Рефераты

УДК 517.51, 517.57

Заметка о гипотезе Хабибуллина. Берделлима А. — В кн.: Исследования по линейным операторам и теории функций. 46. (Зап. научн. семин. ПОМИ, т. 467), СПб., 2018, с. 7–20.

Показано, что при n=2 и $\alpha>1/2$ гипотеза Хабибуллина не верна. Библ. – 8 назв.

УДК 517.98

Резольвенты самосопряженных расширений оператора Лапласа на соленоидальном подпространстве. Болохов Т. А. — В кн.: Исследования по линейным операторам и теории функций. 46. (Зап. научн. семин. ПОМИ, т. 467), СПб., 2018, с. 21–29.

Оператор Лапласа на пространстве соленоидальных векторных функций трех переменных, исчезающих в начале координат вместе с производными, является симметрическим оператором с индексами дефекта (3,3). С помощью формулы Крейна строится выражение для ядра резольвенты самосопряженных расширений этого оператора в виде суммы функции Грина оператора Лапласа на пространстве всех векторных функций и некоторой добавки конечного ранга.

Библ. – 12 назв.

УДК 517.55

О локальной гладкости аналитической функции и её модуля на границе шара: анонс. Васильев И. — В кн.: Исследования по линейным операторам и теории функций. 46. (Зап. научн. семин. ПОМИ, т. 467), СПб., 2018, с. 30–33.

В заметке обсуждается задача о падении гладкости аналитической функции по сравнению с гладкостью ее модуля в случае единичного шара многомерного комплексного пространства \mathbb{C}^n . Статья посвящена локальной версии упомянутой задачи.

Библ. - 11 назв.

УДК 517.518

Об абсолютной сходимости рядов Фурье—Хаара в метрике $L^p(0,1), 0 . Григорян М. Г. — В кн.: Исследования по линейным операторам$

и теории функций. 46. (Зап. научн. семин. ПОМИ, т. 467), СПб., 2018, с. 34–54.

Доказано, что для любого $0<\epsilon<1$ существует измеримое множество $E\subset [0,1]$ с мерой $\mid E\mid>1-\epsilon$ такое, что для каждой функции $f\in L^1[0,1]$ можно найти функцию $g\in L^1[0,1]$, совпадающую с f на E и такую, что ее ряд Фурье—Хаара абсолютно сходится в метрике $L^p(0,1)$, 0< p<1, и все ненулевые члены в последовательности коэффициентов Фурье вновь полученной функции по системе Хаара расположены в убывающем порядке.

Библ. - 30 назв.

УДК 517.5

О малости функции класса Пэли–Винера вблизи ее целых нулей. Дубашинский М. Б. — В кн.: Исследования по линейным операторам и теории функций. 46. (Зап. научн. семин. ПОМИ, т. 467), СПб., 2018, с. 55–59.

Доказано, что функция класса Пэли–Винера PW_{π} , исчезающая на некотором подмножестве в \mathbb{Z} , не может быть сконцентрирована вблизи этого множества.

Библ. – 2 назв.

УДК 515.16, 519.17

О спектре гиперболических поверхностей без тонких ручек. Дубашинский М. Б. — В кн.: Исследования по линейным операторам и теории функций. 46. (Зап. научн. семин. ПОМИ, т. 467), СПб., 2018, с. 60–66.

Получена точная по порядку нижняя оценка на собственные числа оператора Бельтрами—Лапласа на гиперболической поверхности с не слишком малым радиусом инъективности.

Библ. – 5 назв.

УДК 517.55, 517.98

Обобщенные операторы Чезаро между пространствами Харди и Бергмана в комплексном шаре. Дубцов Е. С. — В кн.: Исследования по линейным операторам и теории функций. 46. (Зап. научн. семин. ПО-МИ, т. 467), СПб., 2018, с. 67–72.

Охарактеризованы голоморфные символы g такие, что обобщенный оператор Чезаро V_g отображает пространство Харди $H^p(B)$ в весовое

пространство Бергмана $A^q_{\beta}(B), \ 0 -1,$ в единичном шаре B из \mathbb{C}^d .

Библ. - 10 назв.

УДК 517.58

О произведении двух сигма-функций Вейерштрасса. Илларионов А. А. — В кн.: Исследования по линейным операторам и теории функций. 46. (Зап. научн. семин. ПОМИ, т. 467), СПб., 2018, с. 73–84.

