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Abstract. We outline recent results in the theory of type isomor-
phisms and automorphisms and present several practical applica-
tions of said results that can be useful in the contexts of program-
ming and data security.

§1. Introduction

The aim of this paper is to present an approach and several examples
to the creation of systems relying on the recent advances in the study of
type isomorphisms and automorphisms [26].

The power of type isomorphisms and automorphisms is illustrated by
the fact that they have a fairly simple computational structure closed
under composition behind them (finite hereditary permutations) [7] and
the groups of automorphisms of higher order types can represent arbitrary
finite groups [26]. The former property allows us to efficiently compute
answers to several common problems up to isomorphism, while exploiting
the latter property allows us to encode many conventional cryptographic
primitives directly in Type Theory. Among other examples we consider
automated theorem proving and typed library search up to isomorphism,
and an instance of ElGamal cryptosystem based on type automorphisms.

We omit proofs published elsewhere because the purpose of this article
is to present an idea of a method (most relevant proofs may be found
in [26]).

As a main system to present our ideas we shall use the second order
λ-calculus λ2βη (system F ). Its subsystems and extensions will also play
some role. The system that “underlies” all these systems is the untyped λ-
calculus Λ. For a detailed presentation of λ-calculus (typed and untyped)
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see [2, 13]. In the next section we shall present a brief description of these
systems, mainly for notation clarity purposes.

§2. Lambda Calculus

2.1. Untyped Lambda Calculus. The syntax of Λ is very simple. The
class of λ-terms consists of words constructed from the variables x, y, z . . .
using abstraction operator λ and parentheses ( , ). The class Λ of λ-terms
is the least class such that:

• if x is a variable, x ∈ Λ;
• if M ∈ Λ then (λx.M) ∈ Λ
• if M,N ∈ Λ then (MN) ∈ Λ.

The symbol ≡ denotes syntactic equality. The usual convention is to
elide internal . and λ, assume that abstraction associates to the right,
application to the left, and application precedes abstraction (that permits
to omit some of the parentheses). For example,

λx1x2x3.MN1N2N3 ≡ (λx1.(λx2.(λx3.(((MN1)N2)N3)))).

Sometimes we will need to abbreviate even more. Given a list of indexes
i1, . . . , in, instead of Ai1 . . .Ain we will write using a vector notation Ai1÷in .
This abbreviation may be used with the convention above, for example
λx1÷n.MN1÷n will have the same meaning as λx1 . . . xn.MN1 . . .Nn.

In the term λx.M , M is called the scope of λx. All occurrences of a
variable x in some term that are not in the scope of any λx are called
free. The set of all the free variables of M is denoted FV (M). All the free
occurrences of x in M are bound by λx in λx.M . The term without free
variables is called closed. Now, α-conversion is just a renaming of bound
variables. It defines an equivalence relation on terms (α-equivalence). We
shall write ≡α for syntactic equality extended by α-conversion.

As usual, the variable convention (justified by α-equivalence) is used: if
terms M1, . . . ,Mn occur in a certain context then in these terms all bound
variables are chosen to be different from free variables.

The syntax form [N/x]M denotes the substitution of N for all the free
occurrences of x in M with renaming of bound variables. To shorten the
formulas we may use the notation with ÷, that is, [N1÷n/x1÷n]M will also
mean [N1/x1](. . . ([Nn/xn]M) . . . ).

Normalization is the process based on reductions (oriented conversions)
leading to a normal form. In the untyped λ-calculus two reductions are
considered:
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• (β) (λx.M)N → [N/x]M ,
• (η) λx.(Mx) → M, x /∈ FV (M).

The α-congruence is not used as a reduction but only to respect the variable
convention. Subterms of the form (λx.M)N are called β-redexes. Similarly,
subterms of the form λx.(Mx) (x /∈ FV (M)) are called η-redexes. When
a term contains no β-redexes it is said to be in β-normal form, when a
term in β-normal form contains no η-redexes it is said to be in βη-normal
form.

Notation M →∗ N means that there exists a reduction sequence from
M to N . Term M is said to have a β-normal form (βη-normal form) N
if there exists a β (βη) reduction sequence M →∗ N . In the untyped
λ-calculus not all the terms have normal forms. For example, the fixed
point combinator Y ≡ λf.((λx.f(xx))(λx.f(xx))) does not have any nor-
mal form. Respectively, for some terms the normalization process may not
terminate. A reduction sequence can not be extended only if it ends in a
normal form.

M is said to be weakly normalizing (WN (M)) if there exists a finite
reduction sequence starting with M and leading to some normal term.
M is said to be strongly normalizing (SN (M)) if all reduction sequences
starting with M are finite.

Definition 1. Reduction → is said to have the CR property iff for each
M →∗ M1 and M →∗ M2 there exists N such that M1 →∗ N and
M2 →∗ N .

Theorem 1. Church–Rosser. ( [2, Th. 3.3.9]).

• Both β-reduction and βη-reduction have the CR property.
• If M1 = M2 then there exists some term N such that M1 →∗ N

and M2 →∗ N .

This has two important consequences:

• M has a β-normal form (βη-normal form) if there exists an N
such that M = N and N is a β-normal form (βη-normal form);

• M does have at most one normal form: all reduction sequences
that terminate, do terminate with the same normal form.

Two terms M,N are said to be convertible if there exists a third term K
such that both M and N can be reduced to K by applying some reduction
sequences M →∗ K, N →∗ K. The equality = on terms is the reflexive
symmetric transitive closure of convertibility relation.
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Remark 1. From the point of view of computation, the untyped λ-
calculus is very powerful: it has the same computational power as Turing
machines or any other equivalent formalism, such as partial recursive func-
tions. It has obvious consequences for decidability and complexity. Roughly
speaking, every known “hard problem” can be modeled. In particular, the
property WN (M) is undecidable (equivalent to the Halting Problem).

