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ON MODULI SPACE OF THE WIGNER

QUASIPROBABILITY DISTRIBUTIONS FOR

N-DIMENSIONAL QUANTUM SYSTEMS

Abstract. A mapping between operators on the Hilbert space of
N-dimensional quantum system and the Wigner quasiprobability
distributions defined on the symplectic flag manifold is discussed.
The Wigner quasiprobability distribution is constructed as a dual
pairing between the density matrix and the Stratonovich–Weyl ker-
nel. It is shown that the moduli space of the Stratonovich–Weyl
kernel is given by an intersection of the coadjoint orbit space of the
SU(N) group and a unit (N − 2)-dimensional sphere. The general
consideration is exemplified by a detailed description of the moduli
space of 2, 3 and 4-dimensional systems.

§1. Introduction

According to the postulates of the quantum theory, the fundamental
description of a physical system is provided by the density operator [1]

̺ =
∑

k

pk|ψk〉〈ψk|, (1)

which represents the quantum statistical ensemble {pk, |ψk〉}, i.e., a set
consisting of vectors |ψk〉 ∈ H of the Hilbert space H and their probabilities
pk with a sum equal to one,

∑
k

pk = 1. The density operator ̺ determines

the expectation value E(Â) of a Hermitian operator Â acting on H,

E(Â) = Tr
[
Â̺
]
, with Tr [̺] = 1. (2)

The latter is assigned to a physical observable associated with the opera-

tor Â. On the other hand, an ensemble of a classical mechanical system is
characterized by a probability distribution function ρ(q, p), i.e., the density
of the probability to find the system in a state localized in the vicinity of a
phase space point with coordinates q and p. Correspondingly, the statistical
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average, i.e., the expectation value E(A) of a physical quantity described by
the function A(q, p) on a phase space is given by the following convolution:

E(A) =

∫
dΩA(q, p) ρ(q, p), with

∫
dΩ ρ(q, p) = 1, (3)

where dΩ denotes the normalized volume form of a classical phase space.
Aiming to collate two representations of observables, the classical (3)

and the quantum (2), the so-called Weyl–Wigner invertible mapping be-
tween Hilbert space operators and functions on a phase space has been
introduced in the early stages of the development of quantum mechan-
ics [2–6]. The primary elements of this map are two notions: the symbol of

operator, i.e., a function AW (q, p) corresponding to the operator A, and
the quasi-distribution function W (q, p) defined over a phase space. As a
result, the quantum analogue of the statistical average (3) reads

E(Â) =

∫
dΩAW (q, p)W (q, p), with

∫
dΩW (q, p) = 1. (4)

However, even a quick-look at this attempt to build a bridge between
classical and quantum statistical pictures shows a lack of their equivalence.
Indeed, one can point out the following observations:

- Because of Heisenberg’s uncertainty principle, the functionW (q, p)
has negative values for certain quantum states. Hence it is not
a true probability density and is referred to as quasiprobability
distribution.

- Dirac’s quantization rule based on the canonical commutator re-
lations makes the interplay between operators and their symbols
highly sophisticated. Replacement of canonical variables by their
quantum counterparts in expressions of functions over the phase-
space faces an ambiguity of ordering of the corresponding canonical
operators. 1

1According to Weyl’s rule of quantization [2], any classical observable A(p,q), i.e.,
a function on the phase space R2n with a standard canonical symplectic structure, is

associated with an operator Âω on the Hilbert space L2(Rn) constructed as the “Weyl
quantum Fourier transform:”

A 7→ Âω =

∫

R2n

dΩ(ω) Ã(u, v) exp
ı

~

(

uP̂ + vQ̂
)

, dΩ = ω(u, v) dudv, (5)

where P̂ and Q̂ are operators on L2(Rn) obeying canonical commutator relations,

Ã(u,v) is Fourier transform of A(u,v), and the integration measure dΩ is defined by
a weight function ω(u,v). Different choice of ω(u,v) is a source of various orderings of
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In spite of both flaws, Wigner functions or other formulated quasiproba-
bility distributions, such as Husimi [4] and Glauber–Sudarshan [8, 9] rep-
resentations, remain today an important tool for understanding of interre-
lations between quantum and classical statistical descriptions [10]. More-
over, nowadays one can see a growing interest to phase space formulation of
quantum mechanics based on the method of quasiprobability distributions
for finite dimensional systems (see e.g. [11–18] and references therein). The
latter is coming from needs of diverse applications in quantum optics [19]
and also in quantum information and communications [20]. Such an in-
tense usage of quasi-distributions again raises an issue of understanding of
the above mentioned shortcomings.2

In the present note, a problem of construction of quasiprobability dis-
tribution functions for generic N -level systems is studied within a purely
algebraic approach. The basic mathematical objects in this approach are:
a special unitary group G = SU(N), its Lie algebra g = su(N):

su(N) = {X ∈M(N,C) | X = −X†, trX = 0}, (7)

non-commutative operators P̂ and Q̂. For example, the factor ω(u,v) = exp
(

− ı
2
uv

)

corresponds to a standard ordering of polynomials in mathematical literature when
writing first the position coordinate Q, then the momentum P . The so-called normal
ordering is related to the weight ω(u, v) = exp

(

− 1
4
(u2 + v2)

)

, while the original Weyl,

or symmetric, order complies with ω(u,v) = 1. The inverse formula that maps the op-
erator to its symbol belongs to Wigner [3]. For a unit weight factor case, ω = 1, the
inverse formula reads:

A(u,v) =
1

(2π~)n
tr

[

Â1 exp−
ı

~

(

uP̂ + vQ̂
)]

. (6)

A further elaboration of Weyl’s quantization scheme leads to the non-commutative
formulation of mechanics [6] and finally to the development of the so-called deformation
quantization, cf. [7].

