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ON THE GROUP OF INFINITE p-ADIC MATRICES

WITH INTEGER ELEMENTS

Abstract. Let G be an infinite-dimensional real classical group
containing the complete unitary group (or the complete orthogonal
group) as a subgroup. Then G generates a category of double cosets
(train), and any unitary representation of G can be canonically ex-
tended to the train. We prove a technical lemma on the complete

group GL of infinite p-adic matrices with integer coefficients; this
lemma implies that the phenomenon of an automatic extension of
unitary representations to a train is valid for infinite-dimensional
p-adic groups.

§1. The statement

1.1. Notation. Denote by Qp the field of p-adic numbers, by Op the ring
of p-adic integers. We consider infinite matrices g = {gij}, where i, j ∈ N,
over Op. We define three versions of the group GL(∞) over Op.

1) Our main object is the group GL(∞,Op) which consists of invertible
matrices satisfying two conditions:

(A∗) for each i we have limj→∞ |gij | = 0;
(B∗) for each j we have limi→∞ |gij | = 0.

2) We also consider the larger group GL(∞,Op) consisting of invertible
matrices satisfying condition (A∗).

3) We regard compact groups GL(n,Op) as subgroups of GL(∞,Op)

consisting of (n+∞)-block matrices of the form

(
∗ 0
0 1

)
.

We say that an infinite matrix g is finitary if g−1 has only finitely many
nonzero matrix elements. Denote by GLfin(∞,Op) the group of invertible
finitary infinite matrices over Op; this group is an inductive limit

GLfin(∞,Op) = lim
−→

GL(n,Op)
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and is equipped with the inductive limit topology: a function on
GLfin(∞,Op) is continuous if and only if its restriction to every prelimit
subgroup is continuous.

Remark. The group GL(∞,Op) appears in the context of [11]. However,
GL(∞,Op) is a more interesting object from the point of view of [12].

1.2. The result of the paper. Denote by θj the following matrix:

θj =




0 1j 0
1j 0 0
0 0 1∞


 ∈ GL(∞,Op),

where 1j denotes the unit matrix of size j. The purpose of this note is to
prove the following statement.

Lemma 1.1. Consider a unitary representation ρ of the group GL(∞,Op)
in a Hilbert space H. Denote by HGL ⊂ H the space of all vectors fixed

by all operators ρ(g). Then the sequence ρ(θj) weakly converges to the

orthogonal projection to HGL.

Since GL(∞,Op) is dense in GL(∞,Op), we get the following corollary.

Corollary 1.2. The same statement holds for the group GL(∞,Op).

1.3. Variations. Define the orthogonal group O(∞,Op) as the subgroup
in GL(∞,Op) consisting of all matrices with gtg = 1, where t denotes the

transpose. Denote by J the 2× 2 matrix

(
0 1
−1 0

)
over Op. Denote

I :=



J 0 . . .
0 J . . .
...

...
. . .


 . (1.1)

Denote by Sp(∞,Op) the subgroup in GL(∞,Op) consisting of all matrices
with gtIg = 1.

Lemma 1.1 (with the same proof) holds for the groups O(∞,Op) and
Sp(∞,Op); for Sp(∞,Op), we must consider the sequence θ2m∈ Sp(∞,Op).

1.4. Admissibility in the sense of Olshanski. We also prove the fol-
lowing technical statement. Consider a unitary representation ρ of the
group GLfin(∞,Op) in a Hilbert space H . Denote by Hm the space of

GL
[m]
fin (∞,Op)–invariant vectors. We say that a representation ρ is admis-

sible (see [17]) if the subspace ∪∞m=0Hm is dense in H .
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Lemma 1.3. The following conditions for a representation ρ of the group

GLfin(∞,Op) are equivalent:

• ρ admits a continuous extension to GL(∞,Op);
• ρ is admissible.

1.5. The structure of the paper. Lemma 1.1 seems rather technical,
however, it implies that GL(∞,Op) is a heavy group in the sense of [8,
Chap. VIII]. This implies numerous “multiplicativity theorems,” an exam-
ple is discussed in the next section. Lemma 1.1 is proved in Sec. 3, and
Lemma 1.3 is proved in Sec. 4.

§2. Introduction. An example of a multiplicativity

theorem

2.1. Initial data. Denote by Sfin(∞) the group of all finitely supported
permutations of N. Fix a ring R. Let G be a subgroup in GLfin(∞, R) and
K be a subgroup in G. Assume that K contains Sfin(∞) embedded as the
group of all 0–1 matrices.

Examples. a) G = K = Sfin(∞).
b) G = GLfin(∞,R), K = Ofin(∞).

c) Let R be the algebra of 2× 2 real matrices. Let J =

(
0 1
−1 0

)
∈ R.

