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Abstract. We introduce the refined Kingman graph D whose ver-
tices are indexed by the set of compositions of positive integers and
multiplicity function reflects the Pieri rule for quasisymmetric mono-
mial functions. We show that the Martin boundary of D can be
identified with the space Ω of all sets of disjoint open subintervals
of [0, 1] and coincides with the minimal boundary of D.

§1. Introduction

The study of the set of nonnegative harmonic functions for particular
examples of Z+-graded graphs (Bratteli diagrams) has a long and rich
history, see [4–8] and references therein. Recall that a graph ∆ with ver-
tex set ∪∞

n=0∆n is a Z+-graded graph if for any two vertices µ ∈ ∆n,
µ ∈ ∆N there is an edge from µ to µ only if N = n + 1. Such a
graph∆ is fully determined by the set of vertices and a multiplicity function

κ :

(
∞⋃
n=0

∆n

)2

7→ N ∪ {0}. We consider graphs with |∆0| = 1,∆0 = {∅}.

A function h : ∆ 7→ R+ is a normalized harmonic function if h(∅) = 1 and

h(µ) =
∑

κ(µ,µ)h(µ) for any µ ∈
∞⋃

n=0

∆n.

Denote the space of such functions by H(∆). Recall that there is a natural
correspondence h ↔ νh between the nonnegative harmonic functions on a
Z+-graded graph and the central measures on it. The absolute of a graph
∆ is the set of all ergodic probability central measures on ∆, see details in
Sec. 3.

A natural example of a Z+-graded graph is the Kingman graph K. Its
vertices are indexed by partitions, Kn = Partn, and the multiplicities of
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edges are defined as follows: for

λ =
(
1m1 , 2m2 , . . . , kmk+1, (k + 1)mk+1−1, . . .

)

and

λ =
(
1m1 , 2m2, . . . , kmk , (k + 1)mk+1 , . . .

)
,

the multiplicity κK(λ,λ) equals mk+1. Recall that the Kingman graph
reflects the Pieri rule for monomial symmetric functions mλ(x1, x2, . . . ) in
the following way:

mλ(x1, x2, . . . )×

(∑
xi

)
=
∑

κK(λ,λ)mλ(x1, x2, . . . ).

(See [10] for the definition of monomial symmetric functions and their basic
properties.)

Monomial symmetric functions provide examples of normalized har-
monic functions on the Kingman graph, and they admit a continuous ex-
tension to a topological space that naturally contains the set of vertices of
the Kingman graph. Namely, the so-called extended monomial symmetric
functions are defined on the space

ΩK = {(α1 > α2 > . . . > 0) :
∑

i

αi 6 1}

by the formula

m̃λ(α1, α2, . . . ) = m̃λ(α1, α2, . . . ; γ) :=

k∑

j=0

γj

j!
m1k−jλ′(α1, α2, . . . ),

for λ = 1kλ′, λ′ = 2k23k3 . . . , and γ = 1−
∑
i

αi.

In Sec. 3, we recall the definitions of the Martin boundary EMart(∆) and
the minimal boundary Emin(∆) of a Z+-graded graph ∆. The extended
monomial symmetric functions form the boundary of K.

Theorem 1.1 ( [3, 4, 9]).

(i) ΩK
∼= EMart(K) = Emin(K);

(ii) The integral representation

φ(λ) =

∫

ΩK

m̃λ(ω)dPφ
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gives a one-to-one correspondence between the space H(K) of nor-

malized nonnegative harmonic functions on K and the space of

probability measures on ΩK.

It follows that the absolute of K is
{
νm̃·(ω)

}
ω∈Ω

.

The main protagonist of this note is the refined Kingman graph D. The
vertices of the refined Kingman graph are indexed by the set Comp of
all compositions. We consider the set of monomial quasisymmetric func-

tions {Mµ}µ∈Comp and define the multiplicity function κD(µ,µ) using the
corresponding Pieri rule:

Mµ(x1, x2, . . . )×

(∑
xi

)
=
∑

κD(µ,µ)Mµ(x1, x2, . . . ). (1)

A general treatment of quasisymmetric functions can be found in [11,
Sec. 7.19].

In Sec. 2, we consider the topological space Ω = ΩD of all (finite or
countable) sets of disjoint open subintervals of [0, 1] and define the extended

monomial quasisymmetric functions M̃µ : Ω → R+. There is a natural

inclusion Comp ⊂ Ω, µ 7→ ωµ. Then M̃µ(ω), for any µ ∈ Comp, is the

unique function such that M̃µ(ω) is continuous on Ω and

M̃µ(ωµ) = Mµ(µ) for every µ ∈ Comp .

