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Abstract. We study a probability measure on the integral domi-
nant weights in the decomposition of the Nth tensor power of the
spinor representation of the Lie algebra so(2n+ 1). The probability
of a dominant weight λ is defined as the dimension of the irreducible
component of λ divided by the total dimension 2nN of the tensor
power. We prove that as N → ∞, the measure weakly converges to
the radial part of the SO(2n + 1)-invariant measure on so(2n + 1)
induced by the Killing form. Thus, we generalize Kerov’s theorem
for su(n) to so(2n+ 1).

Introduction

Let V1, V2, . . . , Vk be finite-dimensional representations of a simple Lie
algebra g. The tensor product of these representations is isomorphic to a
direct sum of irreducible highest weight representations:

V1 ⊗ V2 ⊗ · · · ⊗ Vk
∼=
⊕

λ

W 1,...,k
λ ⊗ Lλ, (1)

where Lλ is the irreducible representation with highest weight λ and

W 1,...,k
λ ≃ Homg(L

λ, V1 ⊗ · · · ⊗ Vk). The dimension M1,...,k
λ = dimW 1,...,k

λ

is the multiplicity of Lλ in the tensor product decomposition. Rewriting
this decomposition equation in terms of dimensions of representations and
dividing by dim · V1 · dimV2 · . . . · dimVk, we get

∑

λ

M1,...,k
λ dimLλ

dimV1 . . . dimVk
= 1. (2)

Key words and phrases: orthogonal matrix, limit shape, central limit theorem, ten-
sor product decomposition.
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Thus, we have a discrete probability measure on the dominant integral
weights λ that appear in this decomposition:

µN (λ) =
M1,...,k

λ dimLλ

dimV1 . . . dimVk
. (3)

A particularly interesting case of such a measure appears when we take
the Nth tensor power of the vector representation of su(n+1). Because of
the Schur–Weyl duality, in this case Mλ is the dimension of an irreducible
representation of the symmetric group SN . Kerov [1] discovered that as
N → ∞, the discrete measures (3) in the weight space R

n of su(n + 1)
converge weakly to some continuous measure on the main Weyl chamber.

In this paper, we consider the algebra g = Bn and tensor powers of
the spinor representation Lωn . We prove the weak convergence of the mea-
sures (3) on the main Weyl chamber of the weight space for Bn to the
measure induced by the G-invariant Euclidean measure on g.

In Theorem 1, we consider a small domain U(N) ⊂ R
n whose volume

goes to zero as N → ∞. We show that the probability density function of
the limit measure is given by the formula

φ ({xi}) =
∏

i<j

(x2
i − x2

j )
2

n∏

l=1

x2
l exp

(
− 1

2

∑

k

x2
k

)
· 22nn!

(2n)!(2n− 2)! . . . 2!
,

where xi =
1√
N
ai and ai = λi + ρi are the shifted Euclidean coordinates

on the weight space of Bn, with ρ being the Weyl vector.
In Theorem 2, we show that the same holds for every n-orthotope in

the main Weyl chamber.
In Theorem 3, we show that the measures converge weakly on the entire

main Weyl chamber.
Kerov’s proof for the An case was based upon hook-length formulas

and Young diagrams for multiplicities of tensor product decompositions
and dimensions of representations. In this, it was similar to the famous
Vershik–Kerov [2, 3] and Logan–Shepp [4] result on the limit shape of
Young diagrams. A relation of the limit shape of Young diagrams to ran-
dom matrices was established in [5, 6]. The weak convergence was estab-
lished by comparing the discrete probability measure with the multinomial
distribution and using the de Moivre–Laplace theorem.

Unfortunately, there are no analogs of hook-length formulas for the
other Lie algebras. Thus, we use a combinatorial formula for the coefficients
of tensor product decompositions [7] and the Weyl dimension formula to
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prove an analog of the de Moivre–Laplace theorem [8,9] for an arbitrary n-
orthotope in the main Weyl chamber, and then apply a weak convergence
criterion for probability measures [10].