We consider the group G = Spfin(2∞,R) of matrices over R preserv-
ing the skew-symmetric bilinear form with matrix I given by (1.1). The
subgroup K = Ufin(∞) consists of the matrices whose entries have the

form

(
a b
−b a

)
∈ R.

d) G = GLfin(∞,Qp), K = GLfin(∞,Op).

Remark. Denote by G(α) (respectively,K(α)) the subgroup in G (respec-

tively, K) consisting of all (α +∞)-block matrices of the form

(
w 0
0 1

)
.

These groups contain at least the finite symmetric group S(α). Then

G = lim
−→

G(α), K = lim
−→

K(α). (2.1)

2.2. The multiplication of double cosets. We fix n and consider the

product G̃ of n copies of the group G:

G̃ = G×G× · · · ×G.
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We write elements of this product as

g = {g(l)} := (g(1), . . . , g(n)), where gj ∈ G. (2.2)

Consider the diagonal subgroup K ⊂ G̃, i.e., the group whose elements are
collections

(u, . . . , u), where u ∈ K.

Let α = 0, 1, 2, . . . . Denote by Kα the subgroup of K consisting of all

matrices having the form

(
1α 0
0 u

)
∈ K. Denote by

Kα \ G̃/Kα

the spase of double cosets, i.e., the space of collections (2.2) defined up to
the equivalence

(
g(1), . . . , g(n)

)
∼

((
1α 0
0 u

)
g(1)

(
1β 0
0 v

)
, . . . ,

(
1α 0
0 u

)
g(n)

(
1β 0
0 v

))
,

where u, v ∈ K.

For every α, we define a sequence θ
[α]
j by the formula

θ
[α]
j =




1α 0 0 0
0 0 1j 0
0 1j 0 0
0 0 0 1∞


 ∈ K

α ∩ Sfin(∞).

The following statements (a)–(c) can be verified in a straightforward
way (see [4] for a formal proof for G = Sfin(∞), which is valid in the
general case).

a) Let g1 ∈ Kα \ G̃/Kβ, g2 ∈ Kβ \ G̃/Kγ. Let g1, g2 ∈ G̃ be represen-

tatives of these double cosets. Then the sequence

Kαg1θ
[β]
j g2K

γ ∈ Kα \ G̃/Kγ

of double cosets is eventually constant. Moreover, the limit does not depend

on the choice of representatives g1 ∈ g1, g2 ∈ g2.

b) Thus we get a multiplication (g1, g2) 7→ g1 ◦ g2,

Kα \ G̃/Kβ × Kβ \ G̃/Kγ → Kα \ G̃/Kγ ,

which can be described as follows. We write representatives g1 ∈ g1, g2 ∈ g2
as block (α+∞)× (β+∞) matrices and collections of (β+∞)× (γ+∞)
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matrices

{g
(l)
1 } =

{(
a
(l)
1 b

(l)
1

c
(l)
1 d

(l)
1

)}
, g

(l)
2 =

{(
a
(l)
2 b

(l)
2

c
(l)
2 d

(l)
2

)}
;

then a representative of g1 ◦ g2 is given by

{(g1 ⊚ g2)
(l)} :=







a
(l)
1 b

(l)
1 0

c
(l)
1 d

(l)
1 0

0 0 1∞






a
(l)
2 0 b

(l)
2

0 1∞ 0

c
(l)
2 0 d

(l)
2







. (2.3)

The size of these matrices is
(
α+ [∞+∞]

)
×
(
γ + [∞+∞]

)
=
(
α+∞

)
×
(
γ +∞

)
,

so this collection can be regarded as a representative of an element of the

space Kα \ G̃/Kγ . More precisely, we must choose arbitrary bijections
σ1, σ2 between the disjoint union N

∐
N and N to get an element of the

desired size:
{(

1α 0
0 σ1

)(
g1 ⊚ g2

)(l)(1α 0
0 σ2

)−1}
.

The double coset containing this matrix does not depend on the choice
of σ1, σ2.

c) The product of double cosets is associative, i.e., for

g1 ∈ K
α \ G̃/Kβ, g2 ∈ K

β \ G̃/Kγ, g3 ∈ K
γ \ G̃/Kδ,

we have

(g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3).

Remark. The formula for the ⊚-product

(
a1 b1
c1 d1

)
⊚

(
a2 b2
c2 d2

)
:=




a1a2 b1 a1b2
c1a2 d1 c1b2
c2 0 d2





of matrices initially arose as a formula for a product of operator colliga-
tions, see [1, 2].