The space Ω is the geometric boundary of the graph D, see Definition 2.1
for details. Our main result reads as follows: the Martin boundary EMart(D)
of the graph D coincides with its minimal boundary Emin(D) and can be
identified with its geometric boundary Ω.

Main theorem.

Ω ∼= EMart(D) = Emin(D). (2)

Proofs are given in Sec. 3.
A similar description of the minimal boundary of D was obtained by

Gnedin in [2], using a different approach. We reprove Gnedin’s theorem
using the explicit description of the Martin boundary of D.

Theorem 1.2 ([2]). The integral representation

φ(µ) =

∫

Ω

M̃µ(ω)dPφ



THE BOUNDARY OF THE REFINED KINGMAN GRAPH 61

gives a one-to-one correspondence between the space H(D) of normalized

nonnegative harmonic functions on D and the space of probability measures

on Ω.

It follows that the absolute of D is
{
ν
M̃·(ω)

}
ω∈Ω

.

We want to emphasize that Eqs. (2) do not follow from Theorem 1.2.
We also provide explicit formulas for quasisymmetric monomial functions
in Sec. 4.

The authors are deeply grateful to Anatoly Vershik, Andrey Malyutin,
Fedor Petrov, Natalia Tsilevich, and Yuri Yakubovich for useful discus-
sions.

§2. Definitions

Recall that a composition of a number n ∈ N is a sequence of positive
integers µ = (µ1, µ2, . . . , µℓ(µ)) such that

∑
i

µi = n. The number n is

referred to as the weight of µ. The number ℓ(µ) is called the length of µ.
The set of compositions of weight n is denoted by Compn, and we set
Comp = ∪∞

n=1 Compn.
For any composition µ and a linear order ≺ on a multiset {xi}, we define

a quasisymmetric monomial function as follows:

Mµ(x1, x2, . . . ) =
∑

xi1≺xi2≺···≺xiℓ

xµ1

i1
· · ·x

µℓ(µ)

iℓ(µ)
.

Quasisymmetric monomial functions can be regarded as a refined version
of monomial symmetric functions. For any partition λ, we have

mλ(x1, x2, . . . ) =
∑

µ∈Sℓ(λ)λ

Mµ(x1, x2, . . . ),

where the symmetric group Sℓ(λ) acts on the partition λ by permutations
of its parts. For example,

m(2,1)(x1, x2, . . . ) =
∑

i6=j

x2
ixj =

∑

xi≺xj

x2
i xj +

∑

xi≺xj

xix
2
j

= M(2,1)(x1, x2, . . . ) +M(1,2)(x1, x2, . . . ).

Remark 2.1. It is not difficult to check that the space QSymm of qua-
sisymmetric functions is a graded algebra: QSymm =

⊕
QSymmn, where

QSymmn is spanned by {Mµ}µ∈Compn
. In other words, if f ∈ QSymmm

and g ∈ QSymmn, then fg ∈ QSymmm+n, see [11, Ex. 7.93].
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The refined Kingman graph D is constructed as follows. The vertices of
the nth level Dn of D are indexed by the compositions of weight n. There
is an edge between the vertices indexed by µ ∈ Dn and µ ∈ Dn+1 if one
of the two situations occurs: for µ = (µ1, . . . , µℓ(µ)),

• either there exists j = 1, . . . , ℓ(µ) with

µ =
(
µ1, . . . , µj + 1, . . . µℓ(µ)

)
,

• or there exists j = 1, . . . , ℓ(µ) + 1 such that

µi =





µi if i < j,

1 if i = j,

µi−1 if i > j.

In the second case, there can be several possible choices of j satisfying the
condition. Then we say that µ and µ are connected by multiple edges, the
multiplicity being equal to the number of possible choices of j. If vertices
µ ∈ Dn and µ ∈ Dn+1 are connected by an edge, then we write µ ր µ and
denote the corresponding multiplicity by κD(µ,µ). One can easily check
that (1) holds.

The main problem addressed in the present paper is to describe all
normalized nonnegative harmonic functions on D. Let f be a harmonic
function on D, i.e., f(µ) =

∑
µրµ

κD(µ,µ)f(µ). The trace of f is a function

defined on the set of partitions:

(tr f)(λ) =
∑

µ∈Sℓ(λ)λ

f(µ).

Since f is a harmonic function,

(tr f)(λ) =
∑

µ∈Sℓ(λ)λ

∑

µրµ

κD(µ,µ)f(µ).

