Н. А. Широков

ЗАМЕЧАНИЕ О ПРИБЛИЖЕНИИ ТРИГОНОМЕТРИЧЕСКИМИ ПОЛИНОМАМИ

Приближениям тригонометрическими полиномами посвящена огромная литература. В настоящей заметке рассматривается ситуация, которая, насколько известно автору, ранее не встречалась.

Пусть $\omega(x)$ – модуль непрерывности, удовлетворяющий условию

$$\int_{0}^{x} \frac{\omega(t)}{t} dt + x \int_{x}^{\infty} \frac{\omega(t)}{t^{2}} dt \leqslant c\omega(x), \tag{1}$$

множество E есть объединение $\bigcup_{k=1}^n [a_k,b_k],\ n\geqslant 1,$ отрезки $[a_k,b_k]$ попарно дизъюнктны. Предположим, что для множества E выполняется условие

$$E \cap (E + 2\pi\nu) = \varnothing, \quad \nu \in \mathbb{Z}, \quad \nu \neq 0.$$
 (2)

Заметим, что условие (2) выполнено, если $n=1, E=[a_1,b_1]$ и $b_1-a_1<2\pi$. Через $H^\omega(E)$ обозначим пространство комплекснозначных функций f, заданных на E и таких, что для $x_1, x_2 \in E$ справедлива оценка $|f(x_2)-f(x_1)|\leqslant c_f\omega(|x_2-x_1|);$ при $r\in\mathbb{N}$ через $H^{\omega+r}(E)$ обозначаем пространство функций f таких, что $f^{(r)}\in H^\omega(E)$.

Пусть, далее,

$$S_{\rho} = \{ z \in \mathbb{C} : z = \frac{1}{2}(\zeta + \frac{1}{\zeta}), \quad |\zeta| = \rho \},$$

$$S_{\rho}([a, b]) = \frac{a + b}{2} + \frac{b - a}{2}S_{\rho}, \quad a, b \in \mathbb{R}, \quad \rho > 1,$$

$$d_{\rho}(z, [a, b]) = \text{dist}(z, S_{\rho}([a, b])), \quad z \in \mathbb{C}.$$

Для $x \in [a_m, b_m] \subset E$, $1 \leqslant m \leqslant n$, полагаем

$$d_{\rho}(x, E) = d_{\rho}(x, S_{\rho}([a_m, b_m])). \tag{3}$$

Ключевые слова: модуль непрерывности, целая функция экспоненциального типа, приближение, классы Гёльдера, аппроксимация, тригонометрические полиномы.

Работа выполнена при поддержке гранта РФФИ No. 17-01-00607-а.

Настоящая работа посвящена конструктивному описанию пространства $H^{\omega+r}(E)$ в терминах приближения тригонометрическими полиномами.

Теорема. а) Пусть модуль непрерывности $\omega(x)$ и множество E удовлетворяют условиям (1) и (2), соответственно, и пусть

$$f \in H^{\omega+r}(E),$$

 $r \geqslant 0, r \in \mathbb{Z}$. Тогда для любого $n \in \mathbb{N}$ найдется тригонометрический полином $\pi_n(x)$ порядка не выше n такой, что для любого $x \in E$ c некоторым $c_0 = c_0(f, E, r)$ выполняется соотношение

$$|f(x) - \pi_n(x)| \le c_0 d_{1+\frac{1}{n}}^r(x, E)\omega(d_{1+\frac{1}{n}}(x, E)).$$
 (4)

b) Предположим, что для функции $f: E \to \mathbb{C}$ для каждого $n \in \mathbb{N}$ найдется тригонометрический полином π_n порядка не выше n такой, что для любого $x \in E$ справедлива оценка (4) c некоторой постоянной c_0 . Тогда $f \in H^{\omega+r}(E)$.

Замечание. Насколько известно автору, утверждение теоремы при $n=1,\,E=[a_1,b_1],\,b_1-a_1<2\pi$ также является новым результатом.

Доказательство части а) теоремы.

Пусть

$$\mathcal{E} = \bigcup_{k \in \mathbb{Z}} (E + 2\pi k). \tag{5}$$

Продолжим функцию f на множестве \mathcal{E} с периодом 2π , при $x \in E + 2\pi k$, $k \in \mathbb{Z}$, положим $f(x) \stackrel{def}{=} f(x-2k\pi)$. Условие (2) показывает, что такое продолжение корректно определено. Множество \mathcal{E} удовлетворяет условиям, предполагаемым в [1]: все отрезки, входящие в \mathcal{E} , соизмеримы и все дополнительные интервалы в $\mathbb{R} \setminus \mathcal{E}$ соизмеримы, что следует из (2) и (5). По теореме из [1] в таком случае для всякого $n \in \mathbb{N}$ можно найти целую функцию $F_n(z)$ экспоненциального типа не выше n такую, что для $x \in E$ справедлива оценка

$$|F_n(x) - f(x)| \le c_0 d_{1+\frac{1}{n}}^r(x, E)\omega(d_{1+\frac{1}{n}}(x, E)),$$
 (6)