110 Y. A. NERETIN

2.3. Multiplicativity theorems. Next, consider a unitary representa-

tion ρ of G̃ in a Hilbert space H . Denote by Hα ⊂ H the subspace of all
Kα-fixed vectors. Denote by Pα the orthogonal projection to Hα. For a

double coset g ∈ Kα \ G̃/Kβ, we define an operator

ρ̃(g) : Hβ → Hα

by the formula

ρ̃α,β(g) := Pαρ(g)
∣∣∣
Hβ

.

Remark. The operator ρ̃(g) actually depends only on the double coset
containing g. Indeed, for ξ ∈ Hβ , η ∈ Hα and κ1 ∈ Kα, κ2 ∈ Kβ, we have

〈ρ(κ1gκ2) ξ, η〉Hα
= 〈ρ(g) ρ(κ2) ξ, ρ(κ

−1
1 ) η〉Hα

= 〈ρ(g)ξ, η〉Hα
.

This expression does not depend on κ1, κ2.

Remark. Apparently, at this place we must require that the prelimit
groups K(α) in (2.1) are compact. Otherwise I see no reason to hope for
the existence of nonzero fixed vectors.

Theorem 2.1. Let G = GLfin(∞,Qp) and K = GLfin(∞,Op). For any

α, β, γ and

g1 ∈ K
α \ G̃/Kβ, g2 ∈ K

β \ G̃/Kγ,

we have

ρ̃α,β(g1) ρ̃β,γ(g2) = ρ̃α,γ(g1 ◦ g2). (2.4)

Proof. First, assume that the restriction of ρ to K = GLfin(∞,Op) is
continuous in the topology of GL(∞,Op). Denote by ρα,β(g) the following
operator in H :

ρα,β(g) := Pαρ(g)Pβ , where g ∈ g.

Representing it in a block form

Hβ ⊕H
⊥
β → Hα ⊕H

⊥
α ,

we get the expression

ρα,β(g) :=

(
ρ̃α,β(g) 0

0 0

)
.

Relation (2.4) is equivalent to

ρα,β(g1) ρβ,γ(g2) = ρα,γ(g1 ◦ g2). (2.5)
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We have

ρα,β(g1) ρβ,γ(g2) = Pα ρ(g1)Pβ ρ(g2)Pγ = Pα ρ(g1)
(
lim
j→∞

ρ(θ
[β]
j )
)
ρ(g2)Pγ

= lim
j→∞

Pα ρ(g1) ρ(θ
[β]
j ) ρ(g2)Pγ = lim

j→∞
Pα ρ(g1θ

[β]
j g2)Pγ

(here limj→∞ denotes the weak limit). The sequence g1θ
[β]
j g2 is eventually

constant, and we get the desired expression

Pα ρ(g1 ⊚ g2)Pγ = ρ(g1 ◦ g2).

Next, let ρ be arbitrary. The groupGL(m,Op) centralizesGL[m](∞,Op),
hence Hm is GL(m,Op)-invariant. For n > m, the space Hn is invariant
with respect to GL(n,Op) and, therefore, with respect to the smaller sub-
group GL(m,Op). Hence ∪∞j=0Hj is invariant with respect to GL(m,Op).
This is valid for all m, so the subspace is invariant with respect to the
inductive limit GLfin(∞,Op). Thus we get a unitary representation of
GLfin(∞,Op) in the closure H∗ of ∪∞j=0Hj . By Lemma 1.3, this repre-
sentation is continuous in the topology of GL(∞,Op), and we arrive at the
previous case.

In H⊥∗ we have no GL(m,Op)-fixed vectors, and the statement is trivial.
�

The crucial point here is Lemma 1.1. This picture is parallel to real clas-
sical groups and symmetric groups [8–10, 13, 15–17]. A further discussion
of the p-adic case is contained in [12].

Remark. It can be shown that in the p-adic case the functions ρ̃α,β(g) do
not separate elements of Kα \G/Kβ. A similar phenomenon is known for
finite fields, see [17].

Remark. Lemma 1.1 was formulated in [12] as Corollary 6.4, but its
proof there is incomplete due to an incorrect definition of a topology on
GL(∞,Op).

§3. Proof of Lemma 1.1

3.1. The symmetric group. Denote by S(∞) the group of all permu-
tations of the set N of positive integers. It has a structure of a totally
disconnected topological group defined by the following condition: the sta-
bilizers of finite subsets in N form a neighborhood basis of open subgroups
in S(∞). Denote by S[m](∞) the group stabilizing the points 1, . . . , m.
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Clearly, the open subgroups S[m](∞) form a basis of neighborhoods of the
identity in S(∞).

Remark. This is the unique separable topology on S(∞) compatible with
the group structure. Recall that a Polish group is a topological group that is
homeomorphic to a complete separable metric space. There is a collection
of statements on the rigidity of choosing a Polish topology on a group,
see, e.g., [5, Sec. 3.2]. For instance, if two Polish topologies on a group
generate the same Borel structures, then the topologies coincide. Of course,
additive groups of all separable Banach spaces (they are Polish groups)
are isomorphic as abstract groups. But the existence of such isomorphisms
requires an application of the choice axiom, and isomorphisms are not
Borel.