Note that any composition µ such that σλ ր µ can be obtained as a
permutation of the parts of a partition λ with λ ր λ. Thus, changing the
order of summation, we obtain

(tr f)(λ) =
∑

λրλ

κK(λ,λ)(tr f)(λ),

where κK(λ,λ) are multiplicities of the Kingman graph. In other words, if
f ∈ H(D) then tr(f) ∈ H(K), and, moreover, we can recover the graph K

from D if for any partition λ we glue together the compositions of Sℓ(λ)λ as
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well as the corresponding edges. This observation justifies the term “refined

Kingman graph.”
For a fixed positive integer n ∈ N there is an obvious bijection be-

tween the compositions µ = (µ1, µ2, . . . ) with |µ| = n and the subdivi-
sions of the unit interval into disjoint open subintervals with endpoints in
{0, 1

n
, . . . , n−1

n
, 1}:

µ = (µ1, µ2, . . . ) 7→

]
0,

µ1

n

[
∪

]
µ1

n
,
µ1 + µ2

n

[
∪ · · · ∪

]
ℓ(µ)−1∑
i=1

µi

n
, 1

[
.

Every open subinterval1 ]a, b[⊂ [0, 1] is determined by its size and its
distance to 0, that is, by the pair (b − a, a). So, we rewrite the previous
mapping as

µ = (µ1, µ2, . . . ) 7→ ωµ=

{(
µ1

|µ|
, 0

)
,

(
µ2

|µ|
,
µ1

|µ|

)
, . . . ,

(
µℓ(µ)

|µ|
,

ℓ(µ)−1∑
i=1

µi

|µ|

)}
.

We identify the set Comp of all compositions with the set

D̃ =

∞⋃

n=1

⋃

µ∈Dn

(
1

n
, ωµ

)
.

Definition 2.1. Denote by Ω the topological space of sets of ordered pairs

{(αi,Γi)}
N
i=1, N ∈ N ∪ {∞}, such that

αi > 0, Γi > 0 and 1 > Γi + αi for any i,

]Γi,Γi + αi[ ∩ ]Γj ,Γj + αj [= ∅ for any i 6= j,

α1 > α2 > . . . , and if αi = αi+1 then Γi > Γi+1.

We also introduce on {(αi,Γi)}
N
i=1 a linear order ≺ that compares the

distances of subintervals to 0: namely, (αi,Γi) ≺ (αj ,Γj) if and only if

Γi < Γj. Sometimes, abusing notation, we denote a pair (αi,Γi) by its first

coordinate αi. In particular, the notation αi ≺ αj means that Γi < Γj.

We say that a sequence ωn = {(αi(n),Γi(n))}
N(n)
i=1 converges to ω =

{(αi,Γi)}
N

i=1 if

1We denote open intervals by ]a, b[ to distinguish them from ordered pairs (a, b).
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(1) for any finite i 6 N , the number of terms for which N(n) < i
is finite, and after omitting these terms we have αi(n) −→ αi,

Γi(n) −→ Γi;

(2) for any finite i > N , either the number of terms with N(n) > i
is finite, or we have αi(n) −→ 0 for the subsequence consisting of

the terms with N(n) > i.

The topological space Ω is, obviously, sequentially compact.
Set

Ω̃ = D̃ ∪ ({0} × Ω).

Given a sequence of compositions (µ(k)), we say that

(
1/|µ(k)|, ωµ(k)

)
→ (q, ω) ∈ [0, 1]× Ω as k → ∞

if and only if 1/|µ(k)| → q in [0, 1] and ωµ(k) → ω in Ω. Note that the

boundary of the subset D̃ in [0, 1] × Ω is {0} × Ω ∼= Ω; following [4], we
call Ω the geometric boundary of the graph D.

§3. Proofs

The standard graphic representation of a partition is a Young diagram,
and we use a similar representation for compositions. The only difference
is that now the rows of a diagram are not ordered by their length. Given
any diagram µ ∈ Comp(n), we define a (row-strict) tableau on µ as a
numbering of the squares of µ with the numbers 1, . . . , n such that the
numbers increase along each row. Recall that for any vertex λ(n) ∈ Kn

there is a bijection between the set of paths λ(1) ր · · · ր λ(n) in the graph
K with |λ(i)| = i and the set of row-strict tableaux on the diagram λ(n).
We have a similar description for paths in D: for any vertex µ(n) ∈ Dn

there is a bijection between the set of paths µ(1) ր · · · ր µ(n) in the graph
D with |µ(i)| = i and the set of row-strict tableaux on the diagram µ(n).
Moreover, for any µ ∈ Dn, µ ∈ DN with n 6 N , we have the following two-
step description of the set of paths from µ to µ in D. Take any inclusion
µ ⊂ µ, and then take any row-strict tableau on the skew diagram µ/µ.
Denote by dim(µ) the number of paths from ∅ ∈ D0 to µ ∈ D, and by
dim(µ,µ) the number of paths from µ ∈ D to µ ∈ D. From the discussion
above we obtain the following lemma.
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Lemma 3.1. For µ = (µ1, µ2, . . . , µℓ) ∈ Dn, µ = (µ1,µ2, . . . ,µm) ∈ DN

with n 6 N , we have

dim(µ) =
N !

