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HARMONIC FUNCTIONS

Abstract. We study various Stieltjes integrals, such as Poisson–
Stieltjes, conjugate Poisson–Stieltjes, Schwartz–Stieltjes and Cau-
chy–Stieltjes, and prove theorems on the existence of their finite
angular limits a.e. in terms of the Hilbert–Stieltjes integral. These
results are valid for arbitrary bounded integrands that are differen-

tiable a.e. and, in particular, for integrands of the class CBV (count-
ably bounded variation).

§1. Introduction

Recall that a path in D := {z ∈ C : |z| < 1} terminating at ζ ∈ ∂D is
called nontangential if its part in a neighborhood of ζ lies inside of an
angle in D with vertex at ζ. Hence the limit along all nontangential paths
at ζ ∈ ∂D is also said to be angular at the point. This is a traditional tool
of the geometric function theory, see, e.g., the monographs [4, 12, 15, 20],
and [23].

It was proved in the previous paper [27], see also [28], that a harmonic
function u given in the unit disk D of the complex plane C has angular
limits at a.e. point ζ ∈ ∂D if and only if its conjugate harmonic function
v in D has the same property, see Problem 4 in Section III of [12]. This
is the key fact together with Lemma 2 in Section 5 below to establish the
existence of the so-called Hilbert–Stieltjes integral for a.e. ζ ∈ ∂D and the
corresponding result on the angular limits of Cauchy–Stieltjes integrals
under fairly general assumptions on integrands, cf., e.g., [9, 21] and [31];
see also [5, 11, 12], and [23].

We recall a subtle statement due to Lusin that a harmonic function
in the unit disk with continuous (even absolutely continuous!) boundary
data may have conjugate harmonic function whose boundary data are not
continuous, furthermore, they may even be not essentially bounded near
each point of the unit circle, see, e.g., Theorem VIII.13.1 in [1]. Thus, a
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correlation between boundary data of conjugate harmonic functions is not
a simple matter, see also I.E in [12].

Denote by hp, p ∈ (0,∞), the class of all harmonic functions u in D with

bounded Lp-norms over the circles |z| = r ∈ (0, 1). It is clear that hp ⊆ hp′

for all p > p′ and, in particular, hp ⊆ h1 for all p > 1. It is important that
every function in the class h1 has nontangential boundary limits a.e., see,
e.g., Corollary IX.2.2 in [8]. It is also known that a harmonic function u
in D can be represented as the Poisson integral

u(reiϑ) =
1

2π

π
∫

−π

1− r2

1− 2r cos(ϑ− t) + r2
ϕ(t) dt (1.1)

with a function ϕ ∈ Lp(−π, π), p > 1, if and only if u ∈ hp, see, e.g., The-
orem IX.2.3 in [8]. Thus, u(z) → ϕ(ϑ) as z → eiϑ along any nontangential
path for a.e. ϑ, see, e.g., Corollary IX.1.1 in [8]. Moreover, u(z) → ϕ(ϑ0)
as z → eiϑ0 at the points ϑ0 of continuity of ϕ, see, e.g., Theorem IX.1.1
in [8].

Note also that v ∈ hp whenever u ∈ hp for all p > 1 by the M. Riesz
theorem, see [24], see also Theorem IX.2.4 in [8]. Generally speaking, this
fact is not trivial but it follows immediately for p = 2 from the Parseval
identity, see, e.g., the proof of Theorem IX.2.4 in [8]. The case of u ∈ h1

is more complicated.
We remind the reader that a harmonic function u in D belongs to h1 if

and only if it can be represented as the Poisson–Stieltjes integral

u(reiϑ) =
1

2π

π
∫

−π

1− r2

1− 2r cos(ϑ− t) + r2
dΦ(t) (1.2)

with Φ : [−π, π] → R of bounded variation, see, e.g., Theorem IX.2.2 in [8].
Moreover, if the function Φ has finite derivative at a point ϑ0 ∈ (−π, π),
then u(z) → Φ′(ϑ0) as z := reiϑ → ζ0 := eiϑ0 along all nontangential
paths in D to the point ζ0, see, e.g., Theorem IX.1.4 in [8].