For a countable set Ω, we denote by S(Ω) the group of all permutations
of Ω; of course, S(Ω) ≃ S(∞).

3.2. Induced representations. Let G be a totally disconnected group
acting transitively on a countable set X , let R be the stabilizer of a point
x0, and let ν be a unitary representation of R in a Hilbert space H . Then
we can define the induced representation IndGR(ν) of the group G in the
usual way (see, e.g., [6, Sec. 13]). Namely, consider the space G ×H and
denote by B its quotient with respect to the equivalence relation

(x, r) ≃ (xr, ρ(r−1)h), where r ranges in R.

Then we have a “fiber bundle” B → X = G/R whose fibers Hx are copies
of the space H . Transformations (x, h) 7→ (gx, h) induce transformations
of B. Now we consider the space of “sections” ψ that send each point x to a
vector ψ(x) ∈ Hx. We define the inner product of sections by the formula

〈ψ1, ψ2〉 =
∑

x

〈ψ1(x), ψ2(x)〉Hx
.

In this way we obtain a Hilbert space; the groupG acts onB and, therefore,
on the space of sections. This determines a unitary representation of G.

According to the Lieberman theorem [7] (see also expositions in [8,17]),
any irreducible unitary representation of S(∞) is induced from an irre-
ducible representation of a subgroup of the type S(m) × S[m](∞) triv-
ial on the factor S(∞ − m). We need the following fact (see [8, Corol-
lary VIII.1.5]), which immediately follows from the Lieberman theorem.
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Lemma 3.1. For any unitary representation ρ of S(∞), the sequence ρ(θj)
weakly converges to the orthogonal projection to the space of vectors fixed

by all operators ρ(g).

3.3. Oligomorphic groups. Recall that a closed subgroup G in S(Ω)
is called oligomorphic if it has finitely many orbits on each finite product
Ω× · · · × Ω. We need the following Tsankov theorem [18].

Theorem 3.2. Any unitary representation of an oligomorphic group G is

a (countable or finite) direct sum of irreducible representations. For any

irreducible representation ρ of G there are open subgroups R ⊂ R̃ such that

R is a normal subgroup of finite index in R̃ and

ρ = IndG
R̃
(ν), (3.1)

where ν is an irreducible representation of R̃ trivial on R.

Corollary 3.3. Any irreducible representation of an oligomorphic group

G is a subrepresentation of a quasiregular representation in ℓ2 on some

homogeneous space G/R, where R is an open subgroup in G.

Proof. Let τ be a unitary representation of the group R̃/R. Denote by

τ◦ the same representation regarded as a representation of R̃ trivial on R.

Denote by Reg the regular representation of R̃/R. Denote by τ0 the trivial

(one-dimensional) representation of R̃/R.
It is easy to see that

IndR̃R(τ
0
◦ ) = Reg◦.

Let ν be as above. Then ν is a subrepresentation of Reg◦; therefore, the
representation ρ given by (3.1) is a subrepresentation of

IndG
R̃

(
IndR̃R(τ

0
◦ )
)
= IndGR(τ

0
◦ ).

The last representation is the quasiregular representation of the group G
in ℓ2(G/R). �

3.4. Definitions. a) Modules. Denote by Zpk the residue rings Z/pkZ.
A module over Zpk is nothing but an Abelian p-group whose elements have

orders 6 pk.
The ring of p-adic integers Op is the inverse limit

Op = lim
←−

Zpk
. (3.2)
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The reduction of a p-adic integer x modulo pk is denoted by

((x))pk ∈ Zpk
.

We will use the same notation for reductions of vectors and matrices.
For each k define a Zpk -module V (Zpk) as the space of all sequences

z = (z1, z2, . . . ) where zj ∈ Zpk and zl = 0 for sufficiently large l. We
equip this space with the discrete topology.

Next, we define an Op-module V (Op) as the space of all sequences z =
(z1, z2, . . . ) where zj ∈ Op and |zj | → ∞ as j →∞; in other words,

V (Op) = lim
←−

V (Zpk).

We equip this space with the projective limit topology. Thus, a sequence
z(l) ∈ V (Op) converges if all reductions ((z(l)))pk ∈ V (Zpk ) are eventually
constant. The same topology is induced by the norm

‖z‖ := max
j
|zj|.