2History going back to Dirac’s idea on negative energies teaches us to pay more
attention to a “nonsense” of negative probabilities. In this context it is the best to
afford the following words by R.Feynman: “It is that a situation for which a negative
probability is calculated is impossible, not in the sense that the chance for it happening
is zero, but rather in the sense that the assumed conditions of preparation or verification
are experimentally unattainable” [21].
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and its dual space g∗ = su(N)∗.3 It is well known that the universal cov-
ering algebra U(su(N)) of the Lie algebra su(N) is an arena of the basic
objects of N-level quantum system. Particularly, a state space ̺ ∈ PN is
defined as the space of positive semidefinite N × N Hermitian matrices
HN with a unit trace:

PN = {X ∈ HN | X > 0, tr (X) = 1}. (9)

Every state described by the density matrix ̺ ∈ PN is in correspondence
with some element of the Lie algebra su(N):

̺ =
1

N
IN +

1

N
ı su(N). (10)

In order to build up the Wigner function, apart from the quantum state
space PN , the notion of its dual P∗

N is required. Every point of the dual
space determines the Stratonovich–Weyl (SW) kernel [22, 23]. As it was
shown recently in [24], the space P∗

N can be defined as follows:

P∗
N = {X ∈ HN | tr (X) = 1, tr

(
X2
)
= N}. (11)

It turns out that the dual pairing (8) of a density matrix ̺ ∈ PN and SW
kernel ∆(ΩN ) ∈ P∗

N :

W̺(ΩN ) = tr [̺∆(ΩN )] (12)

enables us with the proper Wigner function which satisfies all the Strato-
novich–Weyl postulates [22,23]. Taking into account a unit trace condition,
SW kernel ∆(ΩN ) can be related to the dual of su(N):

∆(ΩN ) =
1

N
IN + κ

1

N
ı su(N)∗, (13)

where κ =
√
N(N2 − 1)/2 is a normalization constant. From representa-

tions (10) and (13) it follows that all nontrivial information comes from
pairing between traceless parts of a density matrix and SW kernel. In
the subsequent sections, after a short overview of the Stratonovich–Weyl

3Since g is a linear space over the real field R, one can define a bilinear map 〈 . , . 〉 :
g∗ × g → R, and identify algebra with its dual. The conventional inner product on g,

〈A, B〉 := tr
(

A†B
)

, A,B ∈ su(N), (8)

enables to set up a duality pairing and to realize an isomorphism between g and g∗.
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postulates, algebraic and geometric aspects of the dual space P∗
N are dis-

cussed. In particular, we establish interrelation between the Wigner func-
tions and the coadjoint orbits [25] Or of SU(N):

Or = {UDU † : U ∈ SU(N)}, (14)

where r denotes N -tuple of real numbers r = r1, r2, . . . , rN which are
elements of the diagonal matrix D = diag||r1, r2, . . . , rN || ordered as r1 >

r2 > . . . > rN and summed up to zero,
N∑
i=1

ri = 0. It is then proved that

W̺(ΩN )− I

N
: PN ×Or

∣∣∑
r2
i
=N/(N−1)

→ R. (15)

Furthermore, in order to describe in unitary invariant way an ambiguity
of the Wigner function, we introduce the moduli space PN of SW kernel
as the following coset:

PN :=
Or

SU(N)

∣∣∣∣∣∑
r2
i
=N/(N−1)

. (16)

The moduli space geometrically represents intersections of the orbit space
of the SU(N) group coadjoint action with an (N − 2)-dimensional sphere.
Finalizing our note, we give few examples of the moduli space of the Wigner
functions for low-level quantum systems, for a qubit (N=2), qutrit (N=3)
and quatrit (N=4).

§2. Constructing the Wigner function

Below we give a brief summary of the Wigner quasiprobability distri-
bution construction starting from the basic Stratonovich–Weyl postulates
and reformulating them into a set of algebraic constraints on a spectrum
of SW kernels ∆(ΩN ).
• The Stratonovich–Weyl principles • Following to Brif and Mann [23],
the postulates known as the Stratonovich–Weyl correspondence can be
written as the following constraints on the kernel ∆(ΩN ):

(1) Reconstruction: a state ̺ is reconstructed from the WF (12) via
the integral over a phase space:

̺ =

∫

ΩN

dΩN ∆(ΩN )W̺(ΩN ) ; (17)
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(2) Hermicity:

∆(ΩN ) = ∆(ΩN )† ; (18)

(3) Finite Norm: a state norm is given by the integral of the Wigner
distribution:

tr[̺] =

∫

ΩN

dΩNW̺(ΩN ),

∫

ΩN

dΩN ∆(ΩN ) = 1 ; (19)

(4) Covariance: the unitary transformations ̺′ = U(α)̺U †(α) in-
duce the kernel change:

∆(Ω′
N ) = U(α)†∆(ΩN )U(α). (20)

Algebraic master equation for SW kernel. The above given axioms allow
derivation of algebraic equations for SW kernel of N - level quantum sys-
tems. With this goal, following the paper [24], we accomplish next steps:

I. Identification of phase-space ΩN with complex flag mani-
fold.
Hereinafter, a phase-space ΩN will be identified with a complex
flag manifold, ΩN = FN

d1,d2,...,ds
. The latter emerges as follows: sup-

posing that a spectrum of SW kernel ∆(ΩN ) consists of real eigen-
values with the algebraic multiplicity ki, i.e., the isotropy group
H of the kernel is

H = U(k1)× U(k2)× U(ks+1),

one can see that the phase space ΩN can be realized as a coset space
U(N)/H , the complex flag manifold FN

d1,d2,...,ds
, where (d1, d2, ..., ds)

is a sequence of positive integers with sum N , such that k1 = d1
and ki+1 = di+1 − di with ds+1 = N . Furthermore, since the
flag manifold represents a coadjoin orbit of SU(N), its symplectic
structure is given by the corresponding Kirillov–Kostant–Souriau
symplectic 2-form [25].

II. Enlarging of phase-space ΩN to SU(N) group manifold.
Owing to the unitary symmetry of N -dimensional quantum sys-
tem, we can relate a measure dΩN on the symplectic space ΩN

with the normalized Haar measure dµSU(N) on the SU(N) group
manifold:

dΩN = C−1
N dµSU(N)/dµH .

Here CN is a real normalization constant, dµH is the Haar measure
on the isotropy group H induced by the embedding, H ⊂ SU(N).
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Noting that the integrand in (17) is a function of the coset variables
only, the reconstruction integral can be extended to the whole
group SU(N),

̺ = Z−1
N

∫

SU(N)

dµSU(N) ∆(ΩN )W̺(ΩN ), (21)

where the normalization constant Z−1
N = C−1

N /vol(H) includes the
factor vol(H) which is the volume of the isotropy group H .

III. Derivation of algebraic equations for SW kernel.
Relations (12) and (21) imply the integral identity

̺ = Z−1
N

∫

SU(N)

dµSU(N) ∆(ΩN ) tr [̺∆(ΩN )] . (22)

Substituting the singular value decomposition for SW kernel in-
to (22) and evaluating the integral using the Weingarten formula
[26–28]:
∫
dµUi1j1Ui2j2 Ūk1l1 Ūk2l2

=
1

N2 − 1
(δi1k1

δi2k2
δj1l1δj2l2 + δi1k2

δi2k1
δj1l2δj2l1)

− 1

N(N2 − 1)
(δi1k1

δi2k2
δj1l2δj2l1 + δi1k2

δi2k1
δj1l1δj2l2),

we derive the equations:

(tr[∆(ΩN )])
2
= ZNN, tr[∆(ΩN )2] = ZNN

2. (23)

IV. Normalization of SW kernel.
The constant ZN in the equation (21) can be determined with the
aid of the so-called standardization condition,

Z−1
N

∫
dµSU(N)WA(ΩN ) = tr[A]. (24)

Fixing the normalization constant ZN , we finally arrive at the
“master equations” for SW kernel:

tr [∆(ΩN )] = 1, tr[∆(ΩN )2] = N. (25)
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§3. Moduli space: reckoning up solutions to the “master

equations”

Classifying solutions to the master equations (25), we arrive at the no-
tion of a “moduli space” as the space PN , points of which are associated
with the unitary equivalent admissible SW kernel of N -dimensional quan-
tum system. Analysis of eq. (25) solutions space displays the following
properties of the moduli space PN :

(1) dim (PN(ν)) = N − 2, i.e., a maximal number of continuous pa-
rameters ν characterizing the solution ∆(ΩN |ν) is N − 2 ;

(2) geometrically, PN is represented as an intersection of an (N−2)-di-
mensional sphere SN−2 with the orbit space su(N)∗/SU(N) of
SU(N) action on a dual space su(N)∗:

PN
∼= SN−2

⋂ su(N)∗

SU(N)
. (26)

In order to become convinced in above statements, consider the singular
value decomposition of SW kernel and assume that the kernel is generic
with all eigenvalues distinct.4 Using the orthonormal basis {λ1, λ2, . . . ,
λN2−1} of su(N), the SVD decomposition reads:

∆(ΩN |ν) = 1

N
U(ΩN)

[
I + κ

∑

λ∈H

µs(ν)λs

]
U(ΩN )†, (27)

where κ =
√
N(N2 − 1)/2, and H is the Cartan subalgebra H ∈ su(N).

From the master equation (25) it follows that the coefficients µs(ν) live
on an (N − 2)-dimensional sphere SN−2(1) of radius one:

N∑

s=2

µ2
s2−1(ν) = 1. (28)

A generic SW kernel can be parameterized by N − 2 spherical angles.
The parameter (ν) introduced in order to label members of the family of
the Wigner functions can be associated with a point on SN−2(1). More
precisely, a one-to-one correspondence between points on this sphere and
unitary non-equivalent SW kernels occurs only for a certain subspace of
SN−2(1). This subspace PN (ν) ⊂ SN−2(1) represents the moduli space
of SW kernel. Its geometry is determined by the ∆(ΩN |ν) eigenvalues

4In this case, the isotropy group of SW kernel is isomorphic to (N − 1)-dimensional
torus TN−1 = {g ∈ SU(N) : g − diagonal}.
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ordering. The chosen descending order of the eigenvalues restricts the range
of spherical angles parameterizing (28) and cuts out the moduli space of
∆(ΩN |ν) in the form of a spherical polyhedron. Details of SW kernels
parametrization in terms of spherical angles are given in the Appendix A.