The present paper is devoted to the study of the corresponding Stielt-
jes integrals in the case when Φ is, generally speaking, not of bounded
variation. The emphasis here is on the method. Namely, a basic fact in
Section 2 is that the formula of integration by parts remains true with
no regularity conditions on the functions involved if at least one of the
integrals exists, see Lemma 1, and that the latter is true if one of the func-
tions is absolutely continuous and the second one is bounded and its set of
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points of discontinuity has measure zero, see Proposition 1. Moreover, it is
demonstrated by Example 1 that the boundedness condition is essential.
Finally, by Remark 1 measure zero for the set of points of discontinuity is
also necessary. Precisely on this basis, it has become possible to extend all
results on various Stieltjes integrals to the case of the absence of bounded
variation.

§2. Expansion of the Riemann–Stieltjes integral

First of all, recall a classical definition of the Riemann–Stieltjes integral.
Namely, let I = [a, b] be a compact interval in R. A partition P of I is a
collection of points t0, t1, . . . , tp ∈ I such that a = t0 6 t1 6 . . . 6 tp = b.
Now, let g : I → R and f : I → R be bounded functions, and, moreover, let
f be monotone nondecreasing. The Riemann–Stieltjes integral of g with
respect to f is a real number A, written A =

∫

I

g df , if for every ε > 0

there is δ > 0 such that

∣

∣

p
∑

k=1

g(τk)[f(tk)− f(tk−1)] − A
∣

∣ < ε

for every partition P = {t0, t1, . . . , tp} of I with |tk−tk−1| 6 δ, k = 1, . . . , p,
and every collection τk ∈ [tk−1, tk], k = 1, . . . , p. In other words and in a
different notation,

b
∫

a

g df := lim
δ→0

p
∑

k=1

g(τk) ·∆kf as δ := max
k=1,...,p

|tk− tk−1| → 0, (2.1)

where ∆kf := f(tk) − f(tk−1), k = 1, . . . , p, if a finite limit in (2.1) ex-
ists and it is uniform with respect to partitions {tk} and intermediate
points {τk}.

We extend the definition of the Riemann–Stieltjes integral to arbitrary
functions g and f for which the limit (2.1) exists. Let us start with the
following general fact, cf., e.g., [2, 10, 19], and [30].

Lemma 1. Let I = [a, b], g : I → R, and f : I → R be arbitrary functions.

If one of the integrals
∫

g df and
∫

f dg exists, then the second one also

exists and
∫

I

g df +

∫

I

f dg = g(b) · f(b) − g(a) · f(a). (2.2)
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Proof. For definiteness, we assume that the integral
∫

f dg exists. Then
for an arbitrary integral sum of the integral

∫

g df , we have

p
∑

k=1

g(τk) · (f(tk)− f(tk−1)) = −g(t0)f(t0)

−
p+1
∑

k=1

f(tk) · (g(τk)− g(τk−1)) + g(tp)f(tp),

where τ0 := t0 and τp+1 = tp, which implies the desired conclusions. �

By Theorem 13.1.b in [10], we have an important consequence of Lem-
ma 1.

Proposition 1. Let I = [a, b], let a function f : I → R be absolutely

continuous, and let g : I → R be a bounded function whose set of points of

discontinuity is of measure zero. Then the two integrals
∫

I

g df and
∫

I

f dg

exist and relation (2.2) holds true.

Example 1. The condition that the function g is bounded in Proposition 1
is essential. This is clear from the simplest example of the pair of the
following functions on [0, 1]: f(t) = t and g(t) = 0 except the points
tn = 1/n where g(tn) := n2, n = 1, 2, . . .. Indeed, we see that the lower
limit of the integral sums is 0 and the upper limit is ∞.

Remark 1. The condition of measure zero for the set of points of dis-
continuity of g in Proposition 1 is also necessary. Indeed, take the case of
f(t) ≡ t and consider a function g with its set S of points of discontinuity
of a length l > 0. By subadditivity l 6

∑

ln where ln, n = 1, 2, . . ., is the
length of the set Sn of points in S with jumps that are greater than or
equal to 1/n. Hence lN > 0 for some N = 1, 2, . . .. We cover every point
t ∈ SN \ {a, b} by all intervals in (a, b) centered at t whose lengths are
less than an arbitrary prescribed δ > 0. By the Vitali theorem there is a
countable subcollection of mutually disjoint intervals covering almost every
point of SN , see, e.g. Theorem IV.3.1 in [30]. The sum of their lengths is
at least lN and all such intervals contain jumps of g that are at least 1/N .
Thus, the difference between the lower and upper limits of integral sums
is at least N−1lN , i.e., it is not zero.