2.2. Typed Systems. The proof-theoretical presentation of λ2βη below
is based on [7].

The class of types of λ2βη is constructed from the type variables X ,
Y , Z . . . using type constructors →, ∀ and parentheses ( , ). It is the least
class Θ such that:

• if X is a type variable, X ∈ Θ;
• if A,B ∈ Θ then (A → B) ∈ Θ;
• if A ∈ Θ and X is a type variable then ∀X.A ∈ Θ.

To omit some of the parentheses, it is assumed that → is applied first,
all operations associate to the right, and the convention that permits to
elide internal ∀ and . is applied. For example,

∀XY.X → Y → X → X ≡
(

∀X.(∀Y.(X → (Y → (X → X))))
)

.

Usually the types A → B are referred to as the arrow (or function) types.
The variables in types are bound by ∀. In the type ∀X.A, the scope of ∀X
is A. The usual α-equality and variable convention are extended to types.
This permits to define the substitution of types into types in a way similar
to the untyped λ-terms.

The class of pre-terms is the smallest class Θ such that:

• the term variables x ∈ Θ;
• if x is a term variable, A is a type, and M ∈ Θ then λx : A.M ∈ Θ;
• if M ∈ Θ and N ∈ Θ then (MN) ∈ Θ;
• if X is a type variable and M ∈ Θ then λX.M ∈ Θ is a pre-term;
• if M ∈ Θ and A is a type then (MA) ∈ Θ.

In the pre-terms there are two binders, λ and ∀ (it may be used inside
types), but the notions of α-equality, the variable convention, and the
definition of the substitution can be extended to pre-terms [7].

To define well-typed terms we introduce a deductive system closely re-
lated to the second-order propositional calculus. Below Γ,∆ . . . denote
the contexts of type declarations, i.e., the lists of typed term variables
x : A, y : B . . . where each variable name x, y, . . . is used at most once.



AUTOMORPHISMS OF TYPES AND THEIR APPLICATIONS 291

The typing judgements are the expressions of the form Γ ⊢ M : A where Γ
is a context, M is a pre-term, and A is a type. Well-formed terms (or merely
terms) are pre-terms that are part of the typing judgements derivable in
the deductive system below.

Axiom:
x : A ∈ Γ

Γ ⊢ x : A
.

Rules:

Γ, x : A ⊢ M : B

Γ ⊢ λx : A.M : A → B
(→ −intro)

Γ ⊢ M : A → B Γ ⊢ N : A

Γ ⊢ (MN) : B
(→ −elim)

Γ ⊢ M : A

Γ ⊢ λX.M : ∀X.A
(∀ − intro) ∗

Γ ⊢ M : ∀X.A

Γ ⊢ MB : A[B/X ]
(∀ − elim) ∗ ∗

* For the type variable X not free in the type of any free term variable
that occurs in the term M .
** For any type B.

To define the equality relation, the following basic equalities are consid-
ered:

(β) (λx : A.M)N = M [N/x], (η) λx : A.(Mx) = x if x /∈ FV (M),

(β2) (λX.M)A = M [A/X ], (η2) λX.(MX) = M.

The equality generated by β, η, β2, η2 is denoted by =2. This system is
strongly normalizing and has the Church-Rosser property [7], so to check
=2 it is enough to compare normal forms.

Other systems.
(i) The calculus λ1βη. It is the λ2βη restricted to the first order or simple

types (types that do not contain ∀). Equality of terms in λ1βη is generated
by β, η and denoted by =1. Equality of types is syntactic identity.

(ii) Dependent type systems. In general, those are systems where types
may depend on terms. We shall not go far into details in this case, because
most of technical considerations below are valid already in λ2βη. Two rules
that introduce dependent product look very similar to →-introduction and
abstraction in λ2βη and λ1βη:

Γ, x : K ⊢ K ′ kind

Γ ⊢ (x : K)K ′ kind

Γ, x : K ⊢ M : K ′

Γ ⊢ [x : K]M : (x : K)K ′

(though x may occur in K ′.)
The rules are taken from the system LF considered in [20]. This system

contains a special type Type, and because of that in general the types of
LF are called kinds.
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In LF the expression (x : K)K ′ denotes dependent product, and
[x : K]M the λ-abstraction. The ∀X.A(X) of λ2βη can be modeled by
(x : Type)K(x).

The following rule (application) shows how the kinds in LF may be
influenced by terms:

Γ ⊢ N : (x : K)K ′ Γ ⊢ M : K

Γ ⊢ (NM) : [M/x]K ′
.

(iii) Extensions with induction-recursion. All the systems mentioned
above (λ1βη, λ2βη, LF ) may be extended by adding inductive types, like
the type of natural numbers Nat = IndX.{0 : X, succ : X → X} or the
type of ω-trees Tω = IndX.{0 : X, succ : X → X, lim : (Nat → X) → X}.

As usual, inductive types are defined with corresponding recursion op-
erators (constants defined together with appropriate computation rules
usualy called ι-reduction).

All of the typed systems mentioned above are SN . For λ1βη and λ2βη
see [7], for LF and its extension UTT with induction-recursion (and also
type universes) see [11]. The kinds (since they contain terms) in LF and
UTT also may be normalized.