а при $x \in E + 2k\pi, \, k \neq 0, \, k \in \mathbb{Z}$ имеется оценка

$$|F_n(x) - f(x)| \le c_0 d_{1 + \frac{1}{n}}^r (x, E + 2k\pi) \omega (d_{1 + \frac{1}{n}}(x, E + 2k\pi)),$$
 (7)

где при $x\in E+2k\pi$ положим $d_{\rho}(x,E+2k\pi)\stackrel{\text{def}}{=} d_{\rho}(x-2k\pi,E)$. Пусть $d_{\rho}(x,\mathcal{E})\stackrel{\text{def}}{=} d_{\rho}(x,E+2k\pi)$ при $x\in E+2k\pi$, и положим

$$c(F) \stackrel{\text{def}}{=} \sup_{x \in \mathcal{E}} \frac{|F(x) - f(x)|}{d_{1+\frac{1}{n}}^r(x, \mathcal{E})\omega(d_{1+\frac{1}{n}}(x, \mathcal{E}))}.$$
 (8)

Из (6), (7), (8) заключаем, что $c(F_n) \leqslant c_0$. Пусть $\nu \in \mathbb{Z}$. Тогда

$$\sup_{x \in \mathcal{E}} \frac{|F_n(x + 2\pi\nu) - f(x)|}{d_{1+\frac{1}{n}}^r(x, \mathcal{E})\omega(d_{1+\frac{1}{n}}(x, \mathcal{E}))}$$

$$= \sup_{x \in \mathcal{E}} \frac{|F_n(x) - f(x - 2\pi\nu)|}{d_{1+\frac{1}{n}}^r(x - 2\pi\nu, \mathcal{E})\omega(d_{1+\frac{1}{n}}(x - 2\pi\nu, \mathcal{E}))}$$

$$= \sup_{x \in \mathcal{E}} \frac{|F_n(x) - f(x)|}{d_{1+\frac{1}{n}}^r(x, \mathcal{E})\omega(d_{1+\frac{1}{n}}(x, \mathcal{E})) = c(F_n)}.$$
(9)

Пусть $F_{n,\nu}(z) \stackrel{def}{=} F_n(z+2\pi\nu)$. Тогда соотношения (8) и (9) влекут, что

$$c(F_{n,\nu}) \leqslant c_0, \quad \nu \in \mathbb{Z}.$$
 (10)

Положим

$$D = \max_{1 \le k \le n} \max_{x \in [a_k, b_k]} c_0 d_2^r(x, E) \omega(d_2(x, E)), \tag{11}$$

$$M_0 = \max_{x \in E} |f(x)|. \tag{12}$$

В таком случае из (10), (11), (12) заключаем, что при $x \in E, n \in \mathbb{N}, \nu \in \mathbb{Z}$ справедливо неравенство

$$|F_{n,\nu}(x)| \le |F_{n,\nu}(x) - f(x)| + |f(x)| \le D + M_0 \stackrel{\text{def}}{=} M_1.$$
 (13)

По теореме Б. Я. Левина [2] из оценки (13) следует оценка для целой функции $F_{n,\nu}$ экспоненциального типа не выше n на всей вещественной оси:

$$|F_{n,\nu}(x)| \leqslant M_2, \quad M_2 = M_2(M_1, \mathcal{E}, n), \quad x \in \mathbb{R}.$$
 (14)

Из (14) находим, что при $z \in \mathbb{C}$ выполняется соотношение

$$|F_{n,\nu}(z)| \leqslant M_2 e^{n|\operatorname{Im} z|}. (15)$$

Положим

$$\Phi_{n,N} = \frac{1}{2N+1} \sum_{\nu=-N}^{N} F_{n,\nu}.$$
 (16)

Из (15), (16) находим, что при $z \in \mathbb{C}$ имеем

$$|\Phi_{n,N}(z)| \le \frac{1}{2N+1} \sum_{\nu=-N}^{N} |F_{n,\nu}(z)| \le M_2 e^{n|\operatorname{Im} z|}.$$
 (17)

Оценка (17) показывает, что семейство функций $\{\Phi_{n,N}(z)\}_{N=1}^{\infty}$ является нормальным семейством на всей комплексной плоскости, поэтому существует подпоследовательность $\{N_l\}_{l=1}^{\infty}$, для которой подпоследовательность функций $\{\Phi_{n,N_l}(z)\}_{l=1}^{\infty}$ сходится к целой функции $\pi_n(z)$. Из (17) следует, что при $z \in \mathbb{C}$ имеем оценку

$$|\pi_n(z)| \leqslant M_2 e^{n|\operatorname{Im} z|},\tag{18}$$

т.е. π_n – целая функция экспоненциально типа не выше n. Далее, учитывая оценку (15), находим, что для фиксированного $z\in\mathbb{C}$ справедливо соотношение

$$\Phi_{n,N_l}(z+2\pi) - \Phi_{n,N_l}(z)
= \frac{1}{2N_l+1} \left(\sum_{k=-N_l}^{N_l} F_n(z+2k\pi+2\pi) - \sum_{k=-N_l}^{N_l} F_n(z+2k\pi) \right)
= \frac{1}{2N_l+1} \left(F_n(z+2(N_l+1)\pi) - F_n(z-2N_l\pi) \right) \to 0 \text{ при } l \to \infty, \quad (19)$$