The paper is organized as follows. In Sec. 1, we fix notation and give the
definition of probability measures on subsets of dominant integral weights.
In Sec. 2, we present a formula for the multiplicities of the tensor prod-
uct decomposition for tensor powers of the spinor representation of the
algebra Bn. In Sec. 3, we pass to the limit of the infinite tensor power
and prove the convergence of the discrete probability measures on subsets
of dominant integral weights to a continuous probability measure on the
main Weyl chamber. In the conclusion section, we discuss the connection
to the invariant measure and further work.

We thank Prof. Nikolai Reshetikhin for his guidance and Prof. Fedor
Petrov for valuable discussions.

§1. The tensor product decomposition and the

definition of the probability measure

Consider the simple Lie algebra g = Bn of rank n. Denote the simple
roots of g by α1, . . . , αn and the fundamental weights by ω1, . . . ωn, with
(αi, ωj) = δij . We denote the irreducible highest weight representation of
g with highest weight λ by Lλ.

The root system is denoted by ∆ = {±ei± ej|i6=j}∪{±ei}, while ∆+ =
{ei + ej |i6j} ∪ {ei} ∪ {ej − ei|j6i} is the subset of positive roots, and
ρ = ω1 + · · ·+ ωn is the Weyl vector.

We consider the multiplicity function for a tensor power of the last
fundamental module ωn = 1

2 (e1+ · · ·+ en). We decompose the Nth tensor
power of Lωn into a direct sum of irreducible representations:

(Lωn)⊗N =
⊕

λ∈P+(ωn,N)

Mωn,N
λ Lλ, (4)

where P+(ωn, N) is the subset of dominant integral weights of the (re-
ducible) representation (Lωn)⊗N .

Relation (3) gives us a probability measure on P+(ωn, N) with the
probability density function

µN (λ) =
Mωn,N

λ dimLλ

(dimLωn)
N

. (5)
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It is easy to see that
∑

λ∈P (ωn,N)

µN (λ) = 1, since the dimension of the

left-hand side of (4) is equal to (dimLωn)
N

.
In the present paper, we will study this measure in the N → ∞ limit

for n fixed.

§2. The multiplicity formula for the tensor product

decomposition

The papers [7,11–13] suggested a method for decomposing tensor powers
of the fundamental module of the smallest dimension for the simple Lie
algebras of type An and Bn.

Instead of focusing on the multiplicity function Mω,N
λ , which is defined

on the set of dominant weights P+, this method is aimed at finding an

expression for the extended multiplicity function M̃ω,N
λ defined on the

whole weight lattice P as

M̃ω,N
w(λ+ρ)−ρ|w∈W = ǫ (w)Mω,N

λ . (6)

If an expression for M̃ω,N
λ is obtained, we can find Mω,N

λ as its restriction
to the set of dominant weights P+ lying in the main Weyl chamber.

It was shown in [12, 13] that the extended multiplicity function M̃ω,N
λ

is a solution of the set of recurrence relations
∑

ξ∈P

M̃ω,N
ξ eξ = N

(
L
(ω)
g

)∑

γ∈P

M̃ω,N−1
γ eγ , (7)

where N
(
L
(ω)
g

)
is the weight diagram of the module L

(ω)
g .

It was also proved that in the case of fundamental modules of the small-
est dimension, a solution of (7) is uniquely determined by the requirement
of antiinvariance with respect to the Weyl group transformations and the
boundary conditions.

In the case of the Bn algebra, this method allowed us to obtain the
multiplicity function for the tensor power of the last fundamental module
ωn = 1

2 (e1 + · · ·+ en). This expression has an explicit dependence on N :

M̃ωn,N
λ(a1...an)

=

n−1∏

k=0

(N + 2k)!