µ1!µ2! . . .
=

(
N

µ1,µ2, . . .

)
,

dim(µ,µ)

dimµ
=

(N − n)!

N !

∑

16i1<···<iℓ6m

(µi1
)µ1(µi2

)µ2 · · · ,

where (x)n denotes the Pochhammer symbol (falling factorial):

(x)n = x(x − 1) . . . (x− n+ 1).

Lemma 3.2. In the notation of the previous lemma, we have
∣∣∣∣∣
dim(µ,µ)

dimµ
−

Mµ(µ1,µ2, . . . )

N(N − 1) . . . (N − n+ 1)

∣∣∣∣∣ 6
C(µ)

N
,

where the constant C(µ) depends only on µ.

Proof. Set ξ = max(µ1, . . . , µℓ(µ)). By the previous lemma, we have
∣∣∣∣∣
dim(µ,µ)

dimµ
−

Mµ(µ1,µ2, . . . )

N(N − 1) . . . (N − n+ 1)

∣∣∣∣∣

=
(N − n)!

N !

∣∣∣∣∣
∑

16i1<···<iℓ6m

(µi1
)µ1(µi2

)µ2 . . .−Mµ(µ1,µ2, . . . )

∣∣∣∣∣

6
(N − n)!

N !

∣∣∣∣∣
∑

1ℓ(µ)⊂µ′(µ

ξn−|µ
′|c(µ, µ′)Mµ′(µ1,µ2, . . . )

∣∣∣∣∣

=
(N − n)!

N !

∣∣∣∣∣
∑

1ℓ(µ)⊂µ′(µ

ξn−|µ′|c(µ, µ′)N |µ′|Mµ′

(
µ1

N
,
µ2

N
, . . .

)∣∣∣∣∣ 6
C(µ)

N
,

where c(µ, µ′) is a combinatorial factor depending only on µ and µ′. Here
we have used the estimate |Mµ′(x1, x2, . . . )| 6 1 valid for any µ′ ∈ Comp
if
∑

xi 6 1. �

For µ = (µ1, . . . , µℓ) ∈ Compn, we define an extension of the corre-
sponding quasisymmetric monomial function to Ω. If no part of µ is of
length 1, then for ω = {(αi,Γi)} we set

M̃µ(ω) =
∑

α1≺...≺αℓ

αµ1

1 · · ·αµℓ

ℓ = Mµ(α1, α2, . . . ).
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However, it is not difficult to check that a naive extension of Mµ fails
to be continuous if µ contains parts of length 1. The idea is to set, for any
µ ∈ Comp,

M̃µ(ωµ) = Mµ(α1, α2, . . . ),

where ωµ = {(αi,Γi)}
N
i=1, and then to derive defining relations for M̃µ(ω),

ω ∈ Ω, from the required continuity on Ω.

Set M̃(1)(ω) ≡ 1. We use the following equality, which holds for any pair
αi, αj with αi ≺ αj in ωµ:

(Γj − Γi − αi)
p

p!
=

( ∑
αi≺α≺αj

α
)p

p!

=
∑

ρ∈Compp

∑

αi≺α1≺...≺αℓ(ρ)≺αj

αρ1

1

ρ1!
· · ·

α
ρℓ(ρ)

ℓ(ρ)

ρℓ(ρ)!
.

(3)

In particular, it follows that for µ1 6= 1, µ2 6= 1 we have

∑

αi≺αj

(
αi

)µ1

(
Γj − Γi − αj

)p

p!

(
αj

)µ2
=

∑

ρ∈Comp(p)

M̃(µ1,ρ,µ2)(ωµ)

ρ1!ρ2! . . . ρℓ(ρ)!
. (4)

This motivates us to consider the following object. For a point ω ∈ Ω,
a fixed collection of compositions µ(1), . . . , µ(k) such that none of them
contains parts of length 1, and a collection of numbers p0, . . . , pk ∈ N∪{0},
we define

M̃p0,...,pk

µ(1),...,µ(k)(ω)

=
∑

α1;(1)≺α2;(1)≺...≺α
ℓ(µ(1));(1)

···
≺α1;(k)≺α2;(k)≺...≺α

ℓ(µ(k));(k)