§4. The Wigner function as dual pairing between ̺
and ∆

As soon as the space of all possible SW kernels is known, the con-
struction of the Wigner function reduces to a computation of pairing (12).
Using the su(N) expansions (10) for a density matrix ̺ξ of N -level system
characterized by (N2 − 1)-dimensional Bloch vector ξ,

̺ξ =
1

N

(
I +

√
N (N − 1)

2
(ξ,λ)

)
,

and SW kernel decomposition (27), we arrive at the general representation
for the WF:

W
(ν)
ξ (θ1, θ2, . . . , θd) =

1

N

[
1 +

N2 − 1√
N + 1

(n, ξ)

]
, (29)

where (N2 − 1)-dimensional vector n is given by a linear combination of

N − 1 orthonormal vectors n(s2−1) with coefficients µs2−1(ν),
s = 2, 3, . . . , N ,

n = µ3n
(3) + µ8n

(8) + · · ·+ µN2−1n
(N2−1).

The vectors n(s2−1) are determined by the Cartan subalgebra λs2−1 ∈ H :

n(s2−1)
µ =

1

2
tr
(
Uλs2−1U

†λµ
)
, s = 2, 3, . . . , N.

As it was mentioned in the Introduction, the number of the symplectic
coordinates ϑ1, ϑ2, . . . , ϑd of the Wigner function depends on the isotropy
group of SW kernel (cf. details in [24]).

§5. Examples

Below we present an explicit parametrization for a moduli space of a
few low-dimensional quantum systems, including a single qubit, qutrit and
quatrit.



186 V. ABGARYAN, A. KHVEDELIDZE, A. TOROSYAN

5.1. The moduli space of a single qubit SW kernel. For a 2-level
quantum system, a qubit, the master equations (25) determine the spec-
trum (up to permutation) of 2-dimensional SW kernel uniquely:

∆(2)(Ω2) =
1

2
U(Ω2)

(
1 +

√
3 0

0 1−
√
3

)
U(Ω2)

†, (30)

with U(Ω2) ∈ SU(2)/U(1). Its connection to the structure of the coadjoint
orbits of SU(2) is straightforward. There are two types of the coadjoint
orbits of SU(2):

(1) 2-dimensional regular orbits Or,

O{r,−r} =

{
U

(
r 0
0 −r

)
U †, U ∈ SU(2)

}
,

defined for an ordered 2-tuple, r = {r,−r}, r > 0. They are iso-
morphic to a 2-dimensional sphere S2(r) with the radius given by
the value of the SU(2) invariant:

r2 = − det (Or) ; (31)

(2) zero-dimensional orbit, point r = 0.

Identifying these orbits with the traceless part of SW kernel ∆(2)− 1
2 I and

taking into account the expression (30), we get convinced that

r2 =
4

3
tr

[(
∆(2) − 1

2
I

)2
]
= 2.

Thus, the moduli space of SW kernel of a qubit represents the single point,
r2 = 2, from the set of equivalence classes of the regular SU(2) orbits,
[Or] ∼= su(2)/U(1).

5.2. The moduli space of a single qutrit SW kernel. The master
equations (25) determine two lowest-degree polynomial SU(N) invariants
of SW kernel ∆(Ω3), the linear and the quadratic ones. For the case of
a 3-dimensional quantum system, a qutrit, the third algebraically inde-
pendent polynomial SU(3) invariant remains unfixed, thus allowing a one-
parametric family of a qutrit SW kernels to exist.



WIGNER QUASIPROBABILITY FUNCTIONS 187

Figure 1. The cone representing the orbit space of SU(3).
The interior of the cone represents dimO = 4 orbits. The
apex corresponds to a zero-dimensional orbit, while other
points on the ordinate (µ8 = 0) and on the positive ray

µ8 = µ3/
√
3 also determine dimO = 4 orbits. The inter-

section of the cone with a unit circle gives an arc which is
the moduli space of a qutrit SW kernel. The point C with
cos(ζC) = (−1+3

√
5)/8 describes the singular SW kernel.

