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A NOTE ON A CONJECTURE BY KHABIBULLIN

Abstract. We show that for n = 2 and α > 1/2 Khabibullin’s
conjecture is not true.

§1. Introduction

Conjecture 1.1 (Khabibullin’s Conjecture). Let α > 1/2. For any non-

negative increasing function h(t) on the interval [0,∞) and for any n > 2
if

t
∫

0

h(x)

x
(t− x)n−1 dx 6 tα+n−1, 0 6 t < ∞, (1.1)

then
∞
∫

0

h(t)

t

dt

1 + t2α
6

π

2

n−1
∏

k=1

(

1 +
α

k

)

. (1.2)

This conjecture, though in a different form, was initially proposed by
Khabibullin [3] in a paper related to the Paley problem about plurisub-
harmonic functions of finite lower order. It is also possible to express
Khabibullin’s conjecture in three equivalent forms (Khabibullin [4], Bal-
adai, Khabibullin [1]) but in this paper we work only with the version
stated above. This conjecture is related to extremal problems in the the-
ory of entire functions of several variables, but primarily it is important
because the upper bound in (1.2) is an estimate for the rate of growth of
a plurisubharmonic function on the unit sphere. For more details about
this conjecture’s connection with the class of plurisubharmonic functions
one could refer to an extensive survey by Khabibullin [5] and the refer-
ences therein. It has been proved that these inequalities are true whenever
0 6 α 6 1/2, a result known as Khabibullin’s theorem. Several proofs
of this theorem exist in the literature, for example one could refer to
Khabibullin [3], Sharipov [6], or more recently Bërdëllima [2]. Elementary

Key words and phrases: Khabibullin’s conjecture, Khabibullin’s theorem,
Khabibullin’s constants, integral inequalities, upper bound, plurisubharmonic function,
sharp estimate.
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8 A. BËRDËLLIMA

observations [2, Prop. 3.2] show that there exists a unique nonnegative, in-
creasing function h∗(t) that satisfies both inequalities with identity where
h∗(t) is given by

h∗(t) =
Γ(α+ n)

Γ(α)Γ(n)
tα, α > 0, n > 2, n ∈ N. (1.3)

Here Γ( · ) denotes Euler’s gamma function. The existence of h∗ shows
that the upper estimates in the integral inequalities are sharp. However
Khabibullin’s conjecture is not true in general. Sharipov [7] explicitly con-
structed a counterexample when α = 2 and n = 2 by using a method of
spline functions. However it is still an open question whether there exists
some n > 2 and α > 1/2 for which this conjecture is true. In this short
note we show that in general one can construct a counterexample whenever
n = 2 and α > 1/2.

§2. Preliminary discussion

The integral inequality (1.1) can be regarded as an inequality of two
functions f(t) 6 g(t) for all t ∈ [0,∞) where f(t) denotes the integral
and g(t) := tα+n−1. On the other hand inequality (1.2) is an inequality of
quantities that are fixed for any given parameters α and n. Therefore it is
reasonable to think of getting from (1.1) to (1.2) through some integration
over [0,∞) with some appropriate real valued function v(t). If so then
there must exist some relation of v(t) with the function φ(t) := (1+ t2α)−1

which appears in (1.2). To find an appropriately related function v first
we must study φ and in particular its derivatives. In general for φ we have
the following representation for its derivatives

dn

dtn
φ(t) =

P (tα)

tn · [Q(tα)]n+1
, n ∈ N, (2.1)

where Q(tα) = 1+t2α and P (tα) is a polynomial function in tα of degree 2n.
One can show (2.1) by using an argument of mathematical induction on
n. An important implication of (2.1) is the growth order of φ(n)(t) like
O(t−n−2α) as t → ∞1. In particular this fact together with inequality

1With slight abuse of notation d
n

dtn
φ and φ(n)(t) will be used interchangeably to

mean the nth order derivative of a function φ with respect to a real variable t.
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(1.1) imply the following vanishing limits

lim
t→∞

|φ(k)(t)|

t
∫

0

h(x)

x
(t− x)k dx = 0, ∀k ∈ N. (2.2)