Γp0

1;(1)

k∏

i=1

α
µ
(i)
1

1;(i)α
µ
(i)
2

2;(i) · · ·α
µ
(i)

ℓ(µ(i))

ℓ(µ(i));(i)

×
(
Γ1;(i+1) − Γℓ(µ(i));(i) − αℓ(µ(i));(i)

)pi
,

where we assume that Γ1;(k+1) = 1. It follows from (3) that for any com-
position µ ∈ Comp and ω = ωµ, the following identity holds:
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M̃p0,...,pk

µ(1),...,µ(k)(ω)

p0! · · · pk!
=

∑

ρ(0)∈Compp0
···

ρ(k)∈Comppk

M̃ρ(0)µ(1)ρ(1)···µ(k)ρ(k)(ω)

k∏
i=0

ℓ(ρ(i))∏
j=1

ρ
(i)
j !

. (5)

We postulate that identity (5) holds for any ω ∈ Ω. This allows us to

define inductively the extended monomial quasisymmetric function M̃µ(ω)

for an arbitrary composition µ. An explicit formula for M̃µ(ω) is given in
Sec. 4; we will not use it in what follows.

Lemma 3.3. For any µ ∈ Comp, the extended quasisymmetric monomial

function M̃µ is a continuous function on Ω.

Proof. The base case. For µ = (µ1, . . . , µℓ) ∈ Comp with µi > 1, we
can write

M̃µ(ω) =
∑

i1≺···≺iℓ

αµ1

i1
· · ·αµℓ

iℓ

=
∑

i1≺···≺iℓ;
ik<N,∀k

αµ1

i1
· · ·αµℓ

iℓ
+

∑

i1≺···≺iℓ;
∃k,ik>N

αµ1

i1
· · ·αµℓ

iℓ
.

(6)

For a sequence of points in Ω, we have

lim
n→∞

∑

i1≺···≺iℓ;
ik<N,∀k

(
αi1(n)

)µ1

· · ·

(
αiℓ(n)

)µℓ

=
∑

i1≺···≺iℓ;
ik<N,∀k

αµ1

i1
· · ·αµℓ

iℓ

if limn→∞ αi(n) = αi. Moreover, the second term in (6) converges to zero
uniformly, since αk 6 1

k
for all k and

∑

i1≺···≺iℓ;
∃k,ik>N

αµ1

i1
· · ·αµℓ

iℓ
6

∞∑

i=N

ℓ

i2

due to the estimate
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∑

i1≺···≺iℓ;
max(ik)=i

αµ1

i1
· · ·αµℓ

iℓ
6

ℓ∑

j=1

∑

i1≺···≺iℓ;
ik6ij=i ∀k

αµ1

i1
· · ·αµℓ

iℓ

6
1

i2

ℓ∑

j=1

∑

i1≺···≺iℓ;
ik6ij=i ∀k

αµ1

i1
· · ·α

µj−2
ij

· · ·αµℓ

iℓ
6

ℓ

i2
.

The induction step. It suffices to check that the function M̃p0,...,pk

µ(1),...µ(k)

is continuous on Ω for arbitrary µ1, . . . , µk ∈ Comp such that none of them
contains parts of length 1 and p0, . . . , pk ∈ N ∪ {0}. The same reasoning
as above applies to this function. We split it into two parts: the main part
contains the contribution from αk with k 6 N , and it converges nicely.
The reminder can be estimated using the fact that

(
Γ1;(i+1) − Γℓ(µ(i));(i) − αℓ(µ(i));(i)

)
6 1

for all i. �

Lemma 3.4. The linear space spanned by the extended functions

{M̃µ(ω)}µ∈Comp

is uniformly dense in the space of continuous functions on Ω.

Proof. The algebra QSymm of quasisymmetric functions has a basis con-
sisting of the quasisymmetric monomial functions (see Remark 2.1). It
follows that the linear span of the extended quasisymmetric monomial
functions is closed under multiplication. The latter algebra contains the

constant M̃(1)(ω) ≡ 1; therefore, it suffices to check that it separates points
and apply the Stone–Weierstrass theorem.

For an arbitrary point ω ∈ Ω, consider the series

∞∑

i=1

Γiα
2
i

z − αi

=
∞∑

i=1

Γiα
2
i

z

(
∞∑

s=2

(
αi

z

)s−2
)

=
∞∑

s=2

M̃(1,s)(ω)z
1−s, (7)

where in the last equality we have used (4). We see that in the case where
α1 > α2 > . . . , we can recover the sequence {(αi,Γi)}

∞
i=1 from the infor-

mation about the poles and residues of (7).
If αi−1 > αi = · · · = αi+j > αi+j+1, then we can recover from (7) only

the sum Γi + · · ·+Γi+j = p1(Γi, . . . ,Γi+j). For every m ∈ N, consider the
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series
∞∑

i=1

(Γi)
mα2

i

z − αi

.