Following the normalization convention (27), let us write down the SVD
decomposition of a qutrit SW kernel in the following form:

∆(Ω3) = U(Ω3)PU(Ω3)
† = U(Ω3)


1
3
I+

2√
3



r1 0 0
0 r2 0
0 0 r3




U(Ω3)

†,

(32)
where U(Ω3) ∈ SU(3), and a 3-tuple r = {r1, r2, r3} parameterizes a trace-
less diagonal part of the SVD decomposition of SW kernel, r1+r2+r3 = 0.
Expanding P over the Gell-Mann basis elements λ3 = diag‖1,−1, 0‖ and
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λ8 = 1√
3
diag‖1, 1,−2‖ of the SU(3) Cartan subalgebra,

P =
1

3
I+

2√
3
(µ3λ3 + µ8λ8) , (33)

we find:

r1 = µ3 +
1√
3
µ8, r2 = −µ3 +

1√
3
µ8, r3 = − 2√

3
µ8. (34)

From these relations it follows that the chosen decreasing order of param-
eters r1 > r2 > r3 determines on the (µ3, µ8)-plane the 2-dimensional
polyhedral cone C2(π/3) with the apex angle π/3:

C2(π/3) =

{
x ∈ R

2

∣∣∣∣
(

1 0
−1√
3

1

)(
x1
x2

)
> 0

}
. (35)

• The SU(3) orbits • The cone C2(π/3) represents the orbit space of
SU(3) group action on su(3) algebra. Next we identify this algebra times
ı with the traceless part of ∆(Ω3) and classify SW kernel in accordance to
the corresponding coadjoint orbits. In order to realize this program, let us
consider the tangent space to the SU(3) orbits. It is spanned by the linearly
independent vectors built of the commutators: tk = [λk,∆], λk ∈ su(3).
The number of independent vectors tk determines the dimensionality of
the orbits via the rank of the 8× 8 Gram matrix:

Gkl(∆
(3)) =

1

2
tr (tktl), k, l = 1, 2, . . . , 8. (36)

Since the rank of the Gram matrix (36) is SU(3) invariant, one can calcu-
late it for the diagonal representative of SW kernel (33). The straightfor-
ward computations give

G(∆(3)) =
4

3
diag || g1, g1, 0, g2, g2, g3, g3, 0 ||, (37)

where g1 = 4µ2
3, g2 = 1√

3
(µ3 +

√
3µ8)

2, g3 = 1√
3
(µ3 −

√
3µ8)

2. From these

expressions it follows that there are three types of SU(3) orbits which can
be classified according to their symmetry and dimensions:

(1) dim(Or) = 6. These regular orbits abbreviated as O(123) (or sim-

ply 123) are labeled by a 3-tuple r with r1 > r2 > r3 and have
the isotropy group H(123) isomorphic to a 2-dimensional torus,

H(123)
∼= T2. They are in one-to-one correspondence with the in-

terior points of the cone C2(π/3) in Fig.1.
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(2) dim(Or) = 4. These degenerate orbits represent two subfamilies
with degenerate 3-tuples r: either r1 = r2 > r3 or r1 > r2 = r3.
Following V. I. Arnold [30], we denote them as 1|23 and 12|3 re-
spectively. Geometrically, the equivalence class [O] of degenerate
orbits represents the boundary lines in the SU(3) orbit space:

O(1|23) 7→ 1|23 : {x ∈ C2(π/3)| x2 = 0 },
O(12|3) 7→ 12|3 : {x ∈ C2(π/3)| x2 = x1/

√
3 }.

Both classes, up to conjugacy in SU(3) have the same isotropy
group:

H(12|3) ∼= H(1|23) =

{
h ∈

[
eiαg 0
0 e−iα

] ∣∣∣∣ g ∈ SU(2)

}
. (38)

(3) dim(O0) = 0. One orbit O0, a single point (0, 0) which is stationary

under the SU(3) group action.

• The parametrization of a qutrit SW kernels • We are now in a
position to describe the moduli space of a qutrit as a certain subspace of
the SU(3) orbit space. Indeed, taking into account that the second order
master equation (25) describes a circle of radius one centered at the origin
of (µ3, µ8)-plane, we convinced that the moduli space of a qutrit SW kernel
represents the arc depicted in Fig. 1. More precisely, based on the above
classification of the SU(3) orbits, we treat a qutrit moduli space as the
union of two strata:

• The regular stratum corresponding to the regular SU(3)-orbits.

Geometrically it is the arc ÃB/{A,B} with its endpoints A and B
excluded. The corresponding Wigner functions have a 6-dimensio-
nal support and 1-dimensional family of SW kernels, the spectrum
of which can be written as:

spec
(
∆(3)(ν)

)
=

{
1− ν + δ

2
,
1− ν − δ

2
, ν

}
, (39)
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where δ =
√
(1 + ν)(5 − 3ν) and ν ∈ (−1/3,−1). The parameter

ν is related to the apex angle ζ of the cone C2(π/3):
5

ν =
1

3
− 4

3
cos(ζ), ζ ∈ [0, π/3]. (40)

• The end points A and B of the arc ÃB correspond to two degen-
erate SW kernels, with ν = −1 and ν = − 1

3 respectively,

spec
(
∆(3)(−1)

)
= {1, 1,−1} , spec

(
∆(3)

(
−1

3

))
=

1

3
{5,−1,−1} .

It is necessary to point out that the kernel ∆(3)(−1) was found by Luis [29].
• The singular SW kernels of qutrit • Apart from the above cate-
gorization of SW kernels, we distinguish the singular kernels which have
at least one zero eigenvalue. From the expression (39) it follows that for a
qutrit case among three zeros of the determinant det(∆(3)) = ν(ν2−ν−1)

only one, ν = (1−
√
5)/2, is admissible: 6

spec
(
∆(103)

)
=

{
1 +

√
5

2
, 0,

1−
√
5

2

}
.