It is clear that formula (2.2) is also valid for complex-valued functions
of the natural parameter on rectifiable Jordan curves because their real
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and imaginary parts can be regarded as real-valued functions on segments
of R. Moreover, the corresponding statements hold true on closed Jordan
curves J with the relation

∫

J

g df = −
∫

J

f dg, (2.3)

where we should apply cyclic partitions P of J by collections of cyclically
ordered points ζ0, ζ1, . . . , ζp on J with ζ0 = ζp.

§3. On the Poisson–Stieltjes integrals

Recall that the Poisson kernel is the 2π-periodic function

Pr(Θ) =
1− r2

1− 2r cosΘ + r2
, r < 1 , Θ ∈ R. (3.1)

By Proposition 1, the Poisson–Stieltjes integral

U(z) = UΦ(z) :=
1

2π

π
∫

−π

Pr(ϑ− t) dΦ(t), z = reiϑ, r < 1 , ϑ ∈ R (3.2)

is well defined for 2π-periodic continuous functions, furthermore, for boun-
ded functions Φ : R → R whose set of points of discontinuity is of measure
zero because the function Pr(Θ) is continuously differentiable and hence
it is absolutely continuous.

Moreover, directly by the definition of the Riemann–Stieltjes integral
and the Weierstrass type theorem for harmonic functions, see, e.g., Theo-
rem I.3.1 in [8], U is a harmonic function in the unit disk D := {z ∈ C :
|z| < 1} because the function Pr(ϑ − t) is the real part of the analytic
function

Aζ(z) :=
ζ + z

ζ − z
, ζ = eit, z = reiϑ, r < 1, ϑ and t ∈ R. (3.3)

Theorem 1. Let Φ : R → R be a 2π-periodic bounded function whose set

of points of discontinuity has measure zero. Suppose that Φ is differentiable

at a point t0 ∈ R. Then

lim
z→ζ0

UΦ(z) = Φ′(t0) (3.4)

along all nontangential paths in D to the point ζ0 := eit0 ∈ ∂D.
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Proof. Indeed, by Proposition 1 with g(t) := Φ(t) and f(t) := Pr(ϑ− t),
t ∈ R, for every fixed z = reiϑ, r < 1, ϑ ∈ R, we obtain

π
∫

−π

Pr(ϑ−t) dΦ(t) =

π
∫

−π

Φ(t)· ∂

∂ϑ
Pr(ϑ−t) dt, r ∈ (0, 1), ϑ ∈ R, (3.5)

because of the 2π-periodicity of the given functions g and f the right hand
side in (2.2) is equal to zero, f ∈ C1 and

∂

∂ϑ
Pr(ϑ− t) = − ∂

∂t
Pr(ϑ− t), r ∈ (0, 1), ϑ, t ∈ R.

Now, considering the Poisson integral

u(reiϑ) :=
1

2π

π
∫

−π

Pr(ϑ− t) Φ(t) dt ,

we see by the Fatou result, see, e.g., 3.441 in [32], p. 53, or Theorem IX.1.2
in [8], that ∂

∂ϑ
u(z) → Φ′(t0) as z → ζ0 along any nontangential path in

D ending at ζ0. Thus, the conclusion follows because UΦ(z) = ∂
∂ϑ

u(z)
by (3.5). �

Corollary 1. If Φ : R → R is a 2π-periodic continuous function that is

differentiable a.e., then UΦ(z) → Φ′(arg ζ) as z → ζ for a.e. ζ ∈ ∂D along

all nontangential paths in D to the point ζ.

Here we denote by arg ζ the principal branch of the argument of ζ ∈ C

with |ζ| = 1, i.e., a unique number τ ∈ (−π, π] such that ζ = eiτ .

Remark 2. Note that, generally speaking, the function of interval

Φ∗([a, b]) := Φ(b)− Φ(a)

generates no finite signed measure (charge) if Φ is not of bounded variation.
Hence we cannot apply the known Fatou result on the angular boundary
limits directly to the Poisson–Stieltjes integrals, see, e.g., Theorem I.D.3
in [12].

Corollary 2. If Φ : R → R is a 2π-periodic bounded function that is

differentiable a.e., then UΦ(z) → Φ′(arg ζ) as z → ζ for a.e. ζ ∈ ∂D along

all nontangential paths in D to the point ζ.

