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SOME EXPLICIT RESULTS FOR THE GENERALIZED
EMPTINESS FORMATION PROBABILITY OF THE
SIX-VERTEX MODEL

ABSTRACT. We study a multi-point correlation function of the six-
vertex model on the square lattice with the domain wall bound-
ary conditions which is called the generalized emptiness formation
probability. This function describes probability of observing the fer-
roelectric order around all the vertices of any Ferrer diagram A at the
top-left corner of the lattice. For the free-fermion model we derive
and compare explicit formulas for this correlation function for two
cases of diagram A: the square and triangle. We found a connection
of our formulas with the 7-function of the sixth Painlevé equation.

§1. INTRODUCTION

One of the most interesting properties of the six-vertex model with do-
main wall boundary conditions [1-3] is existence of the limiting shape,
or phase separation phenomena [4, 5]; for recent advances see [6] and ref-
erences therein. These phenomena arise in the thermodynamic limit and
their detailed description is closely related with the problem of calculation
of the corresponding correlation functions. The general approach to this
problem for the six-vertex model is based on the quantum integrability,
whilst in the study and description of the quantum correlation functions
an important role play mathematical structures related with classical in-
tegrable systems [7], random matrices and combinatorics [8].

A notable progress in calculation of correlation functions of the six-
vertex model with the domain wall boundary conditions is achieved for
correlations near the boundaries [9,10]. An example of correlation func-
tion which can be computed away from the boundary, i.e., for the bulk, is
provided by the so-called emptiness formation probability (EFP), which
can represented as a multiple contour integral [11]. By using this integral
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representation an explicit analytic expression for the spatial curve sep-
arating ferroelectric order from disorder — the so-called arctic curve is
obtained in [12].

At the free-fermion point the EFP can be evaluated in various forms: as
a Hankel or a Fredholm determinant, as a discrete random matrix model,
and as solution of Toda lattice hierarchy [13]. These representations lead
to an interpretation of the arctic curve as a curve of the third-order phase
transition [14] and determine thermodynamics the six-vertex model on an
L-shaped domain [15]. In [16], we showed that the EFP at the free-fermion
point is nothing but the 7-function of the sixth Painlevé equation (refered
below as Painlevé VI), and also that this fact can be used to construct full
asymptotic expansions in the thermodynamic limit for various regimes of
parameters.

In this paper, we address similar problems in relation to the generalized
emptiness formation probability (GEFP), introduced and evaluated in the
form of a multiple contour integral in [17]. The GEFP is the probability
of the ferroelectric order around all vertices which belongs to a Ferrer
diagram A located at the top-left corner of the lattice; the case of EFP
corresponds to A of a rectangular form. Here, we focus our main attention
to the GEFP in the case of A having the shape of triangle. In [18], this
case is mentioned as the six-vertex model on a pentagonal domain.

Specifically, here we present and compare various explicit formulas for
GEFP, which correspond to A with the shape of square and triangle. The
former case is just a special case of the EFP already studied in [13,16],
while the results for the triangle are new. In particular, for this case we
discover a random matrix like representation for GEFP. Additionally, for
special values of the discrete parameters we find relations GEFP with
Painlevé VI and point out intriguing combinatorial interpretations for the
related o-function. We believe that these results would prove to be useful
in further study of the limit shape phenomena in the six-vertex model.

§2. THE GENERALIZED EMPTINESS FORMATION PROBABILITY

2.1. Definition and integral representation. Consider the six-vertex
model (see, e.g., [19]) on the N x N square lattice with domain wall bound-
ary conditions. This means that the lattice is obtained by intersection of N
horizontal and N vertical lines, and the arrows on the external edges are
fixed as follows: on the vertical lines (top and bottom) they are incoming
(pointing downward and upward, respectively), while on the horizontal
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ones (left and right) they are outgoing (pointing left and right, respec-
tively) [1-3].