We also consider the “dual” modules V ◦(Zpk), V ◦(Op) consisting of
vector-columns satisfying the same properties.

b) The groups GL(∞,Zpk). We define GL(∞,Zpk) as the group of
all infinite matrices over Zpk such that each row and each column con-
tains only finitely many nonzero elements. The group GL(∞,Zpk ) acts by
automorphisms on the module V (Zpk)⊕ V ◦(Zpk):

g : (v, w◦)→ (vg, g−1w◦).

Thus we have an embedding into a symmetric group:

GL(∞,Zpk)→ S
(
V (Zpk)⊕ V ◦(Zpk)

)
.

We equip GL(∞,Zpk) with the induced topology. For any collection of
vectors v1,. . . , vl ∈ V and covectors w◦1 , . . . , w◦n, its stabilizer

G(v1, . . . , vl;w
◦
1 , . . . , w

◦
n) (3.3)

is an open subgroup in GL(∞,Zpk). By definition, such subgroups form a
basis of neighborhoods of the identity in our group.

Next, for each m consider the subgroup GL[m](∞,Zpk) ⊂ GL(∞,Zpk )

consisting of all matrices of the form

(
1m 0
0 ∗

)
. This group has the form

G(e1, . . . , em; f◦1 , . . . , f
◦
m), where ej is the standard basis in V and f◦j is the

standard basis in V ◦. Since the vectors and covectors vi and w◦j in (3.3)
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actually have only finitely many nonzero coordinates, each stabilizerG(. . . )

contains some group GL[m](∞,Zpk).

Thus, the subgroups GL[m](∞,Zpk) form a basis of neighborhoods of the

identity in our group.

We can also define the topology in the following way. A sequence gl
converges to g if for every i the sequence of the ith rows (respectively,
columns) of gl coincides with the ith row (respectively, column) of g for
sufficiently large l.

c) The group GL(∞,Op). We have natural homomorphisms of rings
Zpk → Zpk−1 and, therefore, homomorphisms of groups

GL(∞,Zpk)→ GL(∞,Zpk−1).

We define the group GL(∞,Op) as the projective limit

GL(∞,Op) := lim
←−

GL(∞,Zpk).

In other words, this group consists of all infinite matrices g over Op such
that ((g))pk ∈ GL(∞,Zpk) for all k.

We equip GL(∞,Op) with the projective limit topology. A sequence g(j)

converges to g if ((g(j)))pk ∈ GL(∞,Zpk ) converges to ((g))pk for all k.
d) Open subgroups in GL(∞,Op). For nonnegative integers m, k,

we introduce the subgroups GL
[m]
k (∞,Op) consisting of (m + ∞)-block

matrices of the form (
1 + pkA pkB
pkC D

)
,

where A, B, C, D are matrices over Op. These subgroups are open and
form a basis of neighborhoods of the identity.

We define the congruence subgroup GLk(∞,Op) in GL(∞,Op) as the
subgroup consisting of matrices of the form 1 + pkQ where Q is a matrix
over Op (the congruence subgroups are not open).

3.5. Lemmas. Next, we apply the following general statement, see [8,
Proposition VII.1.3].

Proposition 3.4. Let G be a topological group and G1 ⊃ G2 ⊃ . . . be

a sequence of subgroups such that any neighborhood of the identity in G
contains a subgroup Gj. Let ρ be a unitary representation of G in a Hilbert

space H. Denote by Hk the space of vectors invariant with respect to Gk.

Then ∪Hk is dense in H.
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Corollary 3.5. Any unitary representation ρj of GL(∞,Op) can be de-

composed into a direct sum ⊕∞k=1ρk where ρk is trivial on the congruence

subgroup GLk(∞,Op).

Proof. We apply Proposition 3.4 to the group GL(∞,Op) and the se-
quence of congruence subgroups GLk(∞,Op). Since GLk(∞,Op) is a nor-
mal subgroup, for h ∈ Hk, g ∈ GL(∞,Op), r ∈ GLk(∞,Op) we have

ρ(r) ρ(g)h = ρ(g) ρ(g−1rg)h.

Since the congruence subgroup is normal, g−1rg ∈ GLk(∞,Op), whence

ρ(g−1rg)h = h,

i.e., h ∈ Hk. Therefore, the subspace Hk is invariant with respect to the
whole group GL(∞,Op), and the congruence subgroup acts in Hk trivially.
Thus,

H = ⊕∞k=1(Hk ⊖Hk−1).

In each space Hk ⊖Hk−1 we have an action of GL(∞,Zpk). �

Thus, it suffices to prove Lemma 1.1 for the groups GL(∞,Zpk).
Recall that we can regard S(∞) as a group of 0-1 matrices.

Lemma 3.6. For any m, the group GL(∞,Zpk) is generated by the sub-

groups S(∞) and GL[m](∞,Zpk ).