A function Φ : R → C is said to be of countably bounded variation

(in symbols: Φ ∈ CBV(R)) if there is a countable collection of mutually
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disjoint intervals (an, bn), n = 1, 2, . . ., such that the restriction of Φ to

each of them is of bounded variation and the set R\
∞
⋃

1
(an, bn) is countable.

Corollary 3. If Φ : R → R is a 2π-periodic bounded function of class

CBV(R), then UΦ(z) → Φ′(arg ζ) as z → ζ for a.e. ζ ∈ ∂D along all

nontangential paths in D to the point ζ.

§4. On the conjugate Poisson–Stieltjes integrals

Recall that the conjugate Poisson kernel is the 2π-periodic function

Qr(Θ) =
2r sinΘ

1− 2r cosΘ + r2
, r < 1, Θ ∈ R. (4.1)

By Proposition 1 the conjugate Poisson-Stieltjes integral

V(z) = VΦ(z) :=
1

2π

π
∫

−π

Qr(ϑ− t) dΦ(t), z = reiϑ, r < 1, ϑ ∈ R, (4.2)

is well defined for 2π-periodic bounded functions Φ : R → R whose set of
points of discontinuity is of measure zero because the function Qr(Θ) is
continuously differentiable and hence it is absolutely continuous. Again,
directly by the definition of the Riemann–Stieltjes integral and the Weier-
strass type theorem, VΦ is a conjugate harmonic function for UΦ in the
unit disk D because the function Qr(ϑ − t) is the imaginary part of the
same analytic function (3.3).

By Theorem 1 in [27], see also [28], we have the following important
consequences of Theorem 1 and Corollaries 1–3.

Corollary 4. Let Φ : R → R be a 2π-periodic continuous function that is

differentiable a.e. Then VΦ(z) has a finite limit ϕ(ζ) as z → ζ along all

nontangential paths in D to a.e. ζ ∈ ∂D.

Corollary 5. Let Φ : R → R be a 2π-periodic bounded function that is

differentiable a.e. Then VΦ(z) has a finite limit ϕ(ζ) as z → ζ along all

nontangential paths in D to a.e. ζ ∈ ∂D.

Corollary 6. Let Φ : R → R be a 2π-periodic bounded function of class

CBV(R). Then VΦ(z) has a finite angular limit ϕ(ζ) as z → ζ for a.e.

ζ ∈ ∂D.

The function ϕ(ζ) will be calculated explicitly in terms of Φ(ζ) via the
so-called Hilbert–Stieltjes integral. To prove this fact we need first establish
an auxiliary result in the next section.
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§5. On the Hilbert–Stieltjes integral

Lemma 2. Let Φ : R → R be a 2π-periodic bounded function whose set of

points of discontinuity has measure zero. Suppose that Φ is differentiable

at a point t0 ∈ R. Then the difference

VΦ(z)−
1

π

π
∫

1−|z|

d {Φ(t0 − t)− Φ(t0 + t)}
2 tan t

2

(5.1)

converges to zero as z → ζ0 := eit0 ∈ ∂D along the radius in D to the

point ζ0.

Proof. First of all, applying (if necessary) simultaneous rotations of ζ0
to ζ = eit ∈ ∂D and of z ∈ D in (3.3), we may assume that t0 = 0.
Moreover, there is no loss of generality in assuming that Φ(0) = 0 and
Φ′(0) = 0 because, for the linear function Φ∗(t) := Φ(0) + Φ′(0) · t from
(−π, π] to R extended 2π-periodically to R, the relation dΦ∗(t) ≡ Φ′(0) dt
gives identical zero in the difference (5.1) in view of the oddness of the
kernel Qr and of tan t

2 .
Note that by the oddness of Qr we also have

VΦ(r) =
1

2π

π
∫

−π

Qr(−t) dΦ(t) =
1

2π

π
∫

−π

Qr(t) dΦ(−t), r ∈ (0, 1).

Then the difference (5.1) is split into two parts with ε = ε(r) := 1− r :

I :=
1

2π

ε
∫

−ε

Qr(t) dΦ(−t),

II :=
1

2π

∫

ε6|t|6π

{Qr(t)−Q1(t)} d {Φ(−t)− Φ(t)}.