Доказывается, что любая четная целая функция $f:\mathbb{C}\to\mathbb{C}$, имеющая нуль в точке z=0 и удовлетворяющая вместе с некоторыми $\alpha_j,\beta_j:\mathbb{C}\to\mathbb{C}$ функциональному уравнению

$$f(x+y)f(x-y) = \sum_{j=1}^{4} \alpha_j(x)\beta_j(y), \qquad x, y \in \mathbb{C},$$

имеет вид $f(z) = \sigma_L(z) \cdot \sigma_\Lambda(z) \cdot e^{Az^2+C}$, где σ_L , σ_Λ – сигма-функции Вейерштрасса, ассоциированные с некоторыми решетками L и Λ соответственно.

Библ. - 14 назв.

УДК 517.58

Ядра операторов Тёплица и рациональная интерполяция. Капустин В. В. — В кн.: Исследования по линейным операторам и теории функций. 46. (Зап. научн. семин. ПОМИ, т. 467), СПб., 2018, с. 85–107.

Ядро оператора Тёплица в пространстве Харди H^2 в единичном круге является почти инвариантным подпространством оператора обратного сдвига, и, согласно результату Д. Хитта, оно имеет вид $g\cdot K_\omega$, где ω – внутренняя функция, $K_\omega=H^2\ominus\omega H^2$, а g – изометрический множитель для K_ω . Получено описание функций ω и g для ядер операторов Тёплица с символами $\bar{\theta}\Delta$, где θ – внутренняя функция, а Δ – конечное произведение Бляшке.

Библ. - 3 назв.

УДК 517.58

Замечание о характеристических функциях с лакунами в спектре. Кисляков С. В. — В кн.: Исследования по линейным операторам и теории функций. 46. (Зап. научн. семин. ПОМИ, т. 467), СПб., 2018, с. 108–115.

Развивая недавний результат Ф. Назарова и А. Олевского, мы показываем, что для любого подмножества a прямой \mathbb{R} , имеющего конечную меру, и любого $\varepsilon > 0$, существует множество $b \subset \mathbb{R}$ такое, что $|b| = |a|, |(b \setminus a) \cup (a \setminus b)| \leqslant \varepsilon$, а спектр функции χ_b – довольно "тощее" множество. Результат справедлив и для произвольных локально компактных абелевых групп.

Библ. - 9 назв.

УДК 517.58

Исправление до функций с редким спектром и равномерно сходящимся интегралом Фурье в случае группы \mathbb{R}^n . Кисляков С. В. — В кн.: Исследования по линейным операторам и теории функций. 46. (Зап. научн. семин. ПОМИ, т. 467), СПб., 2018, с. 116–127.

Статья написана по мотивам работы П. Иванишвили и автора (2010 г.), посвященной аналогичной теме для компактных абелевых групп. Основной новый момент в случае \mathbb{R}^n – необходимость привлекать некоторые понятия и результаты из теории меры.

Библ. – 4 назв.

УДК 517.58

Функция Беллмана для параметрического семейства экстремальных задач в пространстве ВМО. Осипов Н. Н. — В кн.: Исследования по линейным операторам и теории функций. 46. (Зап. научн. семин. ПО-МИ, т. 467), СПб., 2018, с. 128-142.

Пусть I — интервал на прямой, а $\langle \cdot \rangle_I$ — соответствующее ему интегральное среднее. Мы опишем, как меняется поведение функции Беллмана для функционала $F(\varphi) = \langle f \circ \varphi \rangle_I$, $\varphi \in \text{BMO}(I)$, когда f пробегает некоторое параметрическое семейство функций. Тем самым мы еще раз продемонстрируем работу методов, разработанных недавно В. И. Васюниным, П. Б. Затицким, П. Иванишвили, Д. М. Столяровым и автором.

Библ. - 3 назв.

УДК 517.518.114

Мера Хаусдорфа на N-мерных многообразиях в \mathbb{R}^m и N-мерные вариации. Потепун А. В. — В кн.: Исследования по линейным операторам и теории функций. 46. (Зап. научн. семин. ПОМИ, т. 467), СПб., 2018, с. 143–150.