§3. Isomorphisms and Automorphisms of Types

To define the notion of isomorphism of types, one needs only a sort
of partial categorical structure: for all types A, B the class of terms that
represent morphisms from A to B (usually one takes the terms t : A → B);
for each type A, a term idA that represents identity (usually λx : A.x); a
composition ◦ (at least for terms A → B and B → A); and an equivalence
relation ≡ on terms (usually the βη-eqivalence). The term t from A to B
is an isomorphism iff there exists t−1 from B to A such that t−1 ◦ t ≡ idA
and t ◦ t−1 ≡ idB. In this case we call the types A, B isomorphic and
write A ∼ B. In a special case when A and B are equal, the isomorphisms
A → B are called automorphisms A → A.

The equality of types may be syntactic identity, α-equality (in second
order lambda calculus), or based on equivalence of terms (in case of de-
pendent types that may depend on terms).

Groupoids are defined as small categories where each arrow is invert-
ible [4]. Let K be a category. For A ∈ Ob(K), let Kiso(A) denote the
subcategory of K that contains all A′ ∈ Ob(K) such that A ∼ A′. Its
morphisms are the isomorphisms f : A′ → A′′ where A′ ∼ A ∼ A′′. The
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category Kiso(A) is a groupoid. The graph of Kiso(A) is a connected com-
ponent of the graph of K.

Let AutK(A) denote the group of automorphisms of A, that is, of iso-
morphisms A → A, with composition as group multiplication, fg = f ◦ g.
It may be seen as a category with one object. It is also a full subcategory
of Kiso(A). When K is clear, we shall omit the index K and write Aut(A).

Lemma 1. Let A,A′ ∈ Ob(K) be isomorphic. Then a) Kiso(A) = Kiso(A
′)

and b) the groups AutK(A) and AutK(A′) are isomorphic as groups.

Lemma 2. Let f : A → A′ be an isomorphism in K, any other isomor-
phism g : A → A′ may be uniquely represented as g = f ◦ h and g = h′ ◦ f
where h : A → A, h′ : A′ → A′.

Theorem 2. For each pair B,C ∈ Ob(Kiso(A)) a distinguished isomor-
phism fBC may be selected in such a way that every diagram of distin-
guished isomorphisms commutes. The result obviously holds also for the
isomorphisms in Kop

iso(A).

In type theories that we considered above the number of types isomor-
phic to A is finite, so the groupoid may be represented by the diagram
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where A1, . . . , An are all types that are isomorphic (but not equal) to
A (and to each other), fi, f

−1
i denote the fixed isomorphisms and their

inverses, φ denotes an arbitrary automorphism of A and φ′
i = fi ◦ φ ◦ f−1

i

(1 6 i 6 n).

3.1. Finite hereditary permutations.

Definition 2. (Cf. [6, p. 323]), Let M and N be normal terms in Λ. For
M to be inverse of N means that both relations λx.M(Nx) →∗ λx.x and
λx.N(Mx) →∗ λx.x are valid.
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Definition 3. (Cf. [6] and [7], def. 1.9.2.) An untyped λ-term M is a finite
hereditary permutation (f.h.p.) iff

• M ≡ λx.x, or
• M ≡ λz.λxσ(1)÷σ(n).zM1÷n where σ is a permutation of the set
{1, . . . , n} and λxi.Mi is a finite hereditary permutation for all
1 6 i 6 n.

The first variable of an f.h.p. after the λ-prefix will be called its
head variable.

It follows immediately from this definition that f.h.p.’s are closed terms.

Examples 1. The following terms are f.h.p.’s:

• λz.λx2x1.zx1x2;
• λz.λx2x1x3.zx1x2(λy2y1.x3y1y2).

The terms M1÷n themselves are not f.h.p.’s (an abstraction λxi has
to be applied). In difference from both Di Cosmo and Dezani we apply
permutation to the indexes in the prefix and not at the right under the
application. When the erasures of typed λ-terms are considered, it helps to
reconstruct directly their type from the λ-prefix. In fact both definitions
are related by α-conversion via xi 7→ xσ−1(i) and thus are equivalent.

Let us notice that the f.h.p.’s are not necessarily normal. For example,
if in the definition of an f.h.p. Mn is xσ(n) then an η-reduction is possible;
if Mn−1 ≡ xσ(n−1) then another η-reduction is possible afterwards, and
similar η-reductions may be possible inside Mi.

However such η-reductions are the only reductions possible due to the
definition of an f.h.p. Via these reductions an f.h.p. always reduces to a
unique normal form that is also an f.h.p.

The detailed technical proof may be already found in [6]. As a brief
explanation, let us quote [7]: “One may easily show that the f.h.p.’s are
typable terms. . . By the usual abuse of language we may then speak of
typed f.h.p.’s. Recall now that all typed terms possess a (unique) normal
form (see [2]).”

We shall permit us an abuse of language and call f.h.p.’s all terms that
possess a normal form and this normal form is an f.h.p.

The main result about invertible untyped λ-terms is given by the fol-
lowing theorem.

Theorem 3. (See [7], theorem 1.9.1; cf. [6], main theorem.) Let M be an
untyped term that possesses a normal form. Then M is invertible iff it is
an f.h.p.
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3.2. Typed Isomorphisms. For a type A in each type theory where a
notion of isomorphism is defined as above, one may define the groupoid
Gr(A) whose objects are the types A′ ∼ A (all types isomorphic to A)
and whose morphisms are the isomorphisms between such types, and the
group Aut(A) of automorphisms A → A. (The elements of this group are
λ-terms considered up to = and the group operation is the composition of
λ-terms.)

It is easily shown that if Γ ⊢ (x : K)K ′ is an isomorphism then x has
no free occurrences in (the normal form of) K ′. If in the kind (x : K)K ′

x /∈ FV (K ′) we shall usually write K → K ′.
The relation of isomorphism between types is decidable in λ1βη, λ2βη,

and LF [25]. Moreover, there exists only finite number of types (kinds)
isomorphic to a given type (kind).

