Е. С. Дубцов

ОБОБЩЕННЫЕ ОПЕРАТОРЫ ЧЕЗАРО МЕЖДУ ПРОСТРАНСТВАМИ ХАРДИ И БЕРГМАНА В КОМПЛЕКСНОМ ШАРЕ

§1. Введение

Пусть $\mathcal{H}ol(B_d)$ обозначает пространство голоморфных функций в единичном шаре B_d из $\mathbb{C}^d, d \geqslant 1$. Для заданного символа $g \in \mathcal{H}ol(B_d)$ обобщенный оператор Чезаро V_q определяется равенством

$$V_g f(z) = \int_0^1 f(tz) \mathcal{R}g(tz) \frac{dt}{t}, \quad z \in B_d,$$

где $f \in \mathcal{H}ol(B_d)$ и

$$\mathcal{R}g(w) = \sum_{j=1}^{d} w_j \frac{\partial g}{\partial w_j}(w), \quad w \in B_d,$$

является радиальной производной функции g.

Взаимосвязи между функциональными свойствами символа g и операторными свойствами отображения V_g интенсивно исследовались после работ X. Поммеренке [7], А. Алемана и А. Сискакиса [2, 3], А. Алемана и Дж. Симы [1] при d=1.

При $0 < q < \infty$ и $\beta > -1$ весовое пространство Бергмана $A^q_\beta(B_d)$ состоит из функций $f \in \mathcal{H}ol(B_d)$ таких, что

$$||f||_{A_{\beta}^q}^q = \int_{B_z} |f(z)|^q (1-|z|^2)^{\beta} d\nu(z) < \infty,$$

где ν обозначает нормированную меру Лебега на шаре B_d . Операторы V_g между разными весовыми пространствами Бергмана в шаре B_d исследовались в работе [9].

 $^{{\}it K.noveeвue~c.noвa}$: пространство Харди, пространство Бергмана, обобщенный оператор Чезаро.

При $0 пространство Харди <math>H^p(B_d)$ состоит из функций $f \in \mathcal{H}ol(B_d)$ таких, что

$$||f||_{H^p}^p = \sup_{0 < r < 1} \int_{\partial B_d} |f(r\zeta)|^p d\sigma(\zeta) < \infty,$$

где σ обозначает нормированную меру Лебега на единичной сфере ∂B_d . Операторы V_g между разными пространствами Харди в шаре B_d исследовались в работе [6]; см. также [8] в случае d=1.

В настоящей работе изучаются операторы $V_g: H^p \to A^q_\beta$. Таким образом, пространство Харди $H^p(B_d)$, в определенном смысле, рассматривается как крайняя точка $\beta=-1$ в шкале $A^q_\beta(B_d)$.

Для формулировки основного результата напомним, что пространство $\Lambda_{\alpha} = \Lambda_{\alpha}(B_d), \ \alpha \in \mathbb{R},$ состоит из функций $g \in \mathcal{H}ol(B_d)$ таких, что

$$||g||_{\Lambda_{\alpha}} = |g(0)| + \sup_{z \in B_d} |\mathcal{R}g(z)|(1 - |z|^2)^{1 - \alpha} < \infty.$$

Отметим, что при $\alpha>1$ пространство Λ_{α} содержит только константы; $\Lambda_{\alpha},\ 0<\alpha\leqslant 1$, является классическим пространством Липшица порядка $\alpha;\ \Lambda_0$ — это пространство Блоха. Наконец, $\Lambda_{\alpha},\ \alpha<0$, состоит из функций g, удовлетворяющих условию роста $|g(z)|\leqslant C(1-|z|)^{\alpha},\ z\in B_d$.

Отметим, что $V_g=V_{g+c}$ для любой константы $c\in\mathbb{C}.$ Поэтому, не умаляя общности, всюду ниже предполагается, что g(0)=0.

Теорема 1. Пусть $0 и <math>\beta > -1$. Положим $\alpha = \frac{d}{p} - \frac{d+1+\beta}{q}$. Тогда следующие свойства равносильны.