If additionally the function h(t) satisfies a restriction of the form h(t) =
o(t2α) as t → ∞ then (2.2) holds true as well for k = 0. Another key char-
acteristic of φ(t) is its sign variation over the interval [0,∞). It is possible,
though technical, to show that when 0 < α 6 1/2 the derivatives φ(n)(t)
are of constant sign for every n ∈ N. In fact they satisfy the following
equation2

signφ(n)(t) = (−1)n, ∀t > 0, ∀n ∈ N, (2.3)

where sign( · ) is the usual sign function which takes the value 1 on the
positive numbers, −1 on the negative numbers and 0 at the origin. Since
successive integrations bring φ(n)(t) to φ(t) it is justifiable to assume that
there exists some relation of our sought function v(t) with the derivatives
of φ(t). But integrating both sides of (1.1) with v(t) over [0,∞) is valid
for our problem only if v(t) > 0 for all t > 0 because otherwise the order
of inequality in (1.1) would reverse. At least when 0 < α 6 1/2 we can
set v(t) := (−1)nφ(n)(t). By (2.3) it is immediate that v(t) > 0. Then
multiplying both sides of (1.1) by v and integrating over [0,∞) yields

∞
∫

0

v(t)f(t) dt 6

∞
∫

0

v(t)g(t) dt. (2.4)

Using the vanishing limit conditions in (2.2) and the assumption that
h(t) = o(t2α) as t → ∞ we get from integrating n times by parts in
(2.4) the following inequality

(−1)nΓ(n)

∞
∫

0

h(t)

t
(−1)nφ(t) dt 6 (−1)n

Γ(α + n)

Γ(α)

∞
∫

0

tα−1(−1)nφ(t) dt,

where we use the definitions of f and g and the fact that φ can be obtained
from v by integrating successively n times. After proper simplifications in

2For rigorous derivations of (2.1), (2.2), and (2.3) please refer to the appendix.
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the last inequality we arrive at

∞
∫

0

h(t)

t
φ(t) dt 6

Γ(α+ n)

Γ(α)Γ(n)

∞
∫

0

tα−1φ(t) dt =
π

2α

Γ(α+ n)

Γ(α)Γ(n)
=

π

2

n−1
∏

k=1

(

1+
α

k

)

(2.5)
which is exactly inequality (1.2). This is but a special case of Khabibullin’s
theorem, however one might want to apply this method also when α > 1/2.
But in this case the derivatives of our function φ(t) are not guaranteed to
be of constant sign over [0,∞) and we cannot follow a similar argument.
In particular for n = 2 it is easy to see that φ′′(t) changes sign on [0,∞).
Explicit calculations show that

φ′′(t) =
2αt2α−2((2α+ 1)t2α − (2α− 1))

(1 + t2α)3
(2.6)

and evidently φ′′(t) < 0 for t ∈ [0, τ) and φ′′(t) > 0 for t > τ where τ is
the nonzero solution of φ′′(t) = 0 given by the formula

τ(α) =
(2α− 1

2α+ 1

)
1

2α

. (2.7)

While on one hand the failure of φ′′(t) to be of constant sign over [0,∞)
invalidates the integration by parts technique, on the other hand it provides
us with an opportunity to build a counterexample at least for the case
where n = 2. We use this sign variation of φ′′(t) to successfully set up
sufficient conditions for a counterexample to work and then we explicitly
show the existence of such a counterexample.

§3. Sufficient conditions

Let n = 2 and fix α > 1/2. We want to construct a pair of functions
{f, h} satisfying the following relation

f(t) =

t
∫

0

h(x)

x
(t− x) dx or equivalently h(t) = t

d2

dt2
f(t)

for all t ∈ R
+.

(3.1)

In the construction of our functions {f, h} we follow an approach similar
to Sharipov’s method of spline functions (piecewise continuous functions).
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Define a function f as follows

f(t) =

{

tα+1(1− εη(t)), t ∈ [0, τ ],

tα+1, t ∈ (τ,∞),

where τ is given by (2.7) and η(t) is a sufficiently smooth (derivatives of
higher orders exist) such that 0 6 η(t) 6 1 for all t ∈ [0, τ ] and η(t) = 0
for all t /∈ [0, τ ]. Clearly we have 0 6 f(t) 6 tα+1 whenever 0 6 ε 6 1
and so the first integral inequality is satisfied. From the relation in (3.1) it
follows that f must be at least three times continuously differentiable on
R+ whenever h(t) is differentiable on R+. These requirements lead to the
following conditions:

lim
t→τ−

di

dti
[tα+1η(t)] = 0 for i = 1, 2, 3. (3.2)

The limits in (3.2) illustrate the fact that the right and left limits of the
derivatives of f must coincide at t = τ . From (3.1) we can also get a
piecewise representation of h:

h(t) =







(α+ 1)αtα − εt
d2

dt2
η(t), t ∈ [0, τ ],

(α+ 1)αtα, t ∈ (τ,∞).