22k
(

N+ak+1+2n−1
2

)
!
(

N−ak+1+2n−1
2

)
!

n∏

l=1

al
∏

i<j

(
a2i − a2j

)
;

(8)
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here {ai} are the coordinates of λ in the basis
{
{ ~̃ei} : ~̃ei ‖ ~ei, |ẽi| = | ei2 |

}

with the origin shifted to −ρ = −ω1 · · ·−ωn. The factors in the numerator
vanish at the boundaries of the shifted Weyl chambers, and the denomina-

tor ensures that M̃ω1,N
λ satisfies the boundary conditions and also that the

whole expression is antiinvariant with respect to the Weyl group transfor-
mations.

Note that there are two congruence classes of weights, one is parametri-
zed by even values of ai and the other one, by odd values. A class is
determined by the parity of N . For even N , we get odd ai, and vice versa.

The expression after (N + 2k)! in the numerator is related to the Weyl
dimension formula for the irreducible module Lλ:

dimLλ =
∏

α∈∆+

(λ+ ρ, α)

(ρ, α)
, (9)

which in the case of a Bn module has the form

dimLλ =

∏
i<j

(a2i − a2j)
n∏

l=1

al

(2n)!(2n− 2)! . . . 2!
· 2−n2+2nn!. (10)

Thus we obtain the discrete probability measure with density function (or
probability mass function)

µN (λ) = µN ({ai}) =
M̃ωn,N

λ(a1...an)
dimLλ

(2n)N

=

n−1∏

k=0

(N + 2k)!

22k
(

N+ak+1+2n−1
2

)
!
(

N−ak+1+2n−1
2

)
!

×
∏

i<j

(a2i − a2j)
2

n∏

l=1

a2l ·
2−n2+2n−nNn!

(2n)!(2n− 2)! . . . 2!
.

(11)

§3. The infinite tensor product limit for a finite-rank

algebra

Now let X be the n-dimensional random vector distributed according to
the discrete measure with density function (or, more correctly, probability
mass function) (11), i.e., X ∼ µN ({ai}) : U ⊂ P+ → R. Here P+ is the
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dominant weight lattice,
{
0 6 µN (U) 6 1,

µN (P+) = 1.

We fix n in formula (11) and study the N → ∞ limit to see that this
probability mass function converges to a continuous probability density
function φ{xi} : U ⊂ R

n → R.
First, we embed P+ into R

n in the following way. To a weight λ in P+

with coordinates {ai} we associate the domain

Ua = ∪i[ai − 1, ai + 1) ∈ R
n.

There is only one weight inside this domain. Consider the probability mass
function of the vector X :

µN (λ) = pX(λ) = P{X = λ} = P{X ∈ Ua}
= P{ai − 1 6 Xi < ai + 1}

= P

{
1√
N

(ai − 1) 6
1√
N

Xi <
1√
N

(ai + 1)

}

= P

{
1√
N

X ∈ Ua(N)

}
.

(12)

The volume of the rescaled domain Ua(N) goes to zero as N → ∞.
Then, as N → ∞ we would expect on this domain the convergence

∣∣∣∣∣pX(λ) ·
(√

N

2

)n

− φ

({
1√
N

ai

})∣∣∣∣∣ −→ 0. (13)

Theorem 1. Let X ∼ µN ({ai}), and let CN be a nondecreasing sequence

such that lim
N−→∞

CN/N
1
6 = 0. Then

max
|ai+2n−1|<

√
N ·CN

∣∣∣∣∣
pX(λ)

φ ({xi})

(√
N

2

)n

− 1

∣∣∣∣∣ = O
(
C3

N√
N

)
, (14)

where xi =
1√
N
ai and

φ({xi}) =
∏

i<j

(x2
i−x2

j )
2

n∏

l=1

x2
l exp

(
−1

2

∑

k

x2
k

)
· 22nn!

(2n)!(2n− 2)! . . . 2!
. (15)
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Proof. Consider the factor in (11) that depends on N :

IN,n =

n−1∏

k=0

(N + 2k)!