Remark 2. For the complexity of this decision problem in LF a lower
bound is given by graph isomorphism problem.

Definition 4. (See [26], cf. [7], p.48.) Let us consider λ1βη, λ2βη and
LF . Let M be a typed λ-term, i.e., Γ ⊢ M : A in one of these systems.
The erasure e(M) is defined as follows:

• in:

λ1βη : e(x) ≡ x; e(λx : A.N) ≡ λx.e(N); e(M1M2) ≡ e(M1)e(M2)

(one may say merely that all type labels of variables are erased);
• in LF (we consider M being part of ΓM : K):

e(x) ≡ x; e([x : K]N) ≡ λx.e(N); e(M1M2) ≡ e(M1)e(M2);

• in λ2βη we define first e(B) for types, because types may occur
not only as labels of variables: the untyped λ-calculus will contain
now two sorts of variables: x, y, z, . . . and X,Y, Z . . . (inside the
calculus they are treated in exactly the same way, and introduced
only to trace the origin of these variables) and be extended by two
constants, K∀ and K→.

– Let B be a type. We define1

e(X) ≡ X, e(B1 → B2) ≡ K→(e(B1)e(B2)), e(∀X.B0) ≡ K∀(λX.e(B0)).

1The abstraction λ is introduced in e(∀X.A) to respect binding. This definition is in-
spired by the definition of erasure for second order types in [5]. However, we modified the
definition of e(A → B). Bruce and Longo used e(A → B) ≡ K→e(A)e(B) but with their
definition erasure may create redexes, for example e(∀X.(Y → X)) ≡ K∀(λX.K→Y X).
With our definition e(A) is normal for any type A. In fact, when one is interested only
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– Let M be a term. Now e(x) ≡ x, e(λx : A.N) ≡ λx.e(N),
e(λX.N) ≡ λX.e(N), e(NB) ≡ e(N)e(B),
e(M1M2) ≡ e(M1)e(M2).

A fundamental fact is that θ : S → S′ is an isomorphism iff its era-
sure e(θ) is a finite hereditary permutation [6,7]. In particular it does not
contain constants K→,K∀. The following theorem is given in a stronger
formulation than similar theorems in [7] (for λ1βη and λ2βη) or [6] (for
λ1βη). We put together and slightly strengthen our own theorems 3.13,
3.15 and 3.25 from [26].

Theorem 4. Let Γ ⊢ θ : S → S′ (in λ1βη, λ2βη or LF ). Then θ is an
isomorphism iff e(θ) is an f.h.p. Moreover, by e(θ) and one of the types S,
S′ it is possible to reconstruct θ.

3.3. Computing Isomorphisms. We shall now show how to compute
isomorphisms between types.

Note that every λ1βη type A can be written as

A ≡ T1 → T2 → . . . Tn → Z

with Z being a type variable, and T1÷n being some types. Meanwhile,
every λ2βη type B can be transformed by applying the following rewrite
rule (half of an isomorphism)

(B → ∀X.C) 7→ (∀X.B → C), X /∈ FV (A)

(renaming bound variables when needed) until this rule can no longer be
applied (that is, all ∀s on the each level can be moved to the left), which
allows us to write the resulting type as

D ≡ ∀X1÷m.T1 → T2 → . . . Tn → Z.

Definition 5. Q-normal form. Given a total ordering on types (such an
ordering can always be defined given an ordering on type variables) we say
that a λ1βη type A written in the above notation is in Q-normal form iff
i < j when Ti 6 Tj (6 signifies “total-ordering-less or as-types-equal”) and
each T1÷n is in Q-normal form.

Definition 6. S-normal form. Similarly, we say that the λ1βη type A
written in the above notation is in S-normal form iff i < j when

Card{T | T ∈ T1÷n, T ≡ Ti} < Card{T | T ∈ T1÷n, T ≡ Tj}

in the relationship with f.h.p.’s, there are many other possibilities to define e(A → B)
in such a way that no redexes are created, for example, as K→(K−A)(K+B).
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or Ti < Tj when those are equal, and each T1÷n is in S-normal form.

In other words, to transform a type into its Q-normal form one needs
to recursively sort all premises using a supplied ordering, while to get its
S-normal form one needs to first recursively sort arguments by the number
of their occurrences and then if two different sub-formulas (on the same
level) have a same number of occurrences, sort those using the ordering.

Examples 2. For the type

X → Y → X → Z

assuming the conventional lexicographic ordering on type variable names

• X → X → Y → Z is the Q-normal form,
• Y → X → X → Z is the S-normal form.

Lemma 3. A given λ1βη type has unique Q- and S-normal forms. There
exist mechanical procedures to compute each of those normal forms. Those
procedures produce isomorphisms.

Proof. The procedures are defined as outlined above: apply to premises
recursively, and either sort the results for the Q-normal form, or first count
occurrences and then sort for the S-normal form.

Clearly, both procedures produce the unique solutions (up to the equal-
ity on types) because of the total orderings on types and natural numbers.

These procedures simply recursively reorder premises, hence they pro-
duce finite hereditary permutations, hence by theorem 4, they produce
isomorphisms. �

We shall use notation QNF (A) and SNF (A) to denote the Q- and
S-normal forms of A respectively.

Note that QNF and SNF , too, can be represented in a vector notation

A1÷iA → B1÷iB → · · · → Z

or, in plain programming terms, using the following algebraic datatype

F = List(N × F )× V ar

where V ar signifies type variable name and the natural number signifies
the number of occurrences of the corresponding F . Then, QNF ’s List is
sorted by F and SNF ’s List sorted by N and then by F .