Consider now the integral expression

Jε(α) :=

∞
∫

0

h(t)

t
φ(t) dt.

By the construction of f it follows that h = o(t2α) as t → ∞. Integrating
by parts twice on Jε(α) and using the vanishing limits (2.2) yields

Jε(α) =

∞
∫

0

[

t
∫

0

h(u)

u
(t− u) du

]

φ′′(t) dt.

Substituting f(t) in the integrand we obtain

Jε(α) =

∞
∫

0

f(t)φ′′(t) dt =

τ
∫

0

tα+1(1− εη(t))φ′′(t) dt+

∞
∫

τ

tα+1φ′′(t) dt

= −ε

τ
∫

0

tα+1η(t)φ′′(t) dt+

∞
∫

0

tα+1φ′′(t) dt.
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By assumption η(t) > 0. On the other hand φ′′(t) < 0 for all t ∈ [0, τ ]
whenever α > 1/2, therefore

Jε(α)=−ε

τ
∫

0

tα+1η(t)φ′′(t) dt+

∞
∫

0

tα+1φ′′(t) dt >

∞
∫

0

tα+1φ′′(t) dt=
π

2
(α+1).

This leads to a contradiction for the second integral inequality. However
for η(t) to be a valid counterexample it needs to satisfy some additional
conditions which are derived from the assumptions that h(t) is nonnegative
and is an increasing function. These imply

ε
d2

dt2
[tα+1η(t)] 6 (α + 1)αtα−1 ∀t ∈ (0, τ), (3.3)

ε
d2

dt2
[tα+1η(t)] + εt

d3

dt3
[tα+1η(t)] 6 (α+ 1)α2tα−1 ∀t ∈ (0, τ) (3.4)

for all t ∈ (0, τ) and for any ε ∈ [0, 1]. Condition (3.3) follows from the
nonnegativity of h through the equivalences

h(t) > 0 ⇔ t
d2

dt2
f(t) > 0 ⇔

d2

dt2
[tα+1(1 − εη(t))] > 0

⇔ (α + 1)αtα−1 > ε
d2

dt2
[tα+1η(t)].

Similarly condition (3.4) is derived from the increasing property of h
through the equivalences

h′(t) > 0 ⇔
d

dt

[

t
d2

dt2
f(t)

]

> 0

⇔ ε
d2

dt2
[tα+1η(t)] + εt

d3

dt3
[tα+1η(t)] 6 (α+ 1)α2tα−1.

We collect these observations in the next statement.

Proposition 3.1. Suppose η(t) is a sufficiently smooth nonnegative real

valued function such that 0 6 η(t) 6 1 for t ∈ [0, τ ] and η(t) = 0 otherwise.

Suppose further that η(t) satisfies conditions (3.2)–(3.4) on (0, τ). If

f(t) =

{

tα+1(1− εη(t)), t ∈ [0, τ ],

tα+1, t ∈ (τ,∞)

and 0 6 ε 6 1 then f(t) satisfies the first integral inequality and

h(t) = t
d2

dt2
f(t)
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is a nonnegative increasing function which contradicts the conjecture for

any α > 1/2.

§4. An explicit counterexample

In this section we explicitly show the existence of a function η which
satisfies the prerequisites set in Proposition 3.1. Consider the following
function

η(t) =







cos4
(πt

2τ

)

, t ∈ [0, τ ],

0, t ∈ R
+ \ [0, τ ].

Notice that η(t) is differentiable on R, nonnegative, and satisfies 0 6 η(t) 6
1 for all t ∈ [0, τ ]. By definition above we also have η(t) = 0 for t /∈ [0, τ ].
From Leibniz’s formula one obtains

lim
t→τ−

dn

dtn

[

tα+1 cos4
(πt

2τ

)]

=

n
∑

k=0

(

n

k

)

lim
t→τ−

dk

dtk
tα+1 lim

t→τ−

dn−k

dtn−k
cos4

(πt

2τ

)

= 0

for all n = 0, 1, 2, 3 since each summand contains a factor cos
(πt

2τ

)

.

Therefore condition (3.2) is satisfied. It remains to verify conditions (3.3)
and (3.4) for our choice function η(t). By applying Leibniz formula to
di

dti

[

tα+1η(t)
]

for i = 2, 3 we rewrite inequalities in (3.3) and (3.4) respec-

tively as follows

ε[(α+1)αtα−1η(t)+2(α+ 1)tαη′(t) + tα+1η′′(t)]

6 (α+ 1)αtα−1 ∀t ∈ (0, τ),

ε[(α+ 1)α2tα−1η(t) + (3α+ 2)(α+ 1)tαη′(t)

+ (3α+ 4)tα+1η′′(t)] + tα+2η′′′(t)]

6 (α+ 1)α2tα−1 ∀t ∈ (0, τ).