22k
(

N+ak+1+2n−1
2

)
!
(

N−ak+1+2n−1
2

)
!
. (16)

We will treat the numerator of IN,n and the denominator

DN,n =

n−1∏

k=0

22k
(
N + ak+1 + 2n− 1

2

)
!

(
N − ak+1 + 2n− 1

2

)
! (17)

separately.
To obtain the asymptotics of (16), we will use Stirling’s formula for

factorials

N ! ≈
√
2π exp

(
N lnN −N +

1

2
lnN

)(
1 +O

(
1

N

))
, (18)

and, assuming that n ≪ N , the following expansion of the logarithm to
the order of 1

N2 :

ln(N + i) = lnN

(
1 +

i

N

)
= lnN +

i

N
− i2

2N2
+O

(
1

N3

)
. (19)

We have

S =

n∑

i=1

(N + i) ln(N + i)

=

n∑

i=1

1

N

(
− i3

2N
+

i2

2
+N(1 + lnN)i

)
+Nn lnN +O

(
1

N2

)
.

(20)

Since the first term of the sum is of order 1
N2 , we can include it into the

error term:

S =

n∑

i=1

1

N

(
i2

2
+N(1 + lnN)i

)
+Nn lnN +O

(
1

N2

)
. (21)
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Then, as N −→ ∞, we apply Stirling’s formula to the numerator of IN,n:

n−1∏

k=0

(N + 2k)! =

n∏

k=1

(N + 2k − 2)!

≃
n∏

k=1

√
2π exp [(N + 2k − 2) ln(N + 2k − 2)− (N + 2k − 2)]

×
n∏

k=1

(N + 2k − 2)
1
2

(
1 +O

(
1

N

))

= (
√
2π)n exp

[ n∑

k=1

(N + 2k − 2) ln(N + 2k − 2)− (N + 2k − 2)

]

×
n∏

k=1

(N + 2k − 2)
1
2

(
1 +O

(
1

N

))
.

(22)

Using (21), we now expand the sum under the exponent:

n−1∏

k=0

(N + 2k)! ≃ (
√
2π)n exp

[ n∑

k=1

(
(2k − 2)2

2N
+ (1 + lnN)(2k − 2)

+N lnN − (N + 2k − 2)

)
+O

(
1

N2

)]

×
n∏

k=1

(N + 2k − 2)
1
2

(
1 +O

(
1

N

))

= (
√
2π)n exp

[ 1
N

4n3 − 6n2 + 2n

6

+ n(n− 1)− n(N + n− 1)
]
Nn(n−1)NnN

×
n∏

k=1

(N + 2k − 2)
1
2

(
1 +O

(
1

N2

))(
1 +O

(
1

N

))

= (
√
2π)n exp

[
−nN +

1

N

4n3 − 6n2 + 2n

6

]
Nn(n−1)NnN

×
n∏

k=1

(N + 2k − 2)
1
2

(
1 +O

(
1

N

))
.

(23)
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Next, we expand the denominator DN,n of IN,n. We can expand logarithms

such as ln(1 + ak+2n−1
N ) in the interval |ak+2n−1|

N < Ck√
N

≪ 1. Choose CN

that satisfies this condition for the largest ak. Then the value |ak+2n−1|
N

will be bounded for all ak, as well as the value |−ak+2n−1|
N .

Applying Stirling’s formula to the denominator of IN,n, we get

DN,n =

n∏

k=1

22(k−1)

(
N + ak + 2n− 1

2

)
!

(
N − ak + 2n− 1

2

)
!

≃ 2n(n−1)(
√
2π)2n

×
n∏

k=1

exp

[
N + ak + 2n− 1

2
ln

(
N + ak + 2n− 1

2

)

− N + ak + 2n− 1

2

] n∏

k=1

(
N + ak + 2n− 1

2

) 1
2

×
n∏

k=1

exp

[
N − ak + 2n− 1

2
ln

(
N − ak + 2n− 1

2

)

− N − ak + 2n− 1

2

] n∏

k=1

(
N − ak + 2n− 1

2

) 1
2

.

