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Abstract. We announce a generalization of Brudno’s results on
the relation between the Kolmogorov complexity and the entropy of
a subshift for actions of computable amenable groups.

§1. Introduction

In [9], A. N. Kolmogorov defined the notion of Kolmogorov complexity,
which measures the information content of an individual combinatorial
object. It turned out that this notion has an intimate relation with another
his famous concept, that of the entropy of a dynamical system. This was
first shown by Brudno in [4,5] and [6]. He proved that almost every point of
an ergodic Z-action has asymptotic complexity equal to the entropy of the
system. He also proved that every point of a symbolic action of the group Z

has asymptotic complexity bounded from above by the topological entropy
of the action. There also exists a point whose asymptotic complexity is
equal to the topological entropy of the action. It is natural to ask about
generalizations of these results.

Simpson in [12] proved that the topological part of Brudno’s results
holds for actions of Z

d. In my unpublished thesis [2], I proved that the
topological part can be extended to the case of an arbitrary computable
group action. This result is presented here as Theorem 2. A minor but
important detail is the notion of a modest Følner sequence. A Følner se-
quence of a computable amenable group is called modest if the complexity
of its elements is negligible relative to their sizes. This implies that the
complexity of the Følner set does not interfere with various asymptotic
computations. It is easy to show that any computable amenable group
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has a modest Følner sequence, see [1]. In the thesis, I also proved a nice
geometric criterion, presented as Theorem 1 in this announce. Afterwards,
N. Moriakov independently proved that Brudno’s results (both topological
and measure-theoretic) hold for actions of a certain class of computable
amenable groups. Namely, he required that the group should have a com-
putable Følner monotiling. The latter means that right shifts of every ele-
ment of the Følner sequence can tile the whole group without intersections
and uncovered places, and that this tiling can be obtained in a computable
manner. At this point, it is not known whether every amenable group has
a Følner monotiling, let alone a computable one. Nonetheless, Moriakov
showed that some well-known classes of groups satisfy these requirements.
Motivated by Moriakov’s results, I have proved that the measure-theoretic
Brudno theorem holds for actions of general computable amenable groups,
see Theorem 3. Note that a related result was considered in [3]. Namely, in
that paper, an integrated inequality between Kolmogorov complexity and
entropy was proved.

§2. Preliminaries

2.1. Kolmogorov complexity. Let 2∗ be the set of all binary strings
(the empty one included). The length |x| for any x ∈ 2∗ is defined nat-
urally. Let f : 2∗ → 2∗ be any function, we will call it a decompressor.
For any x ∈ 2∗, the Kolmogorov complexity Cf (x) of x relative to f is
defined to be the infimum of |y| where f(y) = x (and +∞ if x has no
preimages). We will define an order on the set of decompressors; we will
say that f ′ � f ′′ for two decompressors f ′ and f ′′ if there is a constant K
such that CF ′(x) 6 Cf ′′(x) +K for every x ∈ 2∗. Now we will restrict our
attention to the set of computable decompressors. By the Kolmogorov the-
orem (see [9]), there is a minimal, in the order defined above, decompressor
among the computable ones. We will call it a universal decompressor. Fix
one such decompressor f . The Kolmogorov complexity of a string x ∈ 2∗ is
defined now as Cf (x) and is denoted by C(x). Note that the Kolmogorov
complexity is unique up to an additive constant. We will routinely ab-
breviate “Kolmogorov complexity” to “complexity.” Let us list some nice
properties of Kolmogorov complexity.

Lemma 1. The folowing properties hold for Kolmogorov complexity:

(1) there is a number K such that C(x) 6 |x|+K for every x ∈ 2∗;
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(2) for every computable function f there is a constant K such that

C(f(x)) 6 C(x) +K for every x ∈ 2∗.
(3) for any n ∈ N there are at most 2n strings x ∈ 2∗ such that

C(x) < n.

Note that it makes sense to consider Kolmogorov complexity for various
finite combinatorial objects from a given class; indeed, it suffices to fix a
Gödel enumeration for this class. What is a Gödel enumeration? It means
that all objects have unique numbers, all numbers are used (or form a
decidable subset of integers, which is equivalent), and all necessary con-
structive operations and necessary distinguishing queries are computable.
For example, we may consider the set of finite subsets of the set of positive
integers. We require that given a number i of a subset Bi ⊂ N and an
element x, we have that x ∈ Bi is a computable predicate of (i, x). The
size function should also be computable. We also require that there is a
computable function f such that Bf(i,x) = Bi ∪ {x}. It is not hard to see
that there is a computable bijection between any two Gödel enumerations.
Note that we can construct a Gödel enumeration of the set of finite subsets
of any constructible family. We also can construct such an enumeration for
the set of all finitely supported maps from a constructible family to a finite
set.