и (19) влечет, что $\pi_n(z+2\pi)-\pi_n(z)=0$, что вместе с неравенством (18) показывает, что $\pi_n(z)$ – тригонометрический полином порядка не выше n. Из соотношений (10) получаем, что

$$c(\Phi_{n,N}) \leqslant \frac{1}{2N+1} \sum_{\nu=-N}^{N} c(F_{n,\nu}) \leqslant c_0.$$
 (20)

Для фиксированного $x \in \mathcal{E}$ определение (8) и формула (20) дают неравенство

$$\frac{|\Phi_{n,N_l}(x) - f(x)|}{d_{1+\frac{1}{2}}^r(x,\mathcal{E})\omega(d_{1+\frac{1}{2}}(x,\mathcal{E}))} \leqslant c_0,$$

откуда при $l \to \infty$ имеем

$$\frac{|\pi_n(x) - f(x)|}{d_{1+\frac{1}{n}}^r(x,\mathcal{E})\omega(d_{1+\frac{1}{n}}(x,\mathcal{E}))} \leqslant c_0.$$
 (21)

Соотношение (21) доказывает часть а) теоремы.

Для доказательства части b) продолжим функцию f 2π -периодически на множество \mathcal{E} , как это было сделано в доказательстве части a). Поскольку тригонометрические полиномы 2π -периодичны, при $x \in E + 2k\pi \subset \mathcal{E}$ из (4) получаем, что

$$|\pi_{n}(x) - f(x)| = |\pi_{n}(x - 2\pi k) - f(x - 2\pi k)|$$

$$\leq c_{0}d_{1+\frac{1}{n}}^{r}(x - 2\pi k, E)\omega(d_{1+\frac{1}{n}}(x - 2\pi k, E))$$

$$= c_{0}d_{1+\frac{1}{n}}^{r}(x, E + 2\pi k)\omega(d_{1+\frac{1}{n}}(x, E + 2\pi k))$$

$$= c_{0}d_{1+\frac{1}{n}}^{r}(x, \mathcal{E})\omega(d_{1+\frac{1}{n}}(x, \mathcal{E})).$$
(22)

Так как $\pi_n(z)$ является целой функцией экспоненциального типа не выше n, то оценка (22) позволяет применить теорему из [3], которая влечет $f \in H^{\omega+r}(\mathcal{E})$, в частности, $f \in H^{\omega+r}(E)$. Теорема доказана. \square

Список литературы

- 1. О. В. Сильванович, Н. А. Широков, *Приближение целыми функциями на счетном множестве отрезков вещественной оси. Дальнейшее обобщение.* Вестник СПбГУ, серия 1, выпуск 2, 2018.
- Б. Я. Левин, Мажоранты в классах субгармонических функций. Теория функций, функциональный анализ и их приложения 52 (1989), 3–33.
- 3. О. В. Сильванович, Н. А. Широков, *Приближение целыми функциями на счетном множестве отрезков вещественной оси.* 4. Обратная теорема. Вестник СПбГУ, серия 1, выпуск 4 (2018).

Shirokov N. A. A note about approximation by trigonometric polynomials.

Let $E = \bigcup_{k=1}^{n} [a_k, b_k] \subset \mathbb{R}$; if n > 1 then we assume that the segments $[a_k, b_k]$ are pairwise disjoint. Suppose that the following property holds:

$$E \cap (E + 2\pi\nu) = \varnothing, \quad \nu \in \mathbb{Z}, \quad \nu \neq 0.$$
 (1)

We denote by $H^{\omega+r}(E)$ the space of functions f defined on E such that $|f^{(r)}(x_2) - f^{(r)}(x_1)| \leq c_f \omega(|x_2 - x_1|), \ x_1, \ x_2 \in E, \ f^{(0)} \equiv f$. We assume that a modulus of continuity ω satisfies the condition

$$\int_{0}^{x} \frac{\omega(t)}{t} dt + x \int_{x}^{\infty} \frac{\omega(t)}{t^{2}} dt \leqslant c\omega(x).$$
 (2)

Поступило 21 февраля 2018 г.

We find a constructive description of the space $H^{\omega+r}(E)$ in terms of the rate of nonuniform approximation of $f \in H^{\omega+r}(E)$ by means of trigonometric polynomials if E satisfies (1) and ω satisfies (2).

С.-Петербургский государственный университет, Петергоф, Университетский просп. 35, 198504 Санкт-Петербург; С.-Петербургское отделение Математического института им. В. А. Стеклова РАН Фонтанка 27, 191023, С.-Петербург, Россия

 $E ext{-}mail: nikolai.shirokov@gmail.com}$