По известной теореме Жордана кривая в \mathbb{R}^m , параметризованная непрерывным отображением $f:[a;b]\to\mathbb{R}^m$ с координатными функциями f_1,\ldots,f_m , спрямляема тогда и только тогда, когда вариации всех функций f_1,\ldots,f_m конечны, а для длины кривой выполнены неравенства:

$$V_{f_i}([a;b]) \leqslant l(f([a;b])) \leqslant \sum_{k=1}^m V_{f_k}([a;b]), \quad i = 1, \dots, m.$$

При этом $l\big(f([a;b])\big) = H_1\big(f([a;b])\big)$, где H_1 — одномерная мера Хаусдорфа в \mathbb{R}^m . В данной работе понятие вариации функции одной вещественной переменной на промежутке [a;b] обобщено на случай непрерывного отображения $f\colon G\to\mathbb{R}^n$, где G открыто в \mathbb{R}^n , на множестве $A\subset G$, являющемся объединением не более чем счётного семейства компактов. Пусть $f\colon G\to\mathbb{R}^m$, где G открыто в \mathbb{R}^n , $n\leqslant m$, f_1,\ldots,f_m — координатные функции отображения f. Если $1\leqslant i_1< i_2<\cdots< i_n\leqslant m$, $\alpha=\{i_1,\ldots,i_n\}$, то обозначим через f_α отображение с координатными функциями f_{i_1},\ldots,f_{i_n} :

$$f_{\alpha}: \begin{cases} x_{i_1} = f_{i_1}(t_1, \dots, t_n) \\ \dots \\ x_{i_n} = f_{i_n}(t_1, \dots, t_n) \end{cases} (t_1, \dots, t_n) \in G.$$

Основной результат данной работы: если f — непрерывное инъективное отображение открытого множества $G \subset \mathbb{R}^n$ в \mathbb{R}^m , $n \leqslant m$, множество $A \subset G$ является объединением не более чем счётного семейства компактов, то

$$V_{f_{\alpha}}(A) \leqslant H_n(f(A)),$$

где $V_{f_{\alpha}}(A)$ — вариация отображения f_{α} на множестве $A,\ H_n-n$ -мерная мера Хаусдорфа в $\mathbb{R}^m.$

Библ. - 4 назв.

УДК 517.57

Интегралы Стилтьеса в теории гармонических функций. Рязанов В. И. — В кн.: Исследования по линейным операторам и теории функций. 46. (Зап. научн. семин. ПОМИ, т. 467), СПб., 2018, с. 151–168.

Изучаются различные интегралы Стилтьеса, такие как Пуассона— Стилтьеса, сопряженные Пуассона—Стилтьеса, Шварца—Стилтьеса и Коши—Стилтьеса, и доказываются теоремы существования их конечных угловых пределов п.в. на границе в терминах интеграла Гильберта—Стилтьеса. Эти результаты имеют место для произвольных ограниченных интегрантов, которые п.в. дифференцируемы и, в частности, для интегрантов класса \mathcal{CBV} (счетно ограниченной вариации).

Библ. - 33 назв.

УДК 517.5

О граничном поведении некоторых классов отображений. Севостьянов Е. А. — В кн.: Исследования по линейным операторам и теории функций. 46. (Зап. научн. семин. ПОМИ, т. 467), СПб., 2018, с. 169–190.

Изучается граничное поведение замкнутых открытых дискретных отображений в \mathbb{R}^n , $n\geqslant 3$. Установлено, что указанные отображения f имеют непрерывное продолжение в граничную точку $x_0\in\partial D$ области $D\subset\mathbb{R}^n$, как только их внутренняя дилатация порядка $\alpha>n-1$ имеет мажоранту конечного среднего колебания в указанной точке. Другим достаточным условием возможности непрерывного продолжения указанных отображений является расходимость некоторого интеграла. Получены результаты о непрерывном продолжении указанных отображений в изолированную граничную точку.

Библ. - 19 назв.

УДК 517.98

Устойчивость почти оптимальных разложений в анализе Фурье. Целищев А. С. — В кн.: Исследования по линейным операторам и теории функций. 46. (Зап. научн. семин. ПОМИ, т. 467), СПб., 2018, с. 191–206.

Рассматривается вопрос о существовании устойчивых под действием некоторых операторов почти-минимайзеров для функционала расстояния (E-функционала в интерполяционных терминах) в ранее не рассмотренных случаях. Среди прочего, доказывается существование устойчивого почти-минимайзера для пары (L^1, L^p), когда оператор является проектором, связанным с вейвлетами, которые обладают только слабыми условиями убывания на бесконечности.

Библ. – 10 назв.