Proof. Consider the subgroup G generated by these subgroups. Clearly,
G contains all groups GL(n,Op). Indeed, for y ∈ GL(n,Op), we have

θNyθ
−1
N ∈ GL[m](∞,Zpk) for N > max(m,n).

Fix g ∈ GL(∞,Zpk). For sufficiently large β, the expression for g as an
(m+ β +∞)-block matrix has the form

g =



g11 g12 0
g21 g22 g23
0 g32 g33


 .

Multiplying this matrix from the right by an appropriate matrix of the
form 


r11 r12 0
r12 r22 0
0 0 1



 , (3.4)
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we can obtain a matrix of the form

g′ =




1 0 0
g′21 g′22 g′23
0 g′32 g′33



 . (3.5)

Indeed, we can regard the rows u1, . . . , um of the matrix
(
g11 g12

)

as elements of the module Z
m+β

pk . Since the matrix g is invertible, the

matrix ((g))p over the finite field Zp is invertible. Therefore, the matrix
((
(
g11 g12

)
))p is nondegenerate. This implies that the rows u1, . . . , um

generate a submodule isomorphic to Zm
pk . Adding an appropriate collection

v1, . . . , vβ , we can obtain a basis of the module Z
m+β

pk . The matrices (3.4)

determine automorphisms of Z
m+β

pk . We send u1, . . . , um, v1, . . . , vβ to

the standard basis in Z
m+β

pk .

Thus we arrive at a matrix g′ of the form (3.5). Multiplying g′ from the
left by 


1 0 0
−g′21 1 0
0 0 1



 ,

we obtain

g′′ =




1 0 0
0 g′22 g′23
0 g′32 g′33



 ∈ GL[m](∞,Zpk). �

Lemma 3.7. The groups GL(∞,Zpk) are oligomorphic.

Proof. We have an action of GL∞(∞,Zpk ) on V (Zpk)⊕V ◦(Zpk)n, i.e., on
collections (v1, . . . , vn; w

◦
1 , . . . , w

◦
n) of vectors and covectors. We must show

that there is a finite set containing representatives of all GL∞(∞,Zpk)-or-
bits. Denote by VN the submodule in V (Zpk ) consisting of the vectors

whose coordinates with indices > N vanish, VN = ZN
pk . An (N +∞)-block

matrix of the form g =

(
a 0
0 1

)
induces an automorphism of VN . We can

send v1, . . . , vn to the submodule Vn ⊂ VN .

Next, consider the action of the group GL[n](∞,Zpk) on the collections
of vectors and covectors. It does not change vectors and the first n coordi-
nates of covectors. The same argument as above shows that we can send
all covectors to the module V ◦2n.

Thus, any orbit intersects the finite set V (Zpk)n ⊕ V ◦(Zpk)2n. �
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3.6. Proof of Lemma 1.1. By Corollary 3.3, it suffices to prove the
statement for a quasiregular representation ρ of GL(∞,Zpk) in the space

ℓ2(X), where X = GL(∞,Zpk)/P is the coset space with respect to an

open subgroup P . For x ∈ X , denote by δx the element of ℓ2 that is equal
to 1 at x and 0 at the other points.

By Lemma 3.1, the weak limit of ρ(θj) exists and coincides with the
orthogonal projection to the space of S(∞)-fixed vectors. Let

ψ =
∑

x∈X

cxδx 6= 0

be such a vector. For σ ∈ S(∞), we have cσx = cx. If x is not fixed by
S(∞), then its orbit is infinite. Since ψ ∈ ℓ2, we have cx = 0. Thus, ψ has
the form

ψ =
∑

x: σx = x for all σ ∈ S(∞)

cxδx.

The stabilizer of x is an open subgroup in GL(∞,Op). It contains some

subgroup of the form GL[m](∞,Op). On the other hand, it contains S(∞).
By Lemma 3.6, the stabilizer of x is the whole group GL(∞,Op). Thus,
the space X consists of one point. This completes the proof. �

§4. Admissibility

Here we prove Lemma 1.3. It is sufficient to prove the implication ⇐,
since the implication ⇒ immediately follows from Proposition 3.4.

4.1. A normal form for double cosets.

Lemma 4.1. a) Any double coset of the group GLfin(∞,Op) with respect

to GL
[m]
fin (∞,Op) contains an element of GL(3m,Op).

b) The same statement holds for double cosets of GL(∞,Op) with re-

spect to GL[m](∞,Op).
c) The natural map

GL
[m]
fin (∞,Op) \GLfin(∞,Op)/GL

[m]
fin (∞,Op)

−→ GL[m](∞,Op) \GL(∞,Op)/GL[m](∞,Op) (4.1)

is a bijection.

d) Let M > 3m. Assume that for g1, g2 ∈ GL(M,Op) there are elements

q, r ∈ GL[m](∞,Op) such that g1 = qg2r. Then for sufficiently large N
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depending only on M there are elements

q′, r′ ∈ GL(N,Op) ∩GL[m](∞,Op)

such that g1 = q′g2r
′.