§6. The moduli space of a single quatrit SW kernel

The master equations (25) for a four-level system, a quatrit, determine
a 2-parametric family of SW kernels. We start, similarly as in the case of
qutrit, with the SVD decomposition of a quatrit SW kernel:

∆(Ω4) = U(Ω4)PU(Ω4)
†

= U(Ω4)



1

4
I+

√
30

4




r1 0 0 0
0 r2 0 0
0 0 r3 0
0 0 0 r4





U(Ω4)

†,

5The apex angle ζ determines the value of a 3-rd order polynomial SU(3)-invariant:

cos(3ζ) = −
27

16
det

(

∆(3) −
1

3
I

)

= −
27

16
det

(

∆(3)
)

−
11

16
.

6Traces of powers of this “golden ratio” kernel are given by the so-called Lucas
numbers:

tr
(

∆(103)

)2
= 3, tr

(

∆(103)

)3
= 4, . . . , tr

(

∆(103)

)n
= Ln.
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with U(Ω4) ∈ SU(4) and a 4-tuple r = {r1, r2, r3, r4}, such that r1 +
r2 + r3 + r4 = 0. These parameters expressions in terms of expansion co-
efficients of P over the Gell-Mann basis elements λ3 = diag||1,−1, 0, 0||,
λ8 = 1√

3
diag||1, 1,−2, 0|| and λ15 = 1√

3
diag||1, 1, 1,−3|| of the SU(3) Car-

tan subalgebra,

P =
1

4
I+

√
30

4
(µ3λ3 + µ8λ8 + µ15λ15) , (41)

read:

r1 = µ3 +
1√
3
µ8 +

1√
6
µ15, r2 = −µ3 +

1√
3
µ8 +

1√
6
µ15, (42)

r3 = − 2√
3
µ8 +

1√
6
µ15, r4 = − 3√

6
µ15. (43)

Due to the order r1 > r2 > r3 > r4, expansion coefficients µ3, µ8 and
µ15 belong to a 3-dimensional polyhedral cone C3 (π/6) with the apex
angle π/6:

C3 (π/6) =



x ∈ R

3

∣∣∣∣




1 0 0
−1√
3

1 0

0 −1√
2

1





x1
x2
x3


 > 0



 . (44)

• The SU(4) orbits • The cone C3 (π/6) represents the SU(4) orbit
space. The calculated for a diagonal representative 15× 15 Gram matrix

G(∆(4)) =
5

2
diag||g1, g1, 0, g2, g2, g3, g3, 0, g4, g4, g5, g5, g6, g6, 0||, (45)

where

g1 = 3µ2
3, g2 =

3

4

(
µ3 +

√
3µ8

)2
, g3 =

3

4

(
µ3 −

√
3µ8

)2
,

g4 =
1

8

(√
6µ3 +

√
2µ8 + 4µ15

)2
, g5 =

1

8

(
−
√
6µ3 +

√
2µ8 + 4µ15

)2
,

g6 =
(
µ8 −

√
2µ15

)2
.

Analysis of zeros of the Gram matrix (45) shows the following pattern of
the regular and degenerate SU(4) orbits.

• dim(Or) = 12. The regular orbits have a maximal dimension ow-

ing to the smallest isotropy group: H(1234) = T3 ∈ SU(4). The
equivalent class of the regular orbits represents an interior of the
cone C3 (π/6);
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• The degenerate orbits are divided into subclasses:
(1) dim(Or) = 10. The equivalence class of these orbits is one of

the following faces of the cone C3 (π/6):

O(1|234) 7→ 1|234 : {x ∈ C3 (π/6) | x1 = 0 }, (46)

O(12|34) 7→ 12|34 : {x ∈ C3 (π/6) | x1 = −
√
3x2}, (47)

O(123|4) 7→ 123|4 : {x ∈ C3 (π/6) | x2 = +
√
2x3}. (48)

All the above orbits have the same isotropy group (up to
SU(4)-conjugation):

H(1|234)=







h∈





eiαg 0 0

0 eiβ 0

0 0 eiγ





∣

∣

∣

∣

g∈SU(2), α+β+γ=0







.

The dimension of this stratum is in agreement with the di-
mension of the corresponding isotropy group,

dim(Or) = dim(SU(4))− dim(Hr) = 15− (3 + 2) = 10.

(2) dim(Or) = 8. The equivalence class of these orbits is the fol-

lowing edge of the cone C3 (π/6):

O(1|23|4) 7→ 1|23|4 : {x ∈ C3 (π/6) | x1 = 0, x2 =
√
2x3 }. (49)

The 7-dimensional isotropy group is:

H(1|23|4) =

{
h ∈

[
eiαg 0
0 e−iαg′

] ∣∣∣∣ g, g
′ ∈ SU(2)

}
. (50)

(3) dim(Or) = 6. The equivalence class of these orbits is one of

the following edges of the cone C3 (π/6):

O(1|2|34) 7→ 1|2|34 :{x ∈ C3 (π/6) | x1 = 0, x2 = 0}, (51)

O(12|3|4) 7→ 12|3|4 :{x ∈ C3 (π/6) | x1 =
√
3x2, x2 =

√
2x3}. (52)

Both classes have the same up to conjugacy 9-dimensional
isotropy group:

H(1|2|34) =

{
h ∈

[
eiαg 0
0 e−iα

] ∣∣∣∣ g ∈ SU(3)

}
. (53)

(4) dim(Or) = 0.The apex of cone C3 (π/6) with the stability

group SU(4).
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Figure 2. Support of SW kernel of a quatrit on (ν1, ν2)-
plane. The interior of a curvilinear triangle ABC corre-
sponds to the regular SW kernels. The boundary lines de-
scribe the double degeneracy cases. The vertexes A and B
describe a quatrit kernels with a triple degeneracy, while
the vertex C corresponds to a quatrit kernel with two
double degeneracy.