Let A be a Young diagram consisting out of s lines, A = (A1,...,As),
with the rows satisfying the conditions A; < N — j. Let

ri=N-X, j=1,...,s (1)

According to [17], the GEFP G(Nr};"”rs) is defined as the probability of
obtaining a configuration of the model in which arrows of the jth (counted
from the top) horizontal line lying to the left after the r;th vertical line
(counted from the right), are all pointing left. Equivalently, treating \ as a
Ferrer diagram, one may define GEFP as the probability that the vertices
of the top-left corner of the lattice forming the shape A are all having the
same configuration of arrows around them: horizontal arrow are pointing
left and vertical ones are pointing downward. (The equivalence of two
definitions is due to both the ice rule of the six-vertex model and the
domain wall boundary conditions.)
In [17] the following integral representation for GEFP was derived:

(P1,ms) - 2At )z + 1574
Gst -\ f fH Z _ls j+1

Zj — 2 dz1 - - dzg
x H 5 hns(z1y e 25) —m- (2)
<R 12252, — 2Atz; + 1 (27i)

Here, Cy is a simple counterclockwise oriented contour surrounding the
point z = 0 and no other singularity of the integrand. The Boltzmann
weights a, b, ¢ of the six-vertex model are encoded in the parameters
NN L1 1
a 2ab
and they also enter implicitly into the function

det [57! (2 = 1" Fhvwa(z)]
hN,S(Zla---,Zs) = JHe=1,..., . (3)
(25 — 21)
1<j<k<s

Here, the functions hy_j+1(z) are polynomials of degree N — k in z, with
the coefficients depending on the weights of the model (i.e., on the pa-
rameters ¢t and A). These polynomials are generating functions of certain
boundary correlation function of the six-vertex model with domain-wall
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boundary conditions on the (N —k+1) x (N —k+1) lattices, k =1,...,s
The explicit form of these functions is very complicated, being simple only
in the case of the weights obeying the free-fermion condition.

2.2. The free-fermion model. The free-fermion condition for the six-
vertex model means that the weights satisfy the following equation

a?+b>=¢* thatis A=0.
For this model, it is convenient to use the parameter

2
1t

so that the weights are parametrized such that

a/c=+1-a, b/c=+/a.
In this case [10,11]:

1422
14 ¢2

ha(z) = < )N_l =(1-a+az)N

Hence,

8§

hN7S(Z17---7ZS) = H(l—a+azj)N_s H (l—a—l—azjzk).

j=1 1<j<k<s

Therefore, from (2) it follows that at A = 0 the GEFP reads

G = g I e-a)

G0 &y 1<I<k<s

H lfa-l-az)Nszl ~dzg (4)

r’ (zj — 1)s—3tL  (2mi)®

The presence of the Vandemonde determinant times a single product in
the integrand implies that GEFP can be rewritten as a determinant.

2.3. Determinant representation. Before bringing (4) in the form of
a determinant, it is useful, to reduce to minimum subsequent calculations,
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to make a change of the integration variables z; — z; = (1 — a+ az;)/z;.
This yields

G(Nr}s,...ms) — (71)% H(]- o Cl)N*T‘j % - % H (a:k — 17])

j=1 0. O 1<i<k<s
zN J da’;l e da’;s 5
x ]-_-[ —a)N=ri(z; —1)s—i+t  (2mi)s (5)

where C, denotes a closed contour of large radius, counterclockwise ori-
ented around the origin. Using

[ Gn-m)= 0" et fs;*]

1<j<k<s

)

one can readily rewrite (5) as a determinant

S

(Fipers) _ Ner; (N=rg_ps1,k)
af? = [la-aV i x dee [P0 @)
j=1

where we have used the following notation:

[
(ok) _ x dz
b= f @ —a)i(z — DF 2mi° (™)

The integral in (7) can be evaluated, using

z! dx

(G:k) _ k—1 or
Pl] - (j—l)!(k—l)!ag‘ 165 ?{ (z — a)(z — B) 2w
c

:; j—1 klal_ﬁl‘
G-Dik—11* % a=p |,

It turns out that (8) appears rather convenient for calculations discussed
below, though one can also obtain more explicit expressions like

l—j—k+1 . .
pUk _ JZ+ j—1+n\[/l—j7—n o
! j—1 E—1 ’

n=0

Gy _ (1= L4tk
= () (T )

B=1

or
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These expressions show that Pl(j k)

k+1in a.

is in fact a polynomial of degree [ — j —

§3. THE CASE OF SQUARE DOMAIN

3.1. Explicit formulas. The special case where A has a rectangular
shape corresponds to the usual emptiness formation probability (EFP) [11].
In turn, its important particular case is where A has the form of a square.
This case is very interesting since EFP has rather simple explicit form,
while still represent a nontrivial correlation function of the model.