2.2. Groups. Let G be a countable group. A Følner sequence for G is a
sequence (Fi) of finite subsets of the group such that

lim
i→∞

|gFi \ Fi|

|Fi|
= 0

for any g ∈ G. A group is called amenable if it has a Følner sequence.
Consider a group whose set of elements is N and 0 is the neutral element.

We say that the group is computable if the composition rule (g, h) 7→ gh

is computable as a function N× N → N. It is easy to see that this implies
also the computability of the inversion.

Let G be a computable amenable group. A Følner sequence (Fi) is called
modest if it satisfies the estimate

C(Fi) = o(|Fi|).

It is easy to see that for any computable amenable group there is at least
one modest Følner sequence, see [1]. The following geometric criterion also
holds.
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Theorem 1. Assume that G is a computable amenable group that is

finitely generated. Fix a finite symmetric generating set S. This determines

the structure of the Cayley graph on G. Assume that (Fi) is a Følner se-

quence such that 1G ∈ Fi for all i and such that all Fi are edge-connected

subsets of the Cayley graph. Then (Fi) is a modest Følner sequence.

A Følner sequence is called tempered if there is a constant C such that
for any i > 0

∣

∣

∣

∣

∣

∣

⋃

j<i

F−1
j Fi

∣

∣

∣

∣

∣

∣

6 C |Fi| .

Note that one can extract a tempered subsequence from any Følner se-
quence.

2.3. Actions and entropy. Let G be a countable amenable group. Let A
be a finite set. We endow the set AG with the product topology, assuming
the discrete topology on A. We define the shift action of G on AG by the
formula

(gx)(h) = x(hg)

for g, h ∈ G and x ∈ AG. This is an action by homeomorphisms.
For any x ∈ AG and D ⊂ G, we denote by prD(x) the restriction of x

to the subset D.
A subshift is any closed subset X invariant under the shift action. Let

(Fi) be a Følner sequence. The topological entropy htop
G (X) of a subshift X

is defined by the formula

htopG (X) =
log

∣

∣prFi
(X)

∣

∣

|Fi|
.

This definition is a special case of a general definition for arbitrary topo-
logical actions of amenable groups. It is well known that the limit in the
formula above exists and does not depend on the Følner sequence chosen.

Consider a measure-preserving action of a countable amenable group G

on a standard probability space (X,µ). Let α be a partition, that is, a finite
or countable collection {B1, B2, . . .} of measurable subsets whose union has
measure 1. For g∈G, we denote by αg the partition {g−1(B1), g

−1(B2), . . .}.
For two partitions α′ = {B′

1, B
′
2, . . .} and α′′ = {B′′

1 , B
′′
2 , . . .}, we denote

by α′ ∨ α′′ the partition {B′ ∩ B′′|B′ ∈ α′, B′′ ∈ α′′}. For a finite subset
D of G, we denote by αD the partition

∨

g∈D αg. Let (Fi) be a Følner
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sequence for the group G. The entropy of the action is defined by the
following formula:

hG(X,µ) = sup
α

lim
i→∞

H(αFi)

|Fi|
,

where the supremum is taken over the set of all partitions of finite Shannon
entropy. It is known that the limit above does not depend on the choice of
a Følner sequence.

2.4. Asymptotic Kolmogorov complexity. Let F = (Fi) be a mod-
est Følner sequence. For a point x ∈ AG, we define its upper asymptotic

complexity ACF (x) relative to the Følner sequence F by the formula

ACF (x) = lim sup
i→∞

C(prFi
(x))

|Fi|
.

The lower asymptotic complexity is defined in a similar manner:

ACF (x) = lim inf
i→∞

C(prFi
(x))

|Fi|
.

§3. Main results

Theorem 2. Let X ⊂ AG be a subshift over a computable amenable group.

Let F be a modest Følner sequence. For every x ∈ X,

ACF (x) 6 htopG (X).

If F is also tempered, then there is a point y ∈ X such that

ACF (y) = ACF(y) = htopG (X).

If, in addition, X has the cardinality of the continuum, then there is a

continuum of such points y.

Theorem 3. Let G be a computable amenable group. Let F be a modest

tempered Følner sequence. Let µ be an ergodic invariant measure on AG.

Then for µ-a.e. x ∈ AG,

ACF(x) = ACF(x) = hG(A
G, µ).
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