• The parametrization of a quatrit SW kernels • Now we are ready
to enumerate all SW kernels for a quatrit according to the above given
classification of the SU(4) orbits:

(1) The regular 2-dimensional family of SW kernels:

spec
(
∆(4)(ν1, ν2)

)
=

{
1− ν1 − ν2 + δ

2
,
1− ν1 − ν2 − δ

2
, ν1, ν2

}
, (54)

where δ =
√
7 + 2ν1 − 3ν21 + 2ν2 − 2ν1ν2 − 3ν22 .

(2) The degenerate 1-dimensional family of SW kernels:

(a) A family of SW kernels of 1|234 type:

spec
(
∆(1|234)

)
=

{
1− ν

3
+

1

6
δ1,

1− ν

3
+

1

6
δ1, ν,

1− ν − δ1
3

}
, (55)

where δ1=
√
22+4ν−8ν2 and ν∈

(
1
4 (1−

√
15), 1

4 (1+
√
5)
)
;

(b) A family of SW kernels of 12|34 type:

spec
(
∆(12|34)

)
=

{
1− 2ν + δ2

2
, ν, ν,

1− 2ν − δ2
2

}
, (56)
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where δ2=
√
7+4ν−8ν2 and ν∈

(
1
4 (1−

√
5), 14 (1+

√
5)
)
;

(c) A family of SW kernels of 123|4 type:

spec
(
∆(123|4)

)
=

{
1− 2ν + δ2

2
,
1− 2ν − δ2

2
, ν, ν

}
, (57)

where ν ∈
(
1
4

(
1−

√
15
)
, 14
(
1−

√
5
) )

.

(3) SW kernels with a triple degeneracy:

(a) SW kernel of 1|2|34 type:

spec
(
∆(1|2|34)

)
=

{
1 +

√
5

4
,
1 +

√
5

4
,
1 +

√
5

4
,
1− 3

√
5

4

}
; (58)

(b) SW kernel of 12|3|4 type:

spec
(
∆(12|3|4)

)
=

{
1 + 3

√
5

4
,
1−

√
5

4
,
1−

√
5

4
,
1−

√
5

4

}
. (59)

(4) SW kernel with two double degeneracy:

SW kernel of 1|23|4 type:

spec
(
∆(1|23|4)

)
=

{
1 +

√
15

4
,
1 +

√
15

4
,
1−

√
15

4
,
1−

√
15

4

}
. (60)

All the above categories of SW kernels of a quatrit are depicted in Fig.2.
The interior of a curvilinear triangle ABC on (ν1, ν2)-plane corresponds
to the regular SW kernels. The boundary lines of the domain describe the
double degeneracy cases:

(a) SW kernel of type 12|34–side AB/{A,B} with both end points A and
B excluded:

AB/{A,B} : ν2 =
1

2
−ν1−

1

2

√
7 + 4ν1 − 8ν21 , ν1 ∈

(
1−

√
5

4
,
1 +

√
5

4

)
;

(b) SW kernel of type 1|234-side CB/{C,B} without end points:

CB/{C,B} : ν2=
1

3
− 1

3
ν1−

1

3

√
22+4ν1−8ν21 , ν1∈

(
1−

√
15

4
,
1+

√
5

4

)
;
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(c) SW kernel of type 123|4-side AC/{A,C} without end points:

ν2 = ν1, ν1 ∈
(
1−

√
15

4
,
1−

√
5

4

)
.

The vertexes A and B describe a quatrit kernels with a triple degeneracy:

(a) SW kernel of 12|3|4 type – point A: ν1 = 1−
√
5

4 , ν2 = 1−
√
5

4 ;

(b) SW kernel of 1|2|34 type – point B: ν1 = 1+
√
5

4 , ν2 = 1−3
√
5

4 ,

while the vertex C corresponds to a quatrit kernel with two double degen-

eracy of 1|23|4 type: ν1 = ν2 = 1−
√
15

4 .

Figure 3. A quatrit moduli space represented by the
Möbius spherical triangle (2, 3, 3) on a unit sphere.