- (i) One pamop $V_g: H^p(B_d) \to A^q_\beta(B_d)$ является ограниченным.
- (ii) $g \in \Lambda_{\alpha}(B_d)$.

В частности, если $\alpha > 1$, то оператор $V_g : H^p \to A^q_\beta$ ограничен тогда и только тогда, когда $g \equiv \text{const.}$ При $\alpha \leqslant 1$ нормы $\|V_g\|_{H^p \to A^q_\beta}$ и $\|g\|_{\Lambda_\alpha}$ являются эквивалентными.

Сформулированная теорема доказана в разделе 2. Аналог теоремы 1 для компактных операторов получен в разделе 3, где также обсуждается случай $0 < q \leqslant p < \infty$.

Обозначения. Как обычно, символ C обозначает универсальную константу, значение которой может меняться от строки к строке. Обозначение $A \asymp B$ используется в том случае, когда $C_1B \leqslant A \leqslant C_2B$ для некоторых констант $C_1, C_2 > 0$.

§2. Доказательство теоремы 1

2.1. Вспомогательные результаты. Непосредственные вычисления гарантируют, что

$$\mathcal{R}V_q f(z) = f(z)\mathcal{R}g(z), \quad z \in \mathbb{C}^d,$$
 (1)

для всех $f, g \in \mathcal{H}ol(B_d)$; см. [4].

Следующий факт хорошо известен.

Предложение 2. Пусть $h \in \mathcal{H}ol(B_d), \ 0 < q < \infty \ u \ \beta > -1$. Тогда

$$\int\limits_{B_d} |h(z)|^q (1-|z|^2)^\beta \, d\nu(z) \asymp |h(0)|^q + \int\limits_{B_d} |\mathcal{R}h(z)|^q (1-|z|^2)^{q+\beta} \, d\nu(z).$$

Теорема 3 ([10, теорема 4.48]). Пусть $0 . Положим <math>\gamma = \frac{dq}{p} - d - 1$. Тогда тождественный оператор $\mathrm{Id}: H^p(B_d) \to A^q_\gamma(B_d)$ является ограниченным.

2.2. Доказательство теоремы 1. (i) \Rightarrow (ii) Предположим, что оператор $V_g: H^p \to A^q_\beta$ ограничен. Оценка на рост функций из пространства A^q_β гарантирует, что

$$|V_g f(z)| \le C \|V_g f\|_{A^q_\beta} (1 - |z|^2)^{-\frac{d+1+\beta}{q}}, \quad z \in B_d.$$

Таким образом, вычисляя радиальную производную и используя равенство (1), получаем

$$|f(z)\mathcal{R}g(z)| \le C||V_g f||_{A^q_\beta} (1-|z|^2)^{-1-\frac{d+1+\beta}{q}}, \quad z \in B_d.$$
 (2)

Подставим $f = f_z$, где

$$f_z(w) = \frac{(1-|z|^2)^{\frac{1}{p}}}{(1-\langle w, z \rangle)^{\frac{d+1}{p}}}, \quad w \in B_d.$$

Так как $||f||_{H^p} \leq C$, то получаем

$$|\mathcal{R}g(z)|(1-|z|^2)^{1-\frac{d}{p}+\frac{d+1+\beta}{q}} \leqslant C \|V_g\|_{H^p \to A_\beta^q}.$$

Напомним, что g(0) = 0. Таким образом, получена искомая оценка

$$||g||_{\Lambda_{\alpha}} \leqslant C||V_g||_{H^p \to A_{\beta}^q}.$$

(ii) \Rightarrow (i) Предположим, что $g\in\Lambda_{\alpha}(B_d)$, где $\alpha=\frac{d}{p}-\frac{d+1+\beta}{q}$. Предложение 2, равенство (1) и определение пространства Λ_{α} гарантируют, что

$$||V_{g}f||_{A_{\beta}^{q}}^{q} \asymp \int_{B_{d}} |f(z)|^{q} |\mathcal{R}g(z)|^{q} (1-|z|^{2})^{q+\beta} d\nu(z)$$

$$= \int_{B_{d}} |\mathcal{R}g(z)|^{q} (1-|z|^{2})^{(1-\alpha)q} |f(z)|^{q} (1-|z|^{2})^{\beta+\alpha q} d\nu(z)$$

$$\leqslant ||g||_{\Lambda_{\alpha}}^{q} \int_{B_{d}} |f(z)|^{q} (1-|z|^{2})^{\beta+\alpha q} d\nu(z) \leqslant C||g||_{\Lambda_{\alpha}}^{q} ||f||_{H^{p}}^{q},$$