Since α > 0 after proper simplification we get their equivalent form

ε
[

η(t) +
2

α
tη′(t) +

1

α(α+ 1)
t2η′′(t)

]

6 1 ∀t ∈ (0, τ), (4.1)
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ε
[

η(t)+
3α+ 2

α2
tη′(t) +

3α+4

(α+1)α2
t2η′′(t)+

1

(α+ 1)α2
t3η′′′(t)

]

61 ∀t ∈ (0, τ).

(4.2)

Since η is smooth on (0, τ), the suprema of its derivatives over the bounded
interval (0, τ) exist and are finite. Define

η∗i := sup
t∈(0,τ)

{
∣

∣

∣

diη

dti

∣

∣

∣

}

for i = 0, 1, 2, 3

to be the supremum of the ith derivative of η over the interval (0, τ). Then
we get the following estimates valid for all t ∈ (0, τ):

∣

∣

∣
η(t) +

2

α
tη′(t) +

1

α(α+ 1)
t2η′′(t)

∣

∣

∣

6 |η(t)|+
2

α
t|η′(t)|+

1

α(α + 1)
t2|η′′(t)|

6 η∗0 +
2

α
τη∗1 +

1

α(α + 1)
τ2η∗2 ,

∣

∣

∣
η(t) +

3α+ 2

α2
tη′(t) +

3α+ 4

(α+ 1)α2
t2η′′(t) +

1

(α+ 1)α2
t3η′′′(t)

∣

∣

∣

6 |η(t)|+
3α+ 2

α2
t|η′(t)|+

3α+ 4

(α+ 1)α2
t2|η′′(t)|+

1

(α+ 1)α2
t3|η′′′(t)|

6 η∗0 +
3α+ 2

α2
τη∗1 +

3α+ 4

(α+ 1)α2
τ2η∗2 +

1

(α+ 1)α2
τ3η∗3 .

To prove (4.1) and (4.2) it is sufficient to show the following system of
inequalities

εA61 where A := η∗0 +
2

α
τη∗1 +

1

α(α+ 1)
τ2η∗2 , (4.3)

εB61 where B= η∗0+
3α+ 2

α2
τη∗1+

3α+ 4

(α + 1)α2
τ2η∗2+

1

(α+ 1)α2
τ3η∗3 .

(4.4)

To make (4.3) and (4.4) be valid simultaneously we choose any ε ∈ [0, 1]
if max{A,B} 6 1 otherwise we set ε = (max{A,B})−1 if max{A,B} > 1.
In any case we are guaranteed to have such an 0 6 ε 6 1. We collect these
observations in the following statement.
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Proposition 4.1. Let n = 2 and let η(t) = cos4
(πt

2τ

)

for t ∈ [0, τ ] and

zero otherwise. Then h defined by

h(t) =







(α+ 1)αtα − εt
d2

dt2
η(t), t ∈ [0, τ ],

(α+ 1)αtα, t ∈ (τ,∞)

is a nonnegative increasing function that violates the conjecture for any

α > 1/2.

Proof. This follows from the analysis in Section 3 and Section 4. �

§5. Concluding remarks

We have established a new result concerning a nontrivial question raised
by Khabibullin. We showed that his conjecture is not true whenever n = 2
and α > 1/2. While the case of n > 2 is still an open problem the method
we employed in this paper looks promising in obtaining fruitful results
even for the more general case. However it must be pointed out that finding
sharp estimates when n > 2 and α > 1/2 is still an open problem. Sharipov
[6] conjectured that for each n > 2 and α > 0 there exists a positive
constant CKh(n, α) that is a sharp upper bound for the integral inequality
(1.2). Note that when 0 6 α 6 1/2 we have

CKh(n, α) =
π

2

n−1
∏

k=1

(

1 +
α

k

)

.

It is possible to numerically bound Khabibullin’s constants CKh(n, α) but
explicitly finding a formula for them when α > 1/2 is yet out of reach. It
would certainly be desirable to get a formula for the CKh(n, α) because
they provide sharp estimates for the growth rate on the unit sphere of a
plurisubharmonic function of a given finite lower order.