(24)

This expansion has an error term of order
(
1 +O

(
1
N

))
. To simplify cal-

culations, we combine some factors into one factor Z(n,N). Thus we get

DN,n

=2n(n−1)(
√

2π)2nexp

(

−n(N+2n−1)

) n∏

k=1

(
N−ak+2n−1

2

) 1
2
(
N+ak+2n−1

2

) 1
2

︸ ︷︷ ︸

Z(n,N)

· exp
[ n∑

k=1

N − ak + 2n− 1

2
ln

(
N − ak + 2n− 1

2

)

+
N + ak + 2n− 1

2
ln

(
N + ak + 2n− 1

2

)]
·
(
1 +O

( 1

N

))

= Z(n,N) · exp
[
1

2

n∑

k=1

(N + ak + 2n− 1) ln(N + ak + 2n− 1)
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+ (N − ak + 2n− 1) ln(N − ak + 2n− 1)

]

· exp
[
−

n∑

k=1

(N + 2n− 1) ln 2

](
1 +O

( 1

N

))
. (25)

Using (21), we expand the sum under the exponent and get an approxi-
mate expression for the denominator:

DN,n ≃ 2−n(N+2n−1)Z(n,N)

· exp
[

1

2N

n∑

k=1

(
(ak + 2n− 1)2

2

+N(1 + lnN)(ak + 2n− 1) +N2 lnN

)
+O

(
C3

N√
N

)]

· exp
[

1

2N

n∑

k=1

(
(−ak + 2n− 1)2

2

+N(1 + lnN)(−ak + 2n− 1) +N2 lnN

)
+O

(
C3

N√
N

)]
·
(
1 +O

( 1

N

))

= 2−n(N+2n−1)Z(n,N) exp

[ n∑

k=1

a2k
2N

]

× exp

[
4n3 − 4n2 + n

2N
+ n(2n− 1) + n(2n− 1) lnN + nN lnN

]
·

·
(
1 +O

(
C3

N√
N

))(
1 +O

( 1

N

))
. (26)

Extracting the factors from Z(n,N), we get

DN,n ≃ 2−nN−n2

(
√
2π)2nNnN+n(2n−1)

× exp

[
n∑

k=1

a2k
2N

]
exp

[
−nN +

4n3 − 4n2 + n

2N

]

·
n∏

k=1

(
N − ak + 2n− 1

2

) 1
2
(
N + ak + 2n− 1

2

) 1
2

(
1 +O

(
C3

N√
N

))(
1 +O

(
1

N

))
. (27)
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Then, dividing (23) by (27), we obtain

IN,n ≃ 2nN+n2

(
√
2π)n

N−n2

exp

[
−

n∑

k=1

a2k
N

]

× exp

[−8n3 − 6n2 − n

3N

] n∏

k=1

(N + 2k − 2)
1
2

(
N−ak+2n−1

2

) 1
2
(
N+ak+2n−1

2

) 1
2

︸ ︷︷ ︸
dN,n

·
(
1 +O

(
1

N

))(
1 +O

(
C3

N√
N

))(
1 +O

(
1

N

))
. (28)

We denote the product over k by dN,n and expand dN,n separately:

dN,n = exp

[
1

2

n∑

k=1

{
ln

(
N

(
1+

2k − 2

N

))
− ln

(
N

(
1

2
+
ak + 2n− 1

2N

))

− ln

(
N

(
1

2
+

−ak + 2n− 1

2N

))}]

≃ exp

[
1

2N

n∑

k=1

(
2(k − 1)− (ak + 2n− 1)

− (−ak + 2n− 1)−N lnN − 2N ln
1

2

)
+O

(
C2

N

N2

)]
·
(
1 +O

(
1

N

))