где последняя оценка имеет место в силу теоремы 3 при $\gamma = q\alpha + \beta = \frac{qd}{p} - d - 1$ и $0 . Итак, <math>\|V_g\|_{H^p \to A^q_\beta} \leqslant C \|g\|_{\Lambda_\alpha}$. Доказательство теоремы 1 завершено.

§3. Дальнейшие результаты

3.1. Компактные операторы. Малое пространство Липшица $\lambda_{\alpha} = \lambda_{\alpha}(B_d)$ состоит из функций $g \in \Lambda_{\alpha}(B_d)$ таких, что

$$\lim_{|z| \to 1^{-}} |\mathcal{R}g(z)| (1 - |z|^2)^{1 - \alpha} = 0.$$

Отметим, что пространство λ_{α} состоит только из констант при $\alpha\geqslant 1$.

Предложение 4. Пусть $0 -1 \ u \ \alpha = \frac{d}{p} - \frac{d+1+\beta}{q}$. Тогда следующие свойства эквивалентны.

- (i) Onepamop $V_g: H^p(B_d) o A^q_\beta(B_d)$ является компактным.
- (ii) $g \in \lambda_{\alpha}(B_d)$.

B частности, при $\alpha\geqslant 1$ только нулевой оператор $V_g:H^p\to A^q_\beta$ является компактным.

Доказательство. В рассуждениях будет использовано следующее хорошо известное описание: ограниченный линейный оператор $V:H^p\to A^q_\beta$ компактен тогда и только тогда, когда $\|Vf_j\|_{A^q_\beta}\to 0$ при $j\to\infty$ для каждой ограниченной последовательности $\{f_j\}_{j=1}^\infty\subset H^p$, которая сходится к нулю равномерно на компактных подмножествах шара B_d .

(i) \Rightarrow (ii) Предположим, что оператор $V_g: H^p \to A^q_\beta$ компактен. Применим сформулированное выше описание к оператору V_g и последовательности

$$f_j(z) = \frac{(1 - |a_j|^2)^{\frac{1}{p}}}{(1 - \langle z, a_j \rangle)^{\frac{d+1}{p}}}, \quad z \in B_d,$$

где $a_i \in B_d$ и $|a_i| \to 1$ при $j \to \infty$. В силу оценки (2) имеем

$$|\mathcal{R}g(a_j)|(1-|a_j|^2)^{1-\frac{d}{p}+\frac{d+1+\beta}{q}} \leqslant C||V_gf_j||_{A_a^q} \to 0$$

при $j \to \infty$. Так как $\{a_j\}$ — произвольная последовательность со свойством $|a_j| \to 1-$, то получаем искомое свойство $g \in \lambda_\alpha$.

(ii) \Rightarrow (i) Предположим, что $g\in\lambda_{\alpha}(B_d)$. Пусть $\{f_j\}$ — последовательность из описания компактных операторов. При 0< r<1 имеем

$$||V_g f_j||_{A_\beta^q}^q \approx \int_{B_d} |\mathcal{R}g(z)|^q (1-|z|^2)^{(1-\alpha)q} |f_j(z)|^q (1-|z|^2)^{\beta+\alpha q} d\nu(z)$$

$$= \int_{rB_d} + \int_{B_d \setminus rB_d} = I_1 + I_2.$$

Зафиксируем $\varepsilon > 0$. Используя определение пространства λ_{α} , выберем r столь близко к 1, что $|\mathcal{R}g(z)|^q(1-|z|^2)^{(1-\alpha)q} < \varepsilon$ при $r \leqslant |z| < 1$. Таким образом, $I_2 \leqslant C\varepsilon$ в силу теоремы 3. Остается заметить, что $I_1 < \varepsilon$ для всех достаточно больших j, так как $f_j \to 0$ равномерно на rB_d . Итак, $\|Vf_j\|_{A^q_\beta} \to 0$ при $j \to \infty$, что завершает доказательство импликации (ii) \Rightarrow (i).