By the same considerations, using (4) again, we can recover the sum
Γm
i + · · ·+ Γm

i+j = pm(Γi, . . . ,Γi+j) from this series. Now we consider the
series

∞∑

m=1

pm(Γi, . . . ,Γi+j)

zm
=

i+j∑

k=i

Γk

z − Γk

and recover the list {Γk}
i+j
k=i as the corresponding poles. �

Proposition 3.5. Let

{(
|µ(k)|−1, ωµ(k)

)}∞

k=1

be a sequence of elements

of Ω̃ with lim |µ(k)| = ∞. The following two conditions are equivalent:

(1) there exists (0, ω) ∈ Ω̃ such that
(

1

|µ(k)|
, ωµ(k)

)
−−−−→
k→∞

(0, ω) in Ω̃; (8)

(2) the limit

lim
k→∞

dim(µ,µ(k))

dimµ(k)
(9)

exists for every µ ∈ Comp.

The limit in (9) equals M̃µ(ω).

Proof. If the limit (8) exists, then we combine Lemmas 3.2 and 3.3 to see
that

lim
k→∞

dim(µ,µ(k))

dimµ(k)
= M̃µ(ω).

Conversely, assume that (9) holds, and assume that there are two subse-
quences in (8) with different limits (0, ω1), (0, ω2). We construct a function
f ∈ C(Ω) with f(ω1) 6= f(ω2) and use the density of the algebra spanned
by the extended monomial functions in C(Ω) (Lemma 3.4) to see that
f(ω1) = f(ω2), a contradiction. �

Definition 3.1. Consider the image ∆̃ of a Z+-graded graph ∆ under the

following mapping to R
∆
+:

B 7→

(
β 7→

dim(β,B)

dimB

)
,
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where the space of functions is endowed with the topology of pointwise

convergence. Let Ẽ be the closure of ∆̃, and denote by EMart(∆) the cor-

responding boundary: EMart(∆) = Ẽ\∆̃. It is called the Martin boundary
of the branching graph ∆.

Every point ω ∈ EMart of the Martin boundary corresponds to a nor-
malized nonnegative harmonic function K(·, ω) : µ 7→ K(µ, ω). Recall that
such a function is said to be indecomposable, or extremal, if it cannot be
written as a nontrivial convex combination K(µ, ω) = ah1(µ)+(1−a)h2(µ),
where a ∈ ]0, 1[, h1, h2 ∈ EMart, h1 6= h2. Denote by Emin ⊂ EMart the sub-
set of normalized nonnegative extremal harmonic functions on a Z+-graded
graph ∆. We have the following integral representation.

Theorem 3.6 ([1]). Every normalized nonnegative harmonic function φ
admits a unique integral representation

φ(µ) =

∫

Emin

K(µ, ω)dPφ,

where Pφ is a probability measure. Conversely, every probability measure

P on Emin corresponds to a normalized nonnegative harmonic function.

Denote by T∆ the space of paths in a graph ∆:

T∆ = {(µ(0) ր µ(1) ր . . . ) : µ(i) ∈ ∆i}.

We say that a path (µ(0) ր µ(1) ր . . . ) in the graph D is regular if
condition (8) holds.

Corollary 3.7. For any regular path (µ(0) ր µ(1) ր . . . ), denote by

ω ∈ Ω the corresponding limiting point of Ω. For every µ ∈ Comp, we

have

lim
n→∞

dim(µ,µ(n))

dimµ(n)
= M̃µ(ω).

Recall that a measure P on T∆ is said to be central if for any n ∈ N, any
µ ∈ ∆n, and any two finite paths (µ(0) ր µ(1) ր · · · ր µ(n−1) ր µ) and
(µ′(0) ր µ′(1) ր · · · ր µ′(n− 1) ր µ), the following measures coincide:

P ({(µ(0) ր µ(1) ր . . . ) : µ(i) = µ(i), 1 6 i 6 n− 1;µ(n) = µ})

= P ({(µ(0) ր µ(1) ր . . . ) : µ(i) = µ′(i), 1 6 i 6 n− 1;µ(n) = µ}).
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There is a natural isomorphism between the nonnegative harmonic func-
tions and the central measures on ∆. If h ∈ H(∆), then we define the
corresponding central measure νh as follows:

νh({(µ(0) ր µ(1) ր . . . ) : µ(i) = µ(i), 1 6 i 6 n− 1;µ(n) = µ}) = h(µ).