УДК 517.98

Двойственность в задаче об устойчивости для некоторых функционалов, возникающих в теории интерполяции. Целищев $A.\ C.\ -B$ кн.:

Исследования по линейным операторам и теории функций. 46. (Зап. научн. семин. ПОМИ, т. 467), СПб., 2018, с. 207–214.

Показано с помощью двойственности, что функционал расстояния для пары (L^{∞}, L^p) , 1 , обладает почти-минимайзерами, устойчивыми при действии сингулярных интегральных операторов.

Библ. – 10 назв.

УДК 517.53

Интерполяция в пространстве Бернштейна с помощью аппроксимации. Широков Н. А. — В кн.: Исследования по линейным операторам и теории функций. 46. (Зап. научн. семин. ПОМИ, т. 467), СПб., 2018, с. 215-237.

Пусть B_{σ} — пространство Бернштейна целых функций экспоненциального типа не выше σ , ограниченных на вещественной оси. Рассмотрим последовательность $\Lambda=\{z_n\}_{n\in\mathbb{Z}},\ z_n=x_n+iy_n$, такую, что $x_{n+1}-x_n\geqslant l>0$ и $|y_n|\leqslant L,\ n\in\mathbb{Z}$. Пусть $A=\{a_n\}_{n\in\mathbb{Z}}$ — последовательность ограниченных чисел $a_n,\ |a_n|\leqslant M,\ n\in\mathbb{Z}$. Мы доказываем, что существует функция $f\in B_{\sigma}$ с $\sigma\leqslant\sigma_0(l,L)$ такая, что $f|_{\Lambda}=A$, используя аппроксимацию функциями из B_{σ} .

Библ. - 6 назв.

УДК 517.53

Замечание о приближении тригонометрическими полиномами. Широков Н. А. — В кн.: Исследования по линейным операторам и теории функций. 46. (Зап. научн. семин. ПОМИ, т. 467), СПб., 2018, с. 238–243.

Пусть $E=\bigcup\limits_{k=1}^n [a_k,b_k]\subset\mathbb{R};$ если n>1, предполагаем, что отрезки $[a_k,b_k]$ попарно не пересекаются. Предполагаем, что выполнено условию

$$E \cap (E + 2\pi\nu) = \varnothing, \quad \nu \in \mathbb{Z}, \nu \neq 0.$$
 (1)

Через $H^{\omega+r}(E)$ обозначим пространство функций f, определенных на E, таких, что $|f^{(r)}(x_2)-f^{(r)}(x_1)|\leqslant c_f\omega(|x_2-x_1|),\,x_1,\,x_2\in E,\,f^{(0)}\equiv f.$ Предполагаем, что модуль непрерывности ω удовлетворяет условию

$$\int_{0}^{x} \frac{\omega(t)}{t} dt + x \int_{x}^{\infty} \frac{\omega(t)}{t^{2}} dt \leqslant c\omega(x).$$
 (2)

В заметке найдено конструктивное описание пространства $H^{\omega+r}(E)$ в терминах скорости неравномерного приближения функции $f\in H^{\omega+r}(E)$ тригонометрическими полиномами, если E удовлетворяет условию (1), а ω удовлетворяет условию (2).

Библ. - 3 назв.

УДК 517.55

О точности оценки в теореме об уполовинивании гладкости голоморфной функции в шаре. Широков Н. А. — В кн.: Исследования по линейным операторам и теории функций. 46. (Зап. научн. семин. ПОМИ, т. 467), СПб., 2018, с. 244–254.

Пусть \mathbb{B}^n — единичный шар, S^n — единичная сфера в \mathbb{C}^n , $n\geqslant 2$. Возьмем $\alpha,\ 0<\alpha<1$, и определим функцию f на $\overline{\mathbb{B}^n}$ следующим образом:

$$f(z) = (z_1 - 1)^{\alpha} e^{\frac{z_1 + 1}{z_1 - 1}}, \quad z = (z_1, \dots, z_n) \in \overline{\mathbb{B}^n}.$$

Основной результат следующий.

Теорема. На сфере S^n функция $\zeta \mapsto |f(\zeta)|$ принадлежит классу Γ ёльдера $H^{\alpha}(S^n)$, функция f не лежит в классе Γ ёльдера $H^{\frac{\alpha}{2}+\varepsilon}(\overline{\mathbb{B}^n})$ при любом $\varepsilon > 0$.

Библ. – 1 назв.