≃ 2nN−n
2 exp

[−n2 − n

N

](
1 +O

(
C2

N

N2

))(
1 +O

(
1

N

))
. (29)

Choosing the largest of the error bounds, we obtain

IN,n ≃ 2nN+n2+n

(
√
2π)n

N−n2−n
2 exp

[
−

n∑

k=1

a2k
2N

]

× exp

[−8n3 − 6n2 − n

3N

](
1 +O

(
C3

N√
N

))
. (30)

Finally, for the measure density (11) we get

lim
N−→∞

pX(λ) =

(
1

N

)n2+n/2
23n

(
√
2π)n

n!

(2n)!(2n− 2)! . . . 2!
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×
∏

i<j

(a2i − a2j)
2

n∏

l=1

a2l exp

[
−

n∑

k=1

a2k
N

]

=

(
2√
N

)n

φ({xi})
(
1 +O

(
C3

N√
N

))
, (31)

where xi =
1√
N
ai and

φ({xi}) =
22nn!

(
√
2π)n(2n)!(2n− 2)! . . . 2!

(32)

×
∏

i<j

(x2
i − x2

j)
2

n∏

l=1

x2
l exp

(
− 1

2

∑

k

x2
k

)
. �

Above we have proved the local theorem for a small domain Ua(N)
whose volume goes to zero as N −→ ∞. We will now prove the global
theorem.

Theorem 2. Let X ∼ µN ({ai}). Then for every n-orthotope

Hn = {c1, d1} × {c2, d2} × · · · × {cn, dn} ⊂ P+,

where ci and di are fixed real numbers with {ci} < {di},

lim
N−→∞

P

{
ci 6

1√
N

Xi < di

}
=

∫

Hn

φ({xi})dx1 . . . dxn. (33)

Proof. First, we use the triangle inequality to obtain
∣∣∣∣P{ci 6

1√
N

Xi < di} −
∫

Hn

φ({xi})dx1 . . . dxn

∣∣∣∣

6

∣∣∣∣
⌈di

√
N−1⌉∑

ai=⌈ci
√
N⌉

pX(λ)−
∫

Hn

φ({xi})dx1 . . . dxn

∣∣∣∣

6

∣∣∣∣
⌈di

√
N−1⌉∑

ai=⌈ci
√
N⌉

(
pX(λ) −

(
2√
N

)n

φ

({ai}√
N

)) ∣∣∣∣

+

∣∣∣∣
⌈di

√
N−1⌉∑

ai=⌈ci
√
N⌉

(
2√
N

)n

φ

({ai}√
N

)
−
∫

Hn

φ({xi})dx1 . . . dxn.

∣∣∣∣ (34)
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The second term is the difference between an integral and a Riemann sum
for this integral, hence it goes to zero. For the first term, let c > max(ci, di);
then

max
|ai+2n−1|<

√
N ·c

∣∣∣∣pX(λ) −
(

2√
N

)n

φ

({ai}√
N

)∣∣∣∣

= max
|ai+2n−1|<

√
N ·c

∣∣∣∣∣
pX(λ)

(√
N
2

)n

φ
(

{ai}√
N

) − 1

∣∣∣∣∣ ·
(

2√
N

)n

φ

({ai}√
N

)

6 O
(

1

N

)
· O
(

1

Nn/2

)
= O

(
1

N (n+1)/2

)
. (35)

There are n sums of these expressions, and each has O(
√
N) summands.

Therefore, there are O
(
Nn/2

)
summands in total, and the sum is of or-

der O
(

1√
N

)
. �

In fact, we can check that the obtained density function (32) defines
a probability measure by integrating it over the main Weyl chamber. We
will use the following integral, studied by Macdonald in [14]:

1

(2π)n/2

∫
· · ·
∫ n∏

i=1

(2|xi|2)γ
∏

16i<j6n

∣∣x2
i − x2

j

∣∣2γ

× exp

(
−

n∑

k=1

|xk|2
2

)
dx1 . . . dxn =

n∏

j=1

Γ(1 + 2jγ)

Γ(1 + γ)
. (36)

It is easy to see that if we integrate (32) over the whole space following
Macdonald, then we will obtain the factor 2nn!. But 2nn! is the order of
the Weyl group of Bn, so integrating over the main Weyl chamber will give
us exactly 1.