• The singular SW kernels of a quatrit • Among the above described
SW kernels one can distinguish a set of special elements with a vanish-
ing determinant. These singular quatrit kernels of are listed below in the
accordance with the increasing singularity of the determinant:

• SW kernels with a simple root of the determinant:
(a) 1-parameter family of 1204 type, 1

3 (1−
√
22)6ν< 1

2 (1−
√
7),

spec (∆(1204))=

{
1−ν+

√
7+2ν−3ν2

2
,
1−ν−

√
7+2ν−3ν2

2
, 0, ν

}
, (61)
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(b) 1-parameter family of 1034 type, 1
6

(
2−

√
22
)
6 ν < 0,

spec (∆(1034))=

{
1−ν+

√
7+2ν−3ν2

2
, 0, ν,

1−ν−
√
7+2ν−3ν2

2

}
, (62)

• SW kernel with double zero of determinant:

spec (∆(1004)) =

{
1 +

√
7

2
, 0, 0,

1−
√
7

2

}
. (63)

• A quatrit moduli space as the Möbius spherical triangle • As
it was mentioned before, the spectrum of ∆(4)(ν1, ν2) is in correspondence
with points on a unit 2-sphere associated with expansion coefficients µ3, µ8

and µ15:

µ2
3(ν) + µ2

8(ν) + µ2
15(ν) = 1,

which satisfy the inequalities:

µ3 > 0, µ8 >
µ3√
3
, µ15 >

µ8√
2
.

Geometrically these constraints define one out of 24 possible spherical tri-
angles with angles (π/2, π/3, π/3) that tessellate a unit sphere. Repeated
reflections in the sides of the triangles will tile a sphere exactly once. In ac-
cordance with Girard’s theorem, a spherical excess of a triangle determines
a solid angle: π/2 + π/3 + π/3 − π = 4π/24. Relation between “flat” rep-
resentation of a quatrit moduli space (Fig. 2) and its spherical realization
(Fig. 3) is demonstrated by the projection pattern in Fig. 4.

Concluding remark

The master equations (25) for kernels of the Wigner functions determine
the first and second degrees polynomial SU(N) invariants of N -dimensi-
onal system. The remaining N − 2 algebraically independent invariants
parametrize the moduli space of SW kernels. In the present article we
establish relation between this moduli space and the orbit space of SU(N)
group. Next important issue is to clarify the role these unitary invariant
moduli parameters play in dynamics of classical and quantum systems.
With this aim in the forthcoming publication, a detailed analysis of the
Kirillov–Kostant–Souriau symplectic 2-form for the whole family of the
Wigner functions will be given.
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Figure 4. Mapping of the tiling of S2(1) sphere by the
Möbius triangles (2, 3, 3) onto a subset of the plane
(ν1, ν2). The dashed lines represent the degeneracies of
the spectrum.

Appendix §A. Parametrization of the moduli space PN (ν)

As it was mentioned in the main text, the Stratonovich–Weyl kernel can
be parameterized by N − 2 spherical angles. Each member of the Wigner
functions family can be associated with a point of subspace PN (ν) ⊂
SN−2(1), which is determined by the ordering of the eigenvalues of the
Stratonovich–Weyl kernel. In order to define the PN (ν) corresponding to
the descending ordering and by means of using kernel decomposition in
Gell-Mann bases, let us represent the spectrum of the Stratonovich–Weyl
kernel in the following form:

π1 =
1

N

(
1 +

√
2 κ

N∑

s=2

µs2−1√
s (s− 1)

)
,

...



198 V. ABGARYAN, A. KHVEDELIDZE, A. TOROSYAN

πi =
1

N

(
1 +

√
2 κ

N∑

s=i+1

µs2−1√
s (s− 1)

− κ

√
2 (i− 1)

i
µi2−1

)
,

...

πN =
1

N

(
1− N2 − 1√

N + 1
µN2−1

)
.

Introducing the conventional parametrization for a unit sphere SN−2(1)
in terms of spherical N − 2 angles:

µ3 = sinψ1 · · · sinψN−2,

µ8 = sinψ1 · · · sinψN−3 cosψN−2,

...

µi2−1 = sinψ1 · · · sinψN−i cosψN−i+1,

...

µN2−1 = cosψ1,

with ψi ∈ [0, π], i = 1, N − 3 and ψN−2 ∈ [0, 2π),

(64)

and demanding the descending order of the eigenvalues, we obtain the
following constraints on the coefficients µi:

µ3 > 0, (65)

µ(i+1)2−1 >

√
i− 1

i+ 1
µi2−1, i = 2, N − 1. (66)

Let us introduce the following notations:

P1 =
{
ψ1 = 0

}
,

P(k)
2 =





sinψN−k = 0

sinψN−(k+1) cosψN−k > 0

cotψN−i >

√
i−1
i+1 cosψN−i+1

0 < ψi−k < π, i = k + 1, N − 1,

(67)
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P3 =





sinψN−2 > 0

cosψN−2 >
1√
3
sinψN−2

cotψN−i >

√
i−1
i+1 cosψN−i+1

0 < ψi−2 < π, i = 3, N − 1

0 < ψN−2 < 2π.

In the introduced notations substitution of expressions for µi in terms
of the spherical angles ψi into (65) and (66) shows: if k = 2, · · · N − 2 is
the biggest natural number for which sinψN−k = 0, if there is any, then

the simplex is described by the restrictions P(k)
2 ⊂ SN−(k+1)(1) (these are

some of (N − (k + 1))-dimensional boundaries of the simplex); otherwise,
if there is no such k, then the restrictions are P3. Hence, the simplex will
be completely defined by

P = P1 ∪
(

N−2⋃

k=2

P(k)
2

)
∪ P3. (68)

Partially reducing the set of inequalities for P3, we get:

P3 =





0 < ψN−2 6
π
3

0 < ψi−2 < π, i = 3, N − 1

cotψN−i >

√
i−1
i+1 cosψN−i+1.

(69)
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