Integrating I by parts, by Proposition 1 and the oddness of Qr(t) we
have

I =
1

2π
Qr(ε){Φ(−ε)− Φ(ε)} + 1

π

ε
∫

0

{Φ(−t)− Φ(t)} dQr(t) . (5.2)
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The first summand converges to zero as ε → 0 because |Φ(±ε)| = o(ε) and

Qr(ε) =
2r sin ε

1− 2r cos ε+ r2
=

2r sin ε

ε2 + 4r sin2 ε
2

6 2
sin ε

ε2
6

2

ε
. (5.3)

To estimate the second summand in (5.2), we observe that sin2 t
2 6

[

1−r
2

]2

and, thus,

Q′
r(t) =

2r cos t

1− 2r cos t+ r2
− 4r2 sin2 t

(1− 2r cos t+ r2)2

= 2r
(1 + r2) cos t− 2r

(1− 2r cos t+ r2)2
= 2r

(1 − r)2 − 2(1 + r2) sin2 t
2

(1− 2r cos t+ r2)2

> 2r
(1− r)2[1− (1 + r2)/2]

(1− 2r cos t+ r2)2
=

r(1 + r)(1 − r)3

(1− 2r cos t+ r2)2
,

i.e., Q′
r(t) > 0 for all t ∈ [0, ε]. Since Qr(t) is smooth, it is strictly mono-

tone increasing on [0, ε]. Hence the modulus of the second summand is
dominated by

1

π
·Qr(ε) · sup

t∈[0,ε]

{|Φ(−t)|+ |Φ(t)|} 6
1

π
· 2
ε
· o(ε) = o(1),

where the inequality follows by (5.3). Thus, the second summand in (5.2)
also converges to zero as ε → 0.

Now, by the oddness of the kernels Qr(t), r ∈ (0, 1), and Q1(t), we
obtain

II :=
1

π

π
∫

ε

{Qr(t)−Q1(t)} d {Φ(−t)− Φ(t)},

where

Q1(t)−Qr(t) =
2 sin t

2(1− cos t)
− 2r sin t

ε2 + 2r(1− cos t)

=
2 sin t

4 sin2 t
2

− 2r sin t

ε2 + 4r sin2 t
2

=
2ε2 sin t

4
(

ε2 + 4r sin2 t
2

)

sin2 t
2

.

Integrating by parts, we see that the last integral is equal to

{Q1(ε)−Qr(ε)} · {Φ(−ε)− Φ(ε)}+
π
∫

ε

{Φ(−t)− Φ(t)} d {Q1(t)−Qr(t)}.
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Here the first summand converges to zero because Φ(−ε) − Φ(ε) = o(ε)
and

Q1(ε)−Qr(ε) =
2ε2 sin ε

4(ε2 + 4r sin2 ε
2 ) sin

2 ε
2

∼ 1

ε
as ε → 0 . (5.4)

Thus, it remains to estimate the integral

III :=

π
∫

ε

{Φ(−t)− Φ(t)} d {Q1(t)−Qr(t)} =

π
∫

ε

ϕ(t) dαr(t),

where ϕ(t) = Φ(−t)−Φ(t) and αr(t) = Q1(t)−Qr(t). To do this, we first
observe that α′

r(t) < 0 for t ∈ (ε, π) because

α′
r(t) =

2ε2 cos t

4(ε2 + 4r sin2 t
2 ) sin

2 t
2

− 2ε2 sin2 t(ε2 + 8r sin2 t
2 )

4[(ε2 + 4r sin2 t
2 ) sin

2 t
2 ]

2

= 2 · ε
2

δ2
·
[

cos t · sin2 t

2
·
(

ε2 + 4r sin2
t

2

)

− sin2 t ·
(

ε2 + 8r sin2
t

2

)]

= 2 · ε
2

δ2
·
[

ε2 ·
(

cos t · sin2 t

2
− sin2 t

)

−4r sin2
t

2
·
(

2 sin2 t− cos t · sin2 t

2

)]

= 2 · ε
2

δ2
·
[

ε2 · sin2 t

2
·
(

cos t− 4 cos2
t

2

)

−4r sin4
t

2
·
(

8 cos2
t

2
− cos t

)]

= −2 · ε
2

δ2
· sin2 t

2
·
[

ε2 ·
(

1+2 cos2
t

2

)

+ 4r sin2
t

2
·
(

1+6 cos2
t

2

)]

,

where we have applied many times the trigonometric identities sin t =
2 sin t

2 cos t
2 and 1 − cos t = 2 sin2 t

2 , 1 + cos t = 2 cos2 t
2 , and we have

employed the notation

δ := 2 sin2
t

2

(

ε2 + 4r sin2
t

2

)

.
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The above expression for α′
r(t) also implies that |α′

r(t)| 6 c · ε2

t4
. Thus,

|III| 6 c · ε2
π
∫

ε

|ϕ(t)| d t
t4

.