Theorem 5. Two λ1βη types are isomorphic iff their Q-normal forms
coincide. Two λ1βη types are isomorphic iff their S-normal forms coincide.
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Proof. Lemma 3 provides A ∼ QNF (A) and B ∼ QNF (B).

• If A ∼ B, then QNF (A) ∼ QNF (B) by transitivity via comple-
tion of the diagram.

• If QNF (A) ≡ QNF (B), then, trivially, QNF (A) ∼ QNF (B),
and hence A ∼ B by transitivity via completion of the diagram.

Identically for SNF . �

Note that adapting these results to the λ2βη case is impossible: renam-
ing of variables bound with ∀ can change the order of sub-formulas (which
means Q- and S-normal forms stop respecting α-conversion), switching to
the nameless (de Bruijn) notation solves that particular issue, but then
the resulting normal form is still influenced by the order of quantification,
which prevents the property analogous to the theorem 5 from working
out. This is only natural as CCC-isomorphism test for Hindley-Milner is
known to be graph-isomorphism-complete [3] while the result for λ1βη is
polynomial [10].

Note however, that S-normal-form-like construction can still be useful
even for the λ2βη. Assuming Set is an “unordered List” (i.e. equality on
Set is set equality), we can modify the above datatype as follows

F = Qs× List(N × Set F )× V ar

with Qs signifying the natural number of ∀s this type introduces, V ar now
signifying de Bruijn index of the corresponding variable, and the Set accu-
mulating sub-types of the same number of occurrences. Also note that in
the systems that have kinds one has to apply the same structure and sort-
ing method to ∀s too. Preprocessing a list of types into this form simplifies
later isomorphism checking as one can rapidly reject many non-isomorphic
pairs by inspecting only the spines (“S-” in “S-normal form” comes from
“spine”, and “Q-” comes from “quotient”) of natural numbers of the re-
sulting values and, most importantly, these spines stay constant under
reordering of variables under ∀s. For simplicity, in the following sections
we shall use the term “S-normal form” both for the λ1βη case and for the
S-normal-form-like structures of the more general systems.

§4. Programming applications

In this section we outline several applications of the above facts to the
programming languages and their tooling.
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4.1. Proof Search. As we noted above, S-normal form is, essentially, a
representation of a given type directly in a vector notation (with some re-
strictions). We can apply the same idea to terms thus producing a notation
for vector-λ-calculus with types in S-normal form.

Let λx1÷n signify the binding of n variables of the same type in a row
to the vector of variables x (with the usual λx now being the syntax sugar
for λx1÷1) and let all variable occurrences use two-tier system of a variable
name and an index (and similarly for ∀s and kinds in systems that have
those). For example,

λxyz.xyz : (A → A → B) → A → A → B

becomes

λx1÷1.λy1÷2.x1y1y2 : (A1÷2 → B)1÷1 → A1÷2 → B.

Now, extend this system by allowing variable occurrences to refer to any
element of the corresponding vector using xany notation. Terms with such

any-variables in this notation correspond to sets of terms in the conven-
tional notation.

By “forgetting” that bindings are vectors we can straightforwardly adapt
many proof search (automated theorem proving) algorithms that take a
type as input and produce a term as output (e.g. [8,19]) by giving them the
type in S-normal form with all numbers of occurrences stripped as input
and reannotating the output as follows: bindings get their size annotations
from the S-normal form, variables are annotated with any unless they are
bound to vectors of size 1, in which case they are annotated with 1. For
example, given a type

A → B → A → A

we take its S-normal form

B1÷1 → A1÷2 → A

strip it

B → A → A

run an inference algorithm that produces a function (a set of functions) of
this type

λxy.y

and then reannotate this term (these terms) into

λx1÷1y1÷2.yany
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thus producing a compact form for a set of terms satisfying the original
type up to isomorphism.

Finally, note that unification algorithms [9, 16, 18], too, can be (some-
what less straightforwardly, as they have to handle the case when two
or more sub-types have the same number of occurrences in the S-normal
form) adapted to this representation: vectored arrows, ∀s and λs unify with
similar vectored things of the same size (and sizes of consequent vectored
things must monotonically increase), an any-variable unifies with any index
of the same binding.

In short, applying this idea to program inference and unification al-
gorithms produces algorithms that solve the problems in question up to
isomorphism almost for free with very little changes.

4.2. Typed Library Search. Types in functional programming lan-
guages can be used by specialized search tools like Hoogle [21] to search
program libraries for functions [7,22–24]. Early systems tried to unify the
query type modulo isomorphism with all the types of functions available
in the library. Modern systems have to deal with much larger libraries and
so they usually use unification (if at all) on a pre-filtered set of candidates
chosen by heuristics like close arity (i.e. query and result should have simi-
lar number of arguments) and high result rarity (results with common type
signatures are less interesting). We feel that, especially when programming
using very generic algebraic structures, the arity pre-filter frequently fil-
ters out useful results and hence the user frequently has query the system
with non-trivial modifications of the original query (like adding new type
variables into seemingly random places in the expression) to get something
useful.

Preprocessing all the types in a library into S-normal form and then
using those for pre-filtering (if not for the actual unification modulo iso-
morphism) gives much more control than simple arity comparisons. For
instance, one can use edit distance on the spines of the S-normal form in
question thus moving the system from an ad-hoc heuristic into a realm of
more conventional search engines.