Appendix §A. Technical details

Lemma A.1. Let φ(t) =
1

1 + t2α
then for all m > 1,m ∈ Z we have

dmφ

dtm
=

P (tα)

tm · [Q(tα)]m+1
,

where Q(tα) = 1+ t2α and P is a polynomial function in tα of degree 2m.
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Proof. We prove this lemma using mathematical induction. For m = 1
we have

φ′(t) =
−2αt2α

t(1 + t2α)2
=

P (tα)

t · [Q(tα)]2

where P (tα) = −2αt2α as a polynomial function in tα is of degree 2. Let
the statement be true for m = n, that is

φ(n)(t) =
P (tα)

tn · [Q(tα)]n+1

where P is a polynomial function in tα of degree 2n. Differentiating both
sides of the last equation with respect to t yields

d

dt
φ(n)(t) =

d

dt

[ P (tα)

tn · [Q(tα)]n+1

]

⇔ φ(n+1)(t) =
αtαP ′Q − nPQ− (n+ 1)tαPQ′

tn+1[Q(tα)]n+2
.

Denote by degP the degree of the polynomial P . By the inductive hypoth-
esis since degP = 2n, we have degP ′ = 2n − 1. Notice that deg tα = 1
and by the definition of Q we have degQ = 2. Setting

Po = αtαP ′Q − nPQ− (n+ 1)tαPQ′

and using degPQ = degP + degQ for any two polynomials P and Q, we
see that the degree of Po is

deg(Po) = max{deg(tαP ′Q), deg(PQ), deg(tαPQ′)}

= max{1 + 2n− 1 + 2, 2n+ 2, 1 + 2n+ 1}

= 2n+ 2 = 2(n+ 1). �

Lemma A.2. Let h(t) = o(t2α) as t → ∞ and suppose h(t) satisfies

inequality (1.1). Then

lim
T→∞

|φ(k)(T )|

T
∫

0

h(x)

x
(T − x)k dx = 0 ∀k ∈ Z

+ ∪ {0}.

Proof. First we prove the claim for k = 0. Notice that both φ(T ) and
T
∫

0

h(x)
x

dx are differentiable functions. It is sufficient to prove that the limit

vanishes when the improper integral lim
T→∞

T
∫

0

h(x)
x

dx diverges. We get an
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indeterminate form ∞/∞. On the other hand since h(t) = o(t2α) as t → ∞,
we obtain

lim
T→∞

d

dT

[

T
∫

0

h(x)

x
dx

]

d

dT
(1 + T 2α)

=
1

2α
lim

T→∞

h(T )

T 2α
= 0.

Then by L’Hospital’s Rule [8] we obtain

lim
T→∞

φ(T )

T
∫

0

h(x)

x
dx = lim

T→∞

T
∫

0

h(x)

x
dx

1 + T 2α

= lim
T→∞

d

dT

[

T
∫

0

h(x)

x
dx

]

d

dT
(1 + T 2α)

=
1

2α
lim

T→∞

h(T )

T 2α
= 0.

Let k > 1 then from the first integral inequality we obtain

0 6

T
∫

0

h(x)

x
(T − x)k dx 6 Tα+k, 0 6 T < ∞.

On the other hand from Lemma A.1 we deduce that φ(k)(T ) = O(T−k−2α)
as t → ∞. Therefore

|φ(k)(T )|

T
∫

0

h(x)

x
(T−x)k dx6O(T−k−2α)Tα+k=O(T−α) → 0 as T → ∞.

This completes the proof. �

Lemma A.3. Then for all 0 6 α 6 1/2 and t > 0 the following holds true

sign(φ(n)(t)) =











(−1)n, 0 < α 6 1/2, n > 0,

0, α = 0, n > 1,

1, α = 0, n = 0.
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Proof. First notice that

dm

dtm
(1 + t2α) = 2α(2α− 1)(2α− 2) . . . (2α−m+ 1)t2α−m.

This implies

sign
[ dm

dtm
(1 + t2α)

]

=































(−1)m−1, 0 < α < 1/2,m > 1,

0, α ∈ {0, 1/2},m > 2,

0, α = 0,m = 1,

1, α = 1/2,m = 1,

1, α > 0,m = 0

(A.1)

for all t > 0 and m ∈ Z. We will treat the case where α = 0 and α = 1/2
separately. So assume that 0 < α < 1/2. This reduces to showing that

sign(φ(n)(t)) = (−1)n

for all n > 0 and t > 0. We prove this statement by strong mathematical
induction. The base case would be for n = 0. By the definition of φ(t) we
have

(1 + t2α)φ(t) = 1 ⇒ sign((1 + t2α)φ(t)) = sign(1).