Normalized nonnegative extremal harmonic functions correspond to ex-
tremal probability central measures. Following [7], we define the absolute

of a Z+-graded graph ∆ as the set of all extremal probability central mea-
sures on the space of paths T∆. One can alternatively define the absolute
as the set of all ergodic probability central measures with respect to the
corresponding tail equivalence relation, see [5, 7].

Theorem 3.8 (Main theorem).

Ω ∼= EMart(D) = Emin(D).

Proof. We see from Proposition 3.5 that EMart(D) ∼= Ω. Moreover, the

extended quasisymmetric monomial functions M̃·(ω) : µ 7→ M̃µ(ω) are nor-
malized nonnegative harmonic functions on D. Therefore, it suffices to
check that these functions are extremal.

Assume that M̃·(ω0) is not extremal for ω0 ∈ Ω. By Theorem 3.6, there
exists a probability measure dPω0 such that

M̃µ(ω0) =

∫

Emin(D)

M̃µ(ω)dPω0

for any µ ∈ Comp. By Lemma 3.4, the linear space spanned by the ex-
tended quasisymmetric functions is uniformly dense in C(Ω); therefore,
the equality

f(ω0) =

∫

Emin(D)

f(ω)dPω0

must hold for any f ∈ C(Ω). However, it is easy to construct a nonnegative
function f0 ∈ C(Ω) such that f(ω0) = 1 and f(ω) < 1 for ω 6= ω0. We
have

1 = f0(ω0) =

∫

Emin(D)

f0(ω)dPω0 <

∫

Emin(D)

dPω0 = 1,

a contradiction.
Thus, all the functions M̃·(ω) are extremal, and EMart(D) = Emin(D).

The theorem is proved. �
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We can now combine Theorem 3.6 with Theorem 3.8 to obtain another
proof of Theorem 1.2.

Corollary 3.9. The absolute of D is
{
ν
M̃·(ω)

}
ω∈Ω

.

§4. Formulas for extended quasisymmetric monomial

functions

We will construct another parametrization of the boundary Ω. Namely,
for any union of disjoint open intervals

N⋃

i=1

]Γi,Γi + αi[ ⊂ [0, 1],

its complement is a union of disjoint closed intervals. Denote the set of
these intervals by {[Gj , Gj + γj ]}

P
j=1:

[0, 1] \

N⋃

i=1

]Γi,Γi + αi[ =

P⋃

j=1

[Gj , Gj + γj ],

where P = N + 1 if N is finite and P = ∞ if N = ∞.
As before, the linear order ≺ compares the distances of subintervals

to 0. Abusing the notation, we use the same symbol for an element γi and
for the corresponding interval [Gi, Gi + γi]. In particular, γi ≺ αj means
Gi < Γj .

Obviously, we can recover the sequence {Γi} as

Γi =
∑

αj≺αi

αj +
∑

γj≺αi

γj ;

therefore, we have constructed a bijection
{
(αi,Γi)

}
↔
(
{αi}, {γi},≺

)
.

We have the following restrictions for ({αi}, {γi},≺):

α1 > α2 > . . . > 0, γi > 0,
∑

i

αi +
∑

i

γi = 1;

∃ γmin, γmax such that ∀ δ ∈ {αi} ∪ {γi} γmin ≺ δ ≺ γmax;

∀α1, α2, α1 ≺ α2 ∃ γ such that α1 ≺ γ ≺ α2;

∀ γ1, γ2, γ1 ≺ γ2 ∃α such that γ1 ≺ α ≺ γ2.
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Any composition µ ∈ Comp has a unique decomposition

µ = (1p0)µ(1)(1p1) . . . µ(k)(1pk),

where µ(1), . . . , µ(k) are compositions such that none of them contains parts
of length 1 and pi ∈ N ∪ {0}, pi > 0 for 1 6 i 6 k − 1.

We set

M̃µ(ω) =
∑

α1;(1)≺α2;(1)≺...≺α
ℓ(µ(1));(1)

≺

···

≺α1;(k)≺α2;(k)≺...≺α
ℓ(µ(k));(k)

(
∑

ρ(0)∈Comp(p0)

α̃
ρ
(0)
1

1;(0) . . . α̃
ρ
(0)

ℓ(ρ(0))

ℓ(ρ(0));(0)

ρ
(0)
1 ! · · · ρ

(0)

ℓ(ρ(0))
!

)

×

k∏

i=1

α
µ
(i)
1

1;(i)
α
µ
(i)
2

2;(i)
· · ·α

µ
(i)

ℓ(µ(i))

ℓ(µ(i));(i)

( ∑

ρ(i)∈Comp(pi)

α̃
ρ
(i)
1

1;(i)
. . . α̃

ρ
(i)

ℓ(ρ(i))

ℓ(ρ(i));(i)

ρ
(i)
1 ! · · · ρ

(i)

ℓ(ρ(i))
!