4.3. Rejecting Non-trivial Automorphisms. Finally, yet another in-
teresting application is type checking that rejects function with types that
have non-trivial automorphisms. Transforming a given type into its S-
normal form reveals the structure of its automorphism group (see the next
section), in particular, sub-types that have more than one occurrence in
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S-normal form can be shuffled around. In some instances (like when a func-
tion of two arguments is commutative) this doesn’t make a difference, but
in other instances these functions can be “misused” by mistakenly apply-
ing arguments in the wrong order. We feel that enforcing this rule of “no
non-trivial automorphisms” can be useful to force programmer diligence
when designing a truly strictly-typed library API.

On one hand, it’s hard to imagine a practical language with non-discri-
minatory application of this rule (use in select libraries does seem useful,
though). On the other hand, in such a utopia of a programming language
one can call functions by supplying arguments in arbitrary order.

§5. Automorphism Groups of Types

The necessary notions of the theory of groups, such as wreath product,
may be found in [12], see also [27]. The following theorem characterizes
the groups of automorphisms of types in λ1βη. A detailed proof may be
found in [26].

Theorem 6. Let Sm denote the symmetric group on m elements, and
Sm|≀G the wreath product of Sm and G. The groups Aut(A) (and Autop(A))
are, up to group isomorphisms, exactly the groups that belong to the class
W of finite groups defined inductively as follows:

• {1} ∈ W ;
• if G,H ∈ W then G×H ∈ W ;
• if G ∈ W and m > 2 then Sm| ≀G ∈ W .

Corollary 1. (See [1], p. 1457, proposition 1.15.) The class of groups
Aut(A) (considered up to group isomorphisms) where A are types of λ1βη
coincides with the class of automorphisms of finite trees.

The “representation power” of λ2βη and dependent type systems is much
stronger. Every finite group may be represented as Aut(A) for some A in
λ2βη or in LF where ∀ may be replaced by dependent product. This was
proved in [26] (theorems 5.5 and 5.6). Here we present these results in a
more refined form, that permits to obtain a recursive algorithm to compute
the groups Aut(A) (in [26] no algorithm was proposed).

Let V = {X1÷n} ⊆ FV (A). Let σ(A) denote the result of substitution

[Xσ(1)/X1, . . . , Xσ(n)/Xn]A, σ ∈ Sn.

One may consider the permutations ΣV (A) ⊆ Sn such that ∀σ ∈ ΣV (A).(σ
(A) ∼ A) and the groupoid GrΣ(A) ⊆ Gr(A) whose objects are types
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A′ ∼ A such that ∃σ ∈ Σ(A).(A′ = σ(A)) and morphisms are the same
isomorphisms as in Gr(A), so it is a full subcategory of Gr(A).

Lemma 4. For any V ⊆ FV (A), ΣV (A) is a group w.r.t. the composition
of permutations.

Lemma 5. Let V = {X1÷n} ⊆ FV (A). There exists a bijection between
the group Aut(∀X1÷n.A) and the set of isomorphisms M : A → A′ such
that ∃σ ∈ ΣV .(σ(A) ≡ A′).

Theorem 7. Let A be some type in λ1βη and let ∀.A denote its universal
closure (the type in the second order calculus λ2βη). Then the group of
automorphisms Aut(∀.A) (in λ2βη) is isomorphic to the cartesian product
Aut(A) × Σ(A).

Theorem 8. For every finite group G there exists some type A in λ1βη
such that the group ΣFV (A)(A) is isomorphic to G. It is possible to con-
struct A in such a way, that at the same time Aut(A) = {idA}.

As in [26], the idea is to “model” the Cayley colored graph using the
structure of the type. In this theorem in fact A may be quantifier-free.

Corollary 2. For every finite group G there exists some type A in λ1βη
such that the group Aut(∀.A) (in λ2βη) is isomorphic to G.

Using theorem 6 we can describe now (up to an isomorphism of groups)
the group Aut(A) for any type A in and λ2βη.

Theorem 9. Any type A in λ2βη is isomorphic to a type A′ of the form

A′ = ∀X1÷n.A1 1÷i1 → . . . Am 1÷im → Z

where Z and X1÷n are type variables, the types in each list Ak are identical,
types in different lists are not isomorphic, and each Ak1÷kik are in this
form too. In particular, any type A in λ2βη is isomorphic to its Q-normal
form (-like stucture). The groups Aut(A) and Aut(A′) are isomorphic as
groups, and Aut(A′) is obtained from symmetric groups by combination of
wreath products, cartesian products and cartesian products with ΣV (−).

In case of LF the universal quantification may be modeled by dependent
product. Instead of ∀X.B(X) we write (X : Type)B(X), and we can obtain
similar results about the representation of finite groups in LF .
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§6. Security Applications

In this section we present several examples of possible practical appli-
cations of the results described above.

6.1. Encoding Conventional Cryptography on Finite Groups. For
illustrative purposes, let us recall the description of the ElGamal cryp-
tosystem [15,17]:

• Private Key: m,m ∈ N .
• Public Key: g and gm.
• Encryption: To send a message a Bob computes gr and gmr for a

random r ∈ N . The ciphertext is (gr, gmra).
• Decryption: Alice knows m, so if she receives the ciphertext
(gr, gmra), she computes gmr from gr, then (gmr)−1, and then
computes a from gmra.

We can use the results described in the previous sections to emulate
this protocol in Type Theory:

• select some base type A and the message a : A,
• represent g as a distinguished automorphism g : A → A (f.h.p.),
• represent gm as g ◦ · · · ◦ g (m times), and similarly for gr and gmr,
• run the ElGamal protocol as normal.

By encoding a finite cyclic group of prime order as a group of auto-
morphism of some type we can implement ElGamal (or any other crypto-
graphic protocol based on finite groups) since the composition and inverse
of type automorphisms (represented by finite hereditary permutations [7])
can be computed in linear time.