We fix an arbitrary ǫ > 0 and choose η > 0 so small that |ϕ(t)|/t < ǫ for
all t ∈ (0, η). Note that we may assume here that ε < η2

√
ǫ for sufficiently

small ε. Consequently, we have the following estimates:

|III| 6 c · ε2 · ǫ
η

∫

ε

d t

t3
+ c · ε2

π
∫

η

|ϕ(t)| d t
t4

6
c

2
· ǫ + cπ · ǫ ·M,

where M = sup
t∈[0,π]

|ϕ(t)|. Since ε and ǫ are arbitrary, we conclude that the

integral III converges to zero as ε → 0. �

Theorem 2. Let Φ : R → R be a 2π-periodic bounded function. Suppose

that Φ is differentiable a.e. Then

lim
z→ξ

VΦ(z) =
1

π

π
∫

0

d {Φ(τ − t)− Φ(τ + t)}
2 tan t

2

, ξ := eiτ ∈ ∂D, (5.5)

for a.e. τ ∈ R along all nontangential paths in D to the point ξ.

Here the singular integral on the right hand side in (5.5) is understood
as a limit of the corresponding proper integrals (Cauchy principal value):

HΦ(τ) : =
1

π
lim

ε→+0

π
∫

ε

d {Φ(τ − t)− Φ(τ + t)}
2 tan t

2

=
1

2π
lim
ε→0

∫

|τ−t|>ε

dΦ(t)

tan τ−t
2

.

(5.6)

It will be called the Hilbert–Stieltjes integral of the function Φ at the
point τ .

Proof. The claim of Theorem 2 follows immediately from Lemma 2 and
Corollary 5. �

Corollary 7. The Hilbert–Stieltjes integral converges a.e. for every 2π-

periodic bounded function Φ : R → R that is differentiable a.e.
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Remark 3. In particular, the claims of Theorem 2 and Corollary 7 hold
true for every 2π-periodic bounded function of class CBV(R).

Of course, Lemmas 1–2, Theorems 1–2, Corollaries 1–7 and the defi-
nition of the Hilbert–Stieltjes integral are extended in a natural way to
complex-valued functions Φ.

§6. On Schwartz–Stieltjes and Cauchy–Stieltjes

integrals

Given a 2π-periodic bounded function Φ : R → R whose set of points
of discontinuity has measure zero, the Schwartz–Stieltjes integral

SΦ(z) :=
1

2π

π
∫

−π

eit + z

eit − z
dΦ(t), z ∈ D, (6.1)

is well defined by the previous sections and the function SΦ(z) is analytic
by the definition of the Riemann–Stieltjes integral and the Weierstrass
theorem, see, e.g., Theorem I.1.1 in [8]. By Theorem 2 and Corollary 2, we
have also the following.

Corollary 8. Let Φ : R → R be a 2π-periodic bounded function that is

differentiable a.e. Then SΦ(z) has finite angular limit

Φ′(arg ζ) + i ·HΦ(arg ζ)

as z → ζ for a.e. ζ ∈ ∂D.

It is clear that the definition (6.1), as well as Corollary 8, are extended
in a natural way to the case of the complex valued functions Φ.

Given a 2π-periodic bounded function Φ : R → C whose set of points
of discontinuity has measure zero, we see that the integral

CΦ(z) :=
1

2π

π
∫

−π

eitdΦ(t)

eit − z
, z ∈ D, (6.2)

is also well defined and we call it the Cauchy–Stieltjes integral. It is easy
to see that CΦ(z) =

1
2 SΦ(z).
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Corollary 9. Let Φ : R → C be a 2π-periodic bounded function that is

differentiable a.e. Then

lim
z→ζ

CΦ(z) =
1

2
{Φ′(arg ζ) + i ·HΦ(arg ζ)} (6.3)

for a.e. ζ ∈ ∂D along all nontangential paths in D to the point ζ.