Proof. a), b). In both cases, we can apply the following reduction. Repre-
sent an element g ∈ GLfin(∞,Op) as an (m + ∞)-block matrix

g =

(
g11 g12
g21 g22

)
. Multiplying it from the right by matrices of the form

(
1 0
0 u

)
∈ GL[m], we can reduce it to the (m+m+∞)-block form

g′ =



g′11 g′12 0
g′21 g′22 g′23
g′31 g′32 g′33




(in fact, g′12 can be made lower triangular). Applying a similar left multi-
plication, we can ensure that g′31 = 0.

Next, we multiply g′ from the left and from the right by elements of

GL
[2m]
fin to simplify g′33 (such multiplications do not change the blocks g′11,

g′12, g
′
21, g

′
22). If the reduction ((g′33))p is nondegenerate, we can ensure that

((g′33))p = 1 and g′33 = 1.
However, ((g′33))p can be degenerate, with

dimker g′33 = dim coker g′33 := γ 6 m.

In this case, we can transform ((g′33))p into a matrix of the form

(
0γ 0
0 1∞

)

and reduce g′33 to the form

(
pA pB
pC 1∞ + pD

)
, where A, B, C, D are matri-

ces over Op. Applying the right multiplication by

(
12m+γ 0

0 1 + pD

)−1
∈

GL[2m+γ] ⊂ GL[2m], we “kill” pD and arrive at an (m+m+ γ +∞)-block
matrix of the form

g′′ :=




g′′11 g′′12 0 0
g′′21 g′′22 g′′23 g′′24
0 g′′32 g′′33 g′34
0 g′′42 g′43 1


 .
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Multiplying by the matrix



1 0 0 0
0 1 0 −g′′24
0 0 1 −g′′34
0 0 0 1




from the left, we kill g′′24, g
′′
34 (and change only g′′22, g

′′
23, g

′′
33, g

′′
34). In the

same way (by a multiplication from the right) we kill g′′42, g
′′
43.

d) Denote l :=M −m. We wish to verify the following statement: if for

given g1, g2 ∈ GL(m + l,Op) there exist ξ, η ∈ GL[m](∞,Op) satisfying
the equation

g1ξ = ηg2, (4.2)

then there exist ξ′, η′ ∈ GL
[m]
fin (∞,Op) satisfying the same equation. Let

us write (4.2) as a condition on (m+ l +∞)-block matrices:


a b 0
c d 0
0 0 1∞





1m 0 0
0 x y
0 z u


 =



1m 0 0
0 X Y
0 Z U





A B 0
C D 0
0 0 1∞


 (4.3)

(the matrices in the left-hand side stand for g1 and ξ, the matrices in the
right-hand side, for η and g2), or




a bx by
c dx dy
0 z u



 =




A B 0
XC XD Y
ZC ZD U



 . (4.4)

Let κ be an infinite invertible matrix over Op. Then the transformations

Z 7→ κz, U 7→ κU, z 7→ κz, u 7→ κu

send a solution of the system of equations (4.4) to a solution. We can find

a new solution, with Z of the form

(
Z ′

0

)
, the size of this matrix being

(l +∞) × l. By (4.4), the new matrix z is ZD =

(
Z ′D
0

)
. Applying a

similar transformation

y 7→ yλ, u 7→ uλ, Y 7→ Y λ, U 7→ uλ,

we can get a solution of (4.4) with y and Y of the form
(
∗ 0

)
. Thus, we

have a solution of (4.3) with finitary indeterminates z, Z, y, Y . Now, the
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indeterminant factor in the left-hand side of (4.3) can be written in the
(m+ l + l +∞)-block form




1m 0 0 0
0 x′ y′ 0
0 z′ u′11 u′12
0 0 u′21 u′22


 . (4.5)

The only equation in (4.4) containing u is u = U . Since the matrices

((
(
x′ y′

)
))p and ((

(
x′

z′

)
))p are nondegenerate, we can choose u′11 such that

the matrix ((

(
x′ y′

z′ u′11

)
))p is also nondegenerate. We set u′12 = 0, u′21 = 0,

u′22 = 1∞. Then the matrix (4.5) is invertible.
Finally, we find the new U from the equation u = U . Then three factors

in (4.3) are invertible, and, therefore, the fourth factor is also invertible.
A finitary solution of (4.3) is obtained. Actually,

ξ′, η′ ∈ GL[m](∞,Op) ∩GL(m+ 2l,Op).

c) The surjectivity follows from a) and b), while the injectivity follows
from d). �

4.2. The metric on the space of double cosets. Here we prove the
following lemma.

Lemma 4.2. The maps (4.1) are homeomorphisms.