Since 1 + t2α > 0 for all t > 0, we see that sign(1 + t2α) = 1. Thus we
obtain

sign(φ(t)) = 1 = (−1)0.

Therefore base case is true. Assume that the equation sign(φ(n)(t)) =
(−1)n is valid for all n = 1, 2, .., k. Now let n = k + 1. Differentiating
(1 + t2α)φ(t) successively k + 1 times and using Leibniz’s formula yields

dk+1

dtk+1

[

(1 + t2α)φ(t)
]

=
k+1
∑

i=0

(

k + 1

i

)

di

dti
(1 + t2α)

dk+1−i

dtk+1−i
φ(t).

Since (1 + t2α)φ(t) = 1 for all t > 0, we obtain

k+1
∑

i=0

(

k + 1

i

)

di

dti
(1 + t2α)

dk+1−i

dtk+1−i
φ(t) = 0.

From the last equation we arrive at

sign
[

(1+t2α)
dk+1

dtk+1
φ(t)

]

=(−1) sign
[

k+1
∑

i=1

(

k + 1

i

)

di

dti
(1+t2α)

dk+1−i

dtk+1−i
φ(t)

]

.

(A.2)
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For 1 6 i 6 k + 1 the sign of each summand in (A.2) can be computed as
follows

sign
[ di

dti
(1 + t2α)

dk+1−i

dtk+1−i
φ(t)

]

= sign
[ di

dti
(1 + t2α)

]

sign
[ dk+1−i

dtk+1−i
φ(t)

]

.

By (A.1), for all i = 1, 2, . . . , k + 1 and t > 0 we have

sign
[ di

dti
(1 + t2α)

]

= (−1)i−1.

On the other hand applying strong induction for i = 1, 2, . . . , k to
sign(φ(k+1−i)(t)) gives

sign
[ dk+1−i

dtk+1−i
φ(t)

]

= (−1)k+1−i.

Therefore we obtain

sign
[ di

dti
(1 + t2α)

dk+1−i

dtk+1−i
φ(t)

]

= (−1)i−1(−1)k+1−i = (−1)k

for all i = 1, 2, . . . , k and t > 0. For i = k + 1 we have

sign
[ dk+1

dtk+1
(1 + t2α)

dk+1−(k+1)

dtk+1−(k+1)
φ(t)

]

= sign
[ dk+1

dtk+1
(1 + t2α) · φ(t)

]

= (−1)k+1−1(−1)0 = (−1)k.

This shows that each summand in (A.2) is of the same sign (−1)k for all
i = 1, 2, . . . , k + 1 therefore we are led to the conclusion that

sign
[

(1 + t2α)
dk+1

dtk+1
φ(t)

]

= (−1) · (−1)k ⇒ sign
[ dk+1

dtk+1
φ(t)

]

= (−1)k+1.

This proves the statement for all 0 < α < 1/2. Now let α = 0 then φ(t) = 1
which implies sign(φ(t)) = 1 and sign(φ(n)(t)) = 0 for all n > 1 (since φ(t)
in this instance is a constant function, its derivatives of all orders vanish).
When α = 1/2 we need to prove again that sign(φ(n)(t)) = (−1)n for all
n > 0. We need only use mathematical induction. For the base case n = 0
we have

(1 + t)φ(t) = 1 ⇒ sign(φ(t)) = 1 = (−1)0

for all t > 0. Suppose the statement is true for n = k, that is sign(φ(k)(t)) =
(−1)k. Let n = k + 1. Differentiating (1 + t)φ(t) successively k + 1 times
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yields

dk+1

dtk+1

[

(1 + t)φ(t)
]

=

k+1
∑

i=0

(

k + 1

i

)

di

dti
(1 + t)

dk+1−i

dtk+1−i
φ(t)

= (1 + t)
dk+1

dtk+1
φ(t) +

(

k + 1

1

)

dk

dtk
φ(t).

Since (1 + t)φ(t) = 1 by the definition of φ(t), it must be the case that

(1 + t)
dk+1

dtk+1
φ(t) = −

(

k + 1

1

)

dk

dtk
φ(t)

⇒ sign
[ dk+1

dtk+1
φ(t)

]

= (−1) · sign
[ dk

dtk
φ(t)

]

= (−1)k+1,

where at the last step we have used the inductive hypothesis. This com-
pletes the proof. �
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