We do not consider here the cryptosystems like MOR based on a more
sophisticated group theory [17] but they, too, can be represented in type
theory using the results of [26].

It is fairly clear that these type-based implementations are going to be
less efficient than an equivalent long integer-based ones, which would make
them less desirable for conventional applications. But that alone can make
them more desirable for other uses like proof-of-work algorithms.

Also of note is the fact that these encryption schemes preserve the struc-
ture of a : A. Which, for instance, means that Alice needs not typecheck
the decrypted a if she trusts Bob to typecheck his.

6.2. More General Ideas. Consider some type S. The closed terms
F : S represent combinators that may take other terms as arguments.



304 S. SOLOVIEV, J. MALAKHOVSKI

A possible meaning is that F combines in some way (opaque to external
users) the operators and data. All its parameters may be fed externally in
a controlled way.

For example, let

S ≡ (X1 → X ′

1) → . . . (Xn → X ′

n) → X1 → . . . Xn → X.

Here X1, . . . , X
′
n, X are not necessarily different and may be type vari-

ables or constants). The terms F : S represent combinators that may take
any functions φ1 : X1 → X ′

1, . . . φn : Xn → X ′
n and data χ1 : X1, . . . , χn :

Xn as arguments.
If we take

F ≡ λf1÷n : X → Xλx : X.(fσ(1)(. . . (fσ(n)x) . . . )

where σ is some permutation of {1, . . . , n}, it will combine the applications
of φ1÷n in any desired order. If we take F ≡ λf1÷n : X → Xλx : X.fix
then only one of φ will be selected, etc. The φ1÷n themselves may be, for
example, some coding functions.

In an extension of λ-calculus with inductive types and induction-recur-
sion F may include recursion operators and the functions φ1, . . . , φn and
data x1, . . . , xn be the parameters of recursion.

The type S of the combinator F may have many automorphisms which
form a subset of all possible isomorphisms to/from this type. Automor-
phisms, in difference from isomorphisms, do not change the types of pa-
rameters (in a given order) that F can be applied to. So, if an automor-
phism θ : S → S is applied to F then θ(F )φ1 . . . φn x1 . . . xn is valid iff
Fφ1 . . . φn x1 . . . xn is valid. In difference from automorphisms, an action
of an isomorphism θ′ : S → S′ (which is not an automorphism) may make
invalid an application of θ′(F ).

The terms and types above belong to λ1βη possibly extended with in-
ductive types. In λ2βη we may add a second-order λ and consider

λX1 . . . Xn X
′
1 . . .X

′
n.F : ∀X1 . . . Xn X

′
1 . . .X

′
n.S.

In this way the types also become controlled parameters, for example one
may “feed” Nat, Bool or other types for variables.

If dependent types are admitted, the types X themselves may depend
on terms as parameters. A standard example is the type of Boolean vectors
of the length n : Nat.
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The information about the distinction of type variables may be hidden
from an intruder and this will permit to use type-flaw detection meth-
ods [14] to detect the attacks.

In general S may contain subtypes of any possible form, including con-
stant types, the types of many-variable functions Y1÷i → Y , higher-order
functions like (X → Y ) → Z etc. It may be seen as the type of combinators
that assemble a program from the program modules of these types. The
automorphisms, since they do not change the type globally, may be used
to hide the exact purpose of each module (to “mix” the program modules
of the same type).

Examples 3. Consider a family of functions (represented by some closed
terms in LF with inductive types) {f(n) : G(n) → H(n)} with n : Nat
and G(n), H(n) : Type. We may merely consider one function {f : (n :
Nat)(G(n) → H(n)} with G,H : Nat → Type. The f(n) may be isomor-
phisms for some n. Let F be the type of data to be encoded. Consider the
following closed term:

[n : Nat]f(n) : G(n) → H(n).

Let k : Nat be the smallest k that G(k) = F and f(k) is an isomorphism
(we assume that it exists). Then f(k) is the coding function.

We assume also that there exists the smallest n > k such that G(n) =
H(k) and H(n) = F , and f(n) is the inverse isomorphism for f(k).

To decode the data one has to find n. Obviously this schema permits to
represent many cryptosystems, including the ElGamal considered above.

§7. An Outline of a Quantitative Analysis

Let A be a type. The cardinality |Aut(A)| and the number q of types
that are isomorphic to A (including A) are finite. From lemma 2 and
theorem 2 it follows that the number of isomorphisms A → . . . (or · · · → A)
that are not automorphisms is merely |Aut(A)| · (q − 1).

Consider first the calculus λ1βη. Without loss of generality we may
assume that A ≡ A11÷1i1 → . . . Am1÷mim → X . Let n = i1 + · · ·+ in.
Taking into account the definition of wreath product [12], the size of sym-
metry groups and that |Aut(Ak1)| = |Autop(Ak1)|, we obtain the following
recursive formula:

|Aut(A)| = i1! · |Aut(A11))|
i1 · · · · · im! · |Aut(Am1)|

im .
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The number of types that are isomorphic but not identical to A is given
by

n!

i1! . . . im!
· | iso(A11)|

i1 · · · · · | iso(Am1|
im − 1.

In λ2βη there will be more isomorphisms due to possible permutations
in the ∀-prefix (each premutation defines an isomorphism), but also the
equality of types will become non-trivial because of α-conversion in types,
and it will augment the number of automorphisms. In case of LF there
is more constraints (not all “premises” of a dependent product can be
permuted because of dependencies), so this can reduce both the number
of isomorphisms and automorphisms. However the choice of type structure
remains very flexible and permits to control the structure of the groupoid
of isomorphisms and the automorphism groups.