Fix m. For every M > 3m, we have a natural partition of the group
GL(M,Op) into the subsets GL(M,Op) ∩ g where g are double cosets of

GL(∞,Op) with respect to GL[m](∞,Op). Denote by KM the quotient
space. According to Lemma 4.1(d), elements of these partitions are com-
pact; therefore, the quotients are compact. For M < M ′, the natural map
KM → KM ′ is continuous. By Lemma 4.1(a), it is a bijection, hence it is
a homeomorphism. This also implies that the bijections

KM ←→ GL
[m]
fin (∞,Op) \GLfin(∞,Op)/GL

[m]
fin (∞,Op)

are homeomorphisms. Also, it is clear that the maps

KM −→ GL[m](∞,Op) \GL(∞,Op)/GL[m](∞,Op)

are continuous. We must prove the continuity of the inverse map.
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We define a left-right-invariant metric on GL(∞,Op) by the formula

d(z, u) = max
i,j
|zij − uij |.

Remark. This metric determines the standard topology on each group
GL(n,Op). On the whole group GL(∞,Op), it determines a nonseparable
topology which is stronger than the natural topology. The restriction of
the metric to GLfin(∞,Op) induces a topology which is weaker than the
natural topology.

Recall that the Hausdorff metric on the space of compact subsets of a
metric space is given by the formula

distH(A,B) := max
[
max
x∈A

min
y∈b

d(x, y), max
y∈b

min
x∈A

d(x, y)
]
.

Restricting this metric to elements of the partition of GL(M,Op), we get
a metric on the double coset space

distMH (g1, g2) = distH

(
g1 ∩GL(M,Op), g2 ∩GL(M,Op)

)
(4.6)

compatible with the topology on KM .
Next, we define another metric on

GL[m](∞,Op)/GL(∞,Op)/GL[m](∞,Op).

Let g1, g2 be double cosets. Fix g ∈ g1. Then

dist(g1, g2) = inf
z∈g2

d(g, z) (4.7)

(the result does not depend on g).

Lemma 4.3. These metrics coincide.

We have the obvious inequality

dist3mH (g1, g2) > dist(g1, g2).

The inverse inequality follows from the following lemma.

Lemma 4.4. Let g1, g2 be double cosets. Let g1 ∈ g1, g2 ∈ g2. Let

u ∈ g1 ∩GL(3m,Op). Then there exists w ∈ g2 ∩GL(3m,Op) such that

d(u,w) 6 d(g1, g2).
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Proof. Let d(g1, g2) = p−k. Let u = qg1r where q, r ∈ GL[m](∞,Op).
We take v := qg2r. Then we can make a reduction as in the proof of
Lemma 4.1 using only elements of the congruence subgroup, i.e., we find
w = tvs ∈ GL(3m,Op) with

t, s ∈ GL[m](∞,Op) ∩GLk(∞,Op).

Then we have d(v, u) = p−k, d(u,w) 6 p−k. �

4.3. Proof of Lemma 4.2. It suffices to show that for any g for any k
there is a neighborhood N of g in the sense of

GL[m](∞,Op) \GL(∞,Op)/GL[m](∞,Op)

such that for every h ∈ N we have dist(g, h) 6 p−k.
Choose g ∈ g and chooseN such that the matrix ((g))pk has the following

(m+N +∞)-block form:

((g))pk =



u11 u12 0
u21 u22 u23
0 u32 u33


 .

Next, consider the open subgroup GL
[m+N ]
k (∞,Op) and the neighborhood

O := gGL
[m+N ]
k (∞,Op)

of g. Let r ∈ GL
[m+N ]
k (∞,Op). Then h = gr ∈ O. Consider the matrix

((r))pk ∈ GL[m+N ](∞,Zpk).

Let us regard it as a matrix r̃ ∈ GL[m+N ](∞,Op) composed of p-adic
integers contained in the set 0, 1, . . . , pk−1. Consider the matrix grr̃−1,
which is contained in the same double coset. Then ((grr̃−1))pk = ((g))pk .
Thus

|g − grr̃−1| 6 p−k.

We apply Lemma 4.4, and this completes the proof.

4.4. End of the proof of Lemma 1.3. It suffices to show that matrix
elements of the form

〈ρ(g)ξ, η〉H , where ξ, η ∈ ∪Hj ,
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have continuous extensions to the whole group GL(∞,Op). We may assume
that ξ, η ∈ Hm. Such matrix elements are continuous functions on the in-
ductive limit GLfin(∞,Op) that are constant on double cosets with respect

to GL
[m]
fin (∞,Op). By Lemma 4.2, they are continuous on GL(∞,Op).
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