3.2. Операторы $V_g: H^p \to A^q_\beta$ при $0 < q \leqslant p < \infty$. Напомним, что положительная борелевская мера μ на сфере ∂B_d называется карлесоновой, если $H^p(B_d) \subset L^p(\mu)$.

В силу (1) и предложения 2 имеем

$$||V_g f||_{A_{\beta}^q}^q = \int_{B_{\gamma}} |f(z)|^q |\mathcal{R}g(z)|^q (1 - |z|^2)^{q+\beta} \, d\nu(z)$$

при $f \in H^p$. Таким образом, оператор $V_g: H^p \to A^p_\beta$ ограничен тогда и только тогда, когда мера $|\mathcal{R}g(z)|^q (1-|z|^2)^{q+\beta} \, d\nu(z)$ является карлесоновой. Геометрические описания карлесоновых мер хорошо известны, однако этот подход не дает таких явных описаний, как теорема 1.

В случае p > q вложение $H^p(B_d) \subset L^q(\mu)$ определяет (p,q)-карлесоновы меры, геометрическое описание которых было дано Д. Люкингом [5]. Так как это приводит лишь к формальному описанию искомых символов g, то мы опускаем дальнейшие детали.

Список литературы

- A. Aleman and J. A. Cima, An integral operator on H^p and Hardy's inequality. J. Anal. Math. 85 (2001), 157–176.
- A. Aleman, A. G. Siskakis, An integral operator on H^p. Complex Variables Theory Appl. 28 (1995), No. 2, 149–158.
- 3. A. Aleman and A. G. Siskakis, *Integration operators on Bergman spaces.* Indiana Univ. Math. J. **46** (1997), No. 2, 337–356.
- Z. Hu, Extended Cesàro operators on mixed norm spaces. Proc. Amer. Math. Soc. 131 (2003), No. 7, 2171–2179.
- D. H. Luecking, Embedding derivatives of Hardy spaces into Lebesgue spaces. Proc. London Math. Soc. (3) 63 (1991), No. 3, 595–619.
- J. Pau, Integration operators between Hardy spaces on the unit ball of Cⁿ. − J. Funct. Anal. 270 (2016), No. 1, 134–176.
- Ch. Pommerenke, Schlichte Funktionen und analytische Funktionen von beschränkter mittlerer Oszillation. — Comment. Math. Helv. 52 (1977), No. 4, 591–602.
- 8. Z. Wu, Volterra operator, area integral and Carleson measures. Sci. China Math. 54 (2011), No. 11, 2487–2500.
- 9. J. Xiao, Riemann-Stieltjes operators between weighted Bergman spaces. Complex and harmonic analysis, DEStech Publ., Inc., Lancaster, PA, 2007, pp. 205–212.
- K. Zhu, Spaces of holomorphic functions in the unit ball. Graduate Texts in Mathematics, vol. 226, Springer-Verlag, New York, 2005.

Dubtsov E. S. Extended Cesàro operators between Hardy and Bergman spaces on the complex ball.

We characterize those holomorphic symbols g for which the extended Cesàro operator V_g maps the Hardy space $H^p(B)$ into the weighted Bergman space $A^q_\beta(B)$, $0 , <math>\beta > -1$, on the unit ball B of \mathbb{C}^d .

С.-Петербургское отделение Математического института им. В. А. Стеклова РАН, наб. р. Фонтанки, 27, С.-Петербург 191023, Россия *E-mail*: dubtsov@pdmi.ras.ru

Поступило 27 августа 2018 г.