In this connection, note that the Hilbert–Stieltjes integral can be de-
scribed in another way for functions Φ of bounded variation.

Namely, let us denote by C(ζ0, ε), ε ∈ (0, 1), ζ0 ∈ ∂D, the rest of the
unit circle ∂D after removing its arc A(ζ0, ε) := {ζ ∈ ∂D : |ζ − ζ0| < ε}
and, setting

IΦ(ζ0, ε) =
1

2π

∫

C(ζ0,ε)

ζdΦ∗(ζ)

ζ − ζ0
, ζ0 ∈ ∂D, where Φ∗(ζ) := Φ(arg ζ),

define the singular integral of the Cauchy–Stieltjes type

IΦ(ζ0) =
1

2π

∫

∂D

ζ dΦ

ζ − ζ0
, ζ0 ∈ ∂D,

as a limit of the integrals I(ζ0, ε) as ε → 0. By the paper [21], we have

lim
z→ζ

CΦ(z) =
1

2
· Φ′(arg ζ) + i · IΦ(ζ) (6.4)

for a.e. ζ ∈ ∂D along all nontangential paths in D to the point ζ. Comparing
relations (6.3) and (6.4), we arrive at the following conclusion.

Corollary 10. Let Φ : R → C be a 2π-periodic function with bounded

variation on [−π, π]. Then for a.e. τ ∈ [−π, π] we have

HΦ(τ) = 2 · IΦ(eiτ ). (6.5)

§7. Representation of the Luzin construction

The following deep (nontrivial) result of Luzin was among the main
theorems of his Thesis, see, e.g., his paper [13], his Thesis [14], p. 35, and
its reprint [15], p. 78, where one may assume that Φ(0) = Φ(1) = 0, cf.
also [29].

Theorem A. For any measurable function ϕ : [0, 1] → R, there is a

continuous function Φ : [0, 1] → R such that Φ′ = ϕ a.e.
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It is on the basis of Theorem A that Luzin proved the next important
result of his Thesis, see, e.g., [15], p. 80, which was a key to establish the
corresponding result on the Hilbert boundary value problem for analytic
functions in [25].

Theorem B. Let ϕ(ϑ) be real, measurable, finite almost everywhere and

have period 2π. Then there exists a harmonic function U in the unit disk

D such that U(z) → ϕ(ϑ) for a.e. ϑ as z → eiϑ along any nontangential

path.

Note that Luzin’s Thesis was published in Russian as the book [15] with
comments of his pupils Bari and Men′shov only after his death. A part of its
results was also printed in Italian [16]. However, Theorem A was published
with a complete proof in English in the book [30] as Theorem VII(2.3).
Later, Frederick Gehring in [7] rediscovered Theorem B and his proof on
the basis of Theorem A coincided in fact with the original proof of Luzin.
Since the proof is very short and nice and has a common interest, we give
it for completeness here.

Proof. By Theorem A, we can find a continuous function Φ(ϑ) such that
Φ′(ϑ) = ϕ(ϑ) for a.e. ϑ. Considering the Poisson integral

u(reiϑ) =
1

2π

2π
∫

0

1− r2

1− 2r cos(ϑ− t) + r2
Φ(t) dt

for 0 < r < 1, u(0) := 0, we see by the Fatou result, see, e.g., 3.441 in [32],
p. 53, or Theorem IX.1.2 in [8], that ∂

∂ϑ
u(z) → Φ′(ϑ) as z → eiϑ along any

nontangential path whenever Φ′(ϑ) exists. Thus, the conclusion follows for
the function U(z) = ∂

∂ϑ
u(z). �

Remark 4. Note that the given function U is harmonic in the punctured
unit disk D\{0} because the function u is harmonic in D and the differential
operator ∂

∂ϑ
commutes with the Laplace operator ∆. Setting U(0) = 0, we

see that

U(reiϑ) = − r

π

2π
∫

0

(1 − r2) sin(ϑ− t)

(1− 2r cos(ϑ− t) + r2)2
Φ(t) dt → 0 as r → 0,

i.e., U(z) → U(0) as z → 0 and, moreover, the integral of U over each
circle |z| = r, 0 < r < 1, is equal to zero. Thus, by the criterion for a
function to be harmonic in terms of the averages over circles, we see that
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U is harmonic in D. An alternative argument for the last statement is the
removability of isolated singularities for harmonic functions, see, e.g., [18].