§8. Conclusion

Some more questions must be resolved to make some of the ideas out-
lined in this paper more practical. Presented algorithms should be im-
plemented in a code base ready for public consumption, precise commu-
nication protocols that would make use of the distinction between iso –
and automorphisms, public and private type information, should be elab-
orated. The complexity of algorithms (for example, for reconstruction of
typed isomorphisms from erasure) needs to be investigated much more
precisely.

Moreover, we believe that the use of type theory and λ-calculus as a
higher-level formal language for data protection (especially software pro-
tection) and detection of attacks deserves to be investigated further.

References

1. L. Babai, Automorphism Groups, Isomorphism, Reconstruction. In Handbook of
Combinatorics. Elsevier. 2 (1995), 1447–1541.

2. H. Barendregt, The Lambda Calculus; Its Syntax and Semantics (revised edition).
North-Holland Plc. (1984).

3. D. A. Basin, Equality of Terms Containing Associative-Commutative Functions
and Commutative Binding Operators is Isomorphism Complete. In M. E. Stickel
Ed., lOth Int. Conf. on Automated, Kaiserslautern, Germany, of Lecture Notes in
Artificial Intelligence, Springer-Verlag 449 (1990), 251–260.

4. R. Brown, Ph. G. Higgins, R. Sivera, Nonabelian Algebraic Topology. — European
Math. Soc. (2011) .



AUTOMORPHISMS OF TYPES AND THEIR APPLICATIONS 307

5. K. Bruce, G. Longo, Provable isomorphisms and domain equations in models of

typed languages. In: ACM symposium on theory of computing (STOC 85) (1985),
263–272.

6. M. Dezani-Ciancaglini, Characterization of normal forms possessing inverse in the

λ− β − η-calculus. — Theor. Comp. Scie., 2 (1976), 323–337.
7. R. Di Cosmo, Isomorphisms of types: from lambda-calculus to information retrieval

and language design. Birkhauser (1995).
8. D. Gilles, A complete proof synthesis method for the cube of type systems. — J.

Logic Comp., 3(3) (1993), 287–315.
9. D. Gilles, Higher-order unification and matching. In Alan Robinson and Andrei

Voronkov, editors, Handbook of automated reasoning, Elsevier Science. 2, No. 16
(2001), 1009–1062.

10. J. (Yossi) Gil, Y. Zibin, Efficient Algorithms for Isomorphisms of Simple Types. —
Math. Struct. Comp. Science (2003).

11. H. Goguen, A Typed Operational Semantics for Type Theory. PhD thesis, University
of Edinburgh, 1994.

12. M. Hall, (Jr.) The Theory of Groups. The Macmillan Company (1959).
13. Chr. Hankin, Lambda Calculi: A Guide for Computer Scientists. Clarendon Press,

Oxford (1994).

14. J. Heather, G. Lowe, S. Schneider, How to prevent type flaw attacks on security

protocols. — J. Comp. Sec., 11(2) (2003), 217–244.
15. J. Hoffstein, J. Pipher, J. H. Silverman, An introduction to mathematical cryptog-

raphy. Springer, New York, 2008.
16. G. Huet, C. Derek Oppen, Equations and Rewrite Rules: A Survey. Technical report.

Stanford University (1980).
17. A. Mahalanobis, The MOR cryptosystem and finite p-groups. — Contemp. Math.,

633 (2015), 81–95.
18. A. Martelli, U. Montanari, An Efficient Unification Algorithm. — ACM Trans.

Program. Lang. Syst., 4 (2) (1982), 258–282.
19. F. Lindblad, M. Benke, A Tool for Automated Theorem Proving in Agda. In: Paulin-

Mohring C., Werner B. (eds) Types for Proofs and Programs. TYPES 2004. Lecture
Notes in Computer Science, vol 3839. Springer, Berlin, Heidelberg (2006).

20. Z. Luo, Computation and Reasoning. — Int. Series Monogr. Comp. Sci., Oxford
Science Publications, Clarendon Press, Oxford, UK, 11 (1994).

21. Neil Mitchell et al. Hoogle: Haskell API search engine.
https://github.com/ndmitchell/hoogle.

22. M.Rittri, Using Types as Search Keys in Function Libraries. — Proceedings of the
fourth international conference on Functional programming languages and computer
architecture (1989), 174–183.

23. M. Rittri, Retrieving library functions by unifying types modulo linear isomorphism.
Theor. Inform. Applic., (1992).

24. C. Runciman, I. Toyn, Retrieving reusable software components by polymorphic

type. — J. Func. Progr. 1 (2) (1991), 191–211.
25. S. Soloviev, On Isomorphism of Dependent Products in a Typed Logical Framework.

— Post-proceedings of TYPES 2014, LIPICS, Schloss Dagstuhl - Leibniz-Zentrum
für Informatik. 39 (2015), 275–288.



308 S. SOLOVIEV, J. MALAKHOVSKI

26. S. Soloviev, Automorphisms of Types in Certain Type Theories and Representation

of Finite Groups. — Math. Struct. Comp. Sci., (2018).
27. A. T. White, Graphs, Groups and Surfaces. — North-Holland, Amsterdam (1984).

Поступило 20 сентября 2018 г.IRIT, Paul Sabatier University,
118 route de Narbonne 31062
Toulouse, France;
ITMO University,
St.Petersburg, Russia

E-mail : soloviev@irit.fr

IRIT, Paul Sabatier University,
118 route de Narbonne 31062
Toulouse, France;
ITMO University,
St.Petersburg, Russia

E-mail : papers@oxij.org