Theorem 3. The sequence of discrete probability measures with densi-

ties µN (λ) on the main Weyl chamber converges weakly to the continuous

measure µ with density φ({xi}).

Proof. We will use the following weak convergence criterion for mea-
sures [10]:

Let E be a class of open sets in a metric space X that is closed under

finite intersections, and such that every open set can be represented as a
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countable or finite union of sets from E. Let µN , µ be probability Borel

measures such that µN (E) −→ µ(E) for all E ∈ E . Then the sequence µN

converges weakly to µ.

Since E can be comprised of certain n-orthotopes, and for every n-orthotope
µN (Hn) −→ µ(Hn) by Theorem 2, the weak convergence µN ⇒ µ is
proved. �

Example 1. We illustrate the result with a simple example. In Fig. 1,
we plot values of the probability density function φ({xi}) for the algebra
B2(so(5)) and the probability mass function pX(λ) (indicated by dots) for
the (N = 100)th power of the second fundamental representation Lω2 .
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Figure 1. Values of the probability mass function pX(λ)
(indicated by dots) and the probability density function(

2√
N

)n
·φ({xi}) for n = 2 and N = 100 in the main Weyl

chamber in the rescaled axes xi =
ai√
N

.
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Conclusion and outlook

The Lie algebra so(2n + 1) is, naturally, the Lie algebra of orthogonal
(2n + 1) × (2n + 1) matrices, i.e., matrices A such that At = A−1. The
Killing form on so(2n + 1) is proportional to the bilinear form tr(AtB),
which is symmetric, positive definite, and determines a Riemannian metric
on so(2n+ 1).

The corresponding Riemannian integration measure is SO(2n+1)-inva-
riant (with respect to the transformations A 7→ gAg−1). It is well known
that the integral of an SO(2n+ 1)-invariant function over so(2n+ 1) can
be written in terms of its radial part (integration over eigenvalues):

∫
f(A)dA =

∫

Rn

f (diag(a1, . . . an,−an, . . . ,−a1)) ·
2n

2

πnn!

×
∏

16i<j6n

(
a2i − a2j

)2 n∏

k=1

a2k da1 . . . dan. (37)

Remarkably, the radial part of this measure gives precisely the non-Gaus-
sian factors in the limit of the Plancherel measure, exactly as in Kerov’s
work [1] on su(n+1). We expect this to hold for other simple Lie algebras.

Remark. There is a simple relation between the invariant measure on
so(2n+1) and the Haar measure on SO(2n+ 1). If dg is the Haar measure
normalized as

∫
G

dg = 1 and f is a function on G invariant with respect to

conjugations, we have

∫
f(g)dg =

2n
2

πnn!

∫

[0,π]n

f(Θ1, . . . ,Θn)

×
∏

16i<j6n

(cos(Θi)− cos(Θj))
2

n∏

k=1

sin2
Θk

2
dΘ1 . . . dΘn, (38)

where λj = eiΘj are distinct eigenvalues of a generic element g ∈ G.
Let fǫ(g) be a family of such functions supported by neighborhoods Uǫ

of Θ = 0 such that 1
ǫUǫ → W ⊂ R

n
+ as ǫ → 0. Then

∫

[0,π]n

f(Θ)dµ(Θ) =

∫

W

ǫ2n
2+nf(ǫa)(1 +O(ǫ))dµ0(a), (39)
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where dµ(Θ) is the radial part of the Haar measure as in (38) and dµ0 is
the radial part of the measure on the Lie algebra so(2n+ 1).
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