In connection with Theorem B, it should also be mentioned that the
paper [17] contains the Men′shov theorem on the existence of a trigono-
metric series that is convergent a.e. to a prescribed measurable function
ϕ : (0, 2π) → R.

Corollary 5.1 in [25] refines Theorem B in the following way, see also [26].

Theorem C. For each (Lebesgue) measurable function ϕ : ∂D → R, the

space of all harmonic functions u : D → R with the angular limits ϕ(ζ) for

a.e. ζ ∈ ∂D has infinite dimension.

Remark 5. One can find in [29] finer results, which are counterparts of
Theorems A, B, and C in terms of logarithmic capacity. This makes it pos-
sible to extend the theory of boundary value problems to the so-called A-
harmonic functions corresponding to generalizations of the Laplace equa-
tion in inhomogeneous and anisotropic media, see also [33].

By the well-known Lindelöf maximum principle, see, e.g., Lemma 1.1
in [6], we obtain the uniqueness theorem for the Dirichlet problem in the
class of bounded harmonic functions u on the unit disk D = {z ∈ C : |z| <
1}. In general, there is no uniqueness theorem for the Dirichlet problem
for the Laplace equation, even with zero boundary data.

Many such nontrivial solutions for the Laplace equation can be given
merely by the Poisson–Stieltjes integral

UΦ(z) :=
1

2π

2π
∫

0

Pr(ϑ− t) dΦ(t), z = reiϑ, r < 1, (7.1)

with an arbitrary singular function Φ : [0, 2π] → R, i.e., where Φ is of
bounded variation and Φ′ = 0 a.e. Indeed, by the Fatou theorem, see, e.g.,
Theorem I.D.3.1 in [12], UΦ(z) → Φ′(Θ) as z → eiΘ along any nontan-
gential path whenever Φ′(Θ) exists, i.e., UΦ(z) → 0 as z → eiΘ for a.e.
Θ ∈ [0, 2π] along any nontangential paths for every singular function Φ.

Example 2. The first natural example is given by formula (7.1) with
Φ(t) = ϕ(t/2π) where ϕ : [0, 1] → [0, 1] is the well-known Cantor function,
see, e.g., [3] and further references therein.
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Example 3. However, the simplest example of this kind is merely

u(z) := Pr(ϑ− ϑ0) =
1− r2

1− 2r cos(ϑ− ϑ0) + r2
, z = reiϑ, r < 1.

We see that u(z) → 0 as z → eiΘ for all Θ ∈ (0, 2π) except Θ = ϑ0.

The construction of Luzin can be described as a Poisson–Stieltjes inte-
gral.

Theorem 3. The harmonic function U in Theorem B has the represen-

tation

UΦ(z) =
1

2π

π
∫

−π

Pr(ϑ− t) dΦ(t), z = reiϑ, r ∈ (0, 1), ϑ ∈ [−π, π], (7.2)

where Φ : [−π, π] → R is the continuous Luzin function with Φ′ = ϕ a.e.

Corollary 11. The conjugate harmonic function VΦ has finite angular

limits

lim
z→ζ

VΦ(z) = HΦ(arg ζ) for a.e. ζ ∈ ∂D.

Proof. Indeed, choosing in Proposition 1 g(t) = Φ(t) and f(t) = Pr(ϑ−t),
t ∈ [−π, π], for every fixed z = reiϑ, r < 1, ϑ ∈ [−π, π], we obtain

π
∫

−π

Φ(t) · ∂

∂ϑ
Pr(ϑ− t) dt

=

π
∫

−π

Pr(ϑ− t) dΦ(t), r ∈ (0, 1), ϑ ∈ [−π, π] (7.3)

because by the 2π-periodicity of the given functions g and f , the right
hand side in (2.2) is equal to zero, f ∈ C1, and

∂

∂ϑ
Pr(ϑ− t) = − ∂

∂t
Pr(ϑ− t), r ∈ (0, 1), ϑ ∈ [−π, π], t ∈ [−π, π].

Relation (7.2) follows from (7.3) because it was in the proof of Theorem B:

U(z) =
1

2π

π
∫

−π

Φ(t) · ∂

∂ϑ
Pr(ϑ− t) dt,

z = reiϑ, r ∈ (0, 1), ϑ ∈ [−π, π]. �
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