценки приближений

61

указанных точек  $\alpha$  в неравенствах (5.17) и (6.3) нетривиальны. Это означает, что определенная в (6.1) одношаговая  $\rho$ -стратегия работает.

2. В [11] было доказано, что для кубических иррациональностей с комплексным сопряжением и, в частности, для точек  $\alpha = (\sqrt[3]{a}, \sqrt[3]{a^2})$ , где a = 7 или 10, существуют периодические приближения (6.3) с диофантовой экспонентой (6.2), равной  $\eta = 0.5$  – наибольшей возможной экспонентой для отмеченных кубических иррациональностей. Из графиков на рис. 8.1 и 8.2 видно, что локальные экспоненты  $\eta_n$  регулярно принимают значения  $\eta_n > 0.5$  для  $n \leq 10^2$ .

3. В одномерном случае d = 1, т.е. для обычных цепных дробей, пики значений локальных экспонент  $\eta_n$  связаны с большими неполными частными в разложении вещественного числа в цепную дробь. Поэтому и для высших размерностей  $d \ge 2$  пики значений  $\eta_n$  гипотетично можно ассоциировать с большими "неполными частными" в  $\rho$ -стратегии (6.1) последовательных приближений точек  $\alpha = (\alpha_1, \ldots, \alpha_d)$ .

4. В (6.1) стратегия приближения подходящими цепными дробями  $\frac{P_{[\sigma]n}^{[\sigma]n}}{Q_{max}^{[\sigma]n}}$  к точке  $\alpha$  была выбрана так, чтобы получающиеся в теореме 5.1 развертки  $T^{[\sigma]_n}$  пе сильно вытягивались, т.е. развертки  $T^{[\sigma]_n}$  при  $n \longrightarrow +\infty$  удерживали бы форму, близкую к шаровой. Последнее означает ограниченность отношения  $\frac{R_n}{r_n}$  радиусов описанного и вписанного шаров для многогранников  $T^{[\sigma]_n}$  при  $n \longrightarrow +\infty$ . Данное свойство обеспечивает хорошие приближения (5.17) точки  $\alpha$  подходящими дробями  $\frac{P_{[\sigma]n}^{[\sigma]_n}}{Q_{max}^{[\sigma]_n}}$  в выбранной нами ромбической норме  $|x| = |x_1| + \cdots + |x_d|$  или эквивалентной ей евклидовой норме  $|x|_e = (|x_1|^2 + \cdots + |x_d|^2)^{1/2}$ .

#### Список литературы

- 1. В. Г. Журавлев, Симплекс-ядерный алгоритм разложения в многомерные цепные дроби. — Совр. пробл. матем., МИАН, 2017, том 299, стр. 1–20.
- В. Г. Журавлев, Двумерные приближения методом делящихся торических разбиений. — Зап. научн. семин. ПОМИ 440 (2015), 81–98.
- В. Г. Журавлев, Дифференцирование индуцированных разбиений тора и многомерные приближения алгебраических чисел. — Зап. научн. семин. ПОМИ 445 (2016), 33–92.
- V. Brun, Algorithmes euclidiens pour trois et quatre nombres. In Treizieme congres des mathematiciens scandinaves, tenu a Helsinki 18–23 aout (1957), 45– 64. Mercators Tryckeri, Helsinki, 1958.
- E. S. Selmer, Continued fractions in several dimensions. Nordisk Nat. Tidskr. 9 (1961), 37–43.

- A. Nogueira, The three-dimensional Poincare continued fraction algorithm. Israel J. Math. 90 (1995), No. 1–3, 373–401.
- F. Schweiger, Multidimensional Continued Fraction. Oxford Univ. Press, New York, 2000.
- V. Berthe, S. Labbe, Factor complexity of S-adic words generated by the arnoux-rauzy-poincare algorithm. — Advances in Applied Mathematics 63 (2015), 90–130.
- P. Arnoux, S. Labbe, On some symmetric multidimensional continued fraction algorithms. - arXiv:1508.07814, August 2015.
- J. Cassaigne, Un algorithme de fractions continues de complexite lineaire. October 2015. DynA3S meeting, LIAFA, Paris, October 12th, 2015.
- В. Г. Журавлев, Симплекс-модульный алгоритм разложения алгебраических чисел в многомерные цепные дроби. — Зап. научн. семин. ПОМИ 449 (2016), 168–195.
- В. Г. Журавлев, Одномерные разбиения Фибоначчи. Изв. РАН, сер. матем. 71 (2007), № 2, 89-122.
- В. Г. Журавлев, Перекладывающиеся торические развертки и множества ограниченного остатка. — Зап. научн. семин. ПОМИ **392** (2011), 95–145.
- 14. В. Г. Журавлев, Многогранники ограниченного остатка. Математика и информатика, 1, К 75-летию со дня рождения Анатолия Алексеевича Карацубы, Совр. пробл. матем., 16, МИАН, М., 2012, 82–102.
- 15. Е. С. Федоров, Начала учения о фигурах. М., 1953.
- 16. Г. Ф. Вороной, Собрание сочинений, том 2. Киев, 1952.
- В. Г. Журавлев, Разбиения Рози и множества ограниченного остатка на торе. — Зап. научн. семин. ПОМИ, 2005, т. 322, с. 83–106.
- V. G. Zhuravlev, On additive property of a complexity function related to Rauzy tiling. — Anal. Probab. Methods Number Theory, E. Manstavicius et al. (Eds), TEV, Vilnius, 2007, p. 240–254.

Zhuravlev V. G. The karyon algorithm for decomposition into multidimensional continued fractions.

In this paper we propose a universal karyon algorithm, applicable to any set of real numbers  $\alpha = (\alpha_1, \ldots, \alpha_d)$ , which is a modification of the simplex-karyon algorithm. The main difference is an infinite sequence  $\mathbf{T} = \mathbf{T}_0, \mathbf{T}_1, \ldots, \mathbf{T}_n, \ldots$  of *d*-dimensional parallelohedra  $\mathbf{T}_n$  instead of the simplex sequence. Each parallelohedron  $\mathbf{T}_n$  is obtained from the previous  $\mathbf{T}_{n-1}$  by means of the differentiation  $\mathbf{T}_n = \mathbf{T}_{n-1}^{\sigma_n}$ . Parallelohedra  $\mathbf{T}_n$ represent itself karyons of certain induced toric tilings. A certain algorithm  $(\varrho$ -strategy) of the choice of infinite sequences  $\sigma = \{\sigma_1, \sigma_2, \ldots, \sigma_n, \ldots\}$ of derivations  $\sigma_n$  is specified. This algorithm provides the convergence  $\varrho(\mathbf{T}_n) \longrightarrow 0$  if  $n \longrightarrow +\infty$ , where  $\varrho(\mathbf{T}_n)$  denotes the radius of the parallelohedron  $\mathbf{T}_n$  in the metric  $\varrho$  chosen as an objective function. It is proved that the parallelohedra  $\mathbf{T}_n$  have the minimum property, i.e. the karyon approximation algorithm is the best with respect to karyon  $\mathbf{T}_n$ norms. Also we get an estimate for the approximation rate of real numbers  $\alpha = (\alpha_1, \ldots, \alpha_d)$  by multidimensional continued fractions.

Поступило 9 февраля 2018 г.

Математический институт им. В. А. Стеклова РАН Москва; Владимирский государственный университет, пр. Строителей, 11, 600024, Владимир, Россия *E-mail*: vzhuravlev@mail.ru