)
,

(10)

where the inner sums are over

α̃1;(0) ≺ · · · ≺ α̃ℓ(ρ(0));(0) ≺ α1;(1),

αℓ(µ(1));(1) ≺ α̃1;(1) ≺ · · · ≺ α̃ℓ(ρ(1));(1) ≺ α1;(2),

. . .

αℓ(µ(k));(k) ≺ α̃1;(k) ≺ · · · ≺ α̃ℓ(ρ(k));(k),

and where α̃s;(t) ∈ {γi} if ρi > 1, and α̃s;(t) ∈ {αi} ∪ {γi} if ρi = 1.
For any pair αi, αj with αi ≺ αj in ω, we have

Γj − Γi − αi =
∑

αi≺αk≺αj

αk +
∑

αi≺γk≺αj

γk;

therefore,

M̃p0,...,pk

µ(1),...,µ(k)(ω) =
∑

α1;(1)≺α2;(1)≺...≺α
ℓ(µ(1));(1)

≺
···

≺α1;(k)≺α2;(k)≺...≺α
ℓ(µ(k));(k)

Γp0

1;(1)

×

k∏

i=1

α
µ
(i)
1

1;(i)α
µ
(i)
2

2;(i) · · ·α
µ
(i)

ℓ(µ(i))

ℓ(µ(i));(i)

(
Γ1;(i+1) − Γℓ(µ(i));(i) − αℓ(µ(i));(i)

)pi

=
∑

α1;(1)≺α2;(1)≺...≺α
ℓ(µ(1));(1)

≺
···

≺α1;(k)≺α2;(k)≺...≺α
ℓ(µ(k));(k)

( ∑

α̃j;(0)≺α1;(1)

α̃j;(0)

)p0
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×

k−1∏

i=1

α
µ
(i)
1

1;(i)α
µ
(i)
2

2;(i) · · ·α
µ
(i)

ℓ(µ(i))

ℓ(µ(i));(i)

( ∑

α
ℓ(µ(i));(i)

≺α̃j;(i)≺α1;(i+1)

α̃j;(i)

)pi

× α
µ
(k)
1

1;(k)α
µ
(k)
2

2;(k) · · ·α
µ
(k)

ℓ(µ(k))

ℓ(µ(k));(k)

( ∑

α
ℓ(µ(k));(k)

≺α̃j;(k)

α̃j;(k)

)pk

,

where α̃s;(t) ∈ {αi} ∪ {γi}.
Finally, we combine this equation with the definition (10) to obtain (5).

References

1. J. L. Doob, Discrete potential theory and boundaries. — J. Math. Mech. 8 (1959),
433–458.

2. A. V. Gnedin, The representation of composition structures. — Ann. Probab. 25

(1997), No. 3, 1437–1450.
3. S. V. Kerov, Combinatorial examples in the theory of AF-algebras. — Zap. Nauchn.

Semin. LOMI 172 (1989), 55–67.
4. S. Kerov, A. Okounkov, G. Olshanski, The boundary of the Young graph with Jack

edge multiplicities. — Int. Math. Res. Not. 4 (1998), 173–199.
5. A. M. Vershik, Equipped graded graphs, projective limits of simplices, and their

boundaries. — Zap. Nauchn. Semin. POMI 432 (2015), 83–104.
6. A. M. Vershik, The problem of describing central measures on the path spaces of

graded graphs. — Funct. Anal. Appl. 48, No. 4 (2014), 256–271.
7. A. M. Vershik, A. V. Malyutin, The absolute of finitely generated groups: I. Com-

mutative (semi) groups, to appear in European J. Math.
8. S. Kerov, A. Vershik, The Grothendieck group of the infinite symmetric group and

symmetric functions with the elements of the K0-functor theory of AF-algebras. —
In: Representation of Lie Groups and Related Topics, Adv. Stud. Contemp. Math.
7, Gordon and Breach, 1990, pp. 36–114.

9. J. F. C. Kingman, Random partitions in population genetics. — Proc. Roy. Soc.
London A 361 (1978), 1–20.

10. I. G. Macdonald, Symmetric Functions and Hall Folynomials, 2nd edition, Claren-
don Press, Oxford, 1995.

11. R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Univ. Press, Cam-
bridge, 1999.

Поступило 23 августа 2018 г.St.Petersburg Department
of Steklov Institute of Mathematics,
St.Petersburg, Russia

E-mail : max.karev@gmail.com

E-mail : pnikitin0103@yahoo.co.uk