It is convenient to set N =r + s, so that A = (s,...,s), that is r; =17,
j=1,...,s. For the EFP we introduce a short notation
foi= G,

Equation (6) implies
fo=0—a)” det [PUH, ],

1< ks L THITR=2
so that, taking into account (8), we get
(1-a)
=)
[(s = DI [Thzo &!
a
det s—1qk—1
x 'ek<s [aa 66

1<j,k<

fs =
rhjtk=2 _ grojtk-2 9)
a—p 611 '
With the help of equation (9) one proves that
fs = fs(a)=0 for r<s.

and find explicit expressions for EFP for some small values of s, namely,

fU = ]-7
fl =1~ aT‘,
f2 _ 1 _ ,,,2041‘71 + 2(,,,2 _ l)ar o r2ar+1 + a2r,
2 -1 2
f3:1_ r (7“ ) (ar—Q_a2r+2)+r2(r_2)(r+1)(ar—1_a2r+1)

4
_ 3(7“2 —1;(7“2 _2) (Oér—Oé2r)+7“2(7“+2)(7“—1)(04r+1 _a2r—1)
r?(r +1)? (a2 — a?r=2) — o?".
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As a function of a, the EFP f; = fs(«) has the following structure

fs = (1 —a)* fi(a).

where fs(a) is a self-reciprocal (palindromic) polynomial of the degree
(r — s)s, whose coefficients are positive integers, and

£00) =1, r>s.

In particular,

fi=3am
m=0
- = r+l—1|r—m-2\ ,,
f2 = 3 )
m=0
r—1 m+8 [%(r_3)]

o 3r—3—m m 3(r—3)—m m
_(r+6\ (-1 _(rH+T\ (57 = 14r +17)
p?"—2 - 8 4 3 p'r'—l — 8 4 P

r+k+8\ [ [/, 2 k+6 k+8
rik = - (-2 - ,
Prik ( . ) 4<Q §k+m0( 4)+00 3(8 )
<k4—6)2k24—18k4—33
=\ )73

m=r+k, k:—Z—LQL“”E@—3ﬂ—ﬂ

Here [ -] denotes the integer part of the corresponding number, and

1 x>0
sgn(z) =¢0 =0
-1 2 <0.

The polynomial fg has the following intriguing property: for odd r it is
irreducible over Z. For odd r apart with the “trivial” divisor (1 + «) it is
divisible by exactly two self-reciprocal polynomials with coefficients in Z
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of the degrees

For example,
f3‘7:4 =(a+1)(a®+8a+1),
fal,_s = a® +90° + 450" + 650° + 450° + 9a + 1,
]?3‘7:6 = (a+ 1)(a® +5a+ 1)(a® + 3a° + 21a* +20a° + 21a” + 3a + 1),
fsl _. = a2 +1+9(a! +a) +45(a!” + o®) + 165(a” + a®)
+495(a® + a*) + 846(a” + ) + 994a°,
fal,_g = (@ + 1)(a® + 60 +21a* + 280* + 210° + 6a + 1)
x (@® +2a” + 4a® + 340° + 2a* + 34a® + 4a® + 2a + 1).

We finish this subsection by noting, that for » = s the polynomial fs(a)
is equal to 1, that implies the following relation for the EFP:

2
fs’T:S =(1-a).
If r = s + 1, then one can find that
" s s 2
i m
fs‘r=s+1 - Z (m) a.
m=0
This last relation is, in fact, a particular case of a more general equivalent

representation for the EFP in terms of random matrix model, considered
below.

3.2. Equivalent representations. The function f; has an interesting
property: its second logarithmic derivative with respect to the variable
log o is expressed in terms of square of some polynomial in «, namely,

ffafogalog fs = fs(aaa)2fs - (aaafs)2 = 77'2047175“}37

where wjy is a self-reciprocal polynomial of the degree (s — 1)(r + 1). The
first few polynomials read:

w1:1,
wy=(1+a)(l-a")—r(l—-—a)(1+a"),

w= (75 ke ara e () @2 a)
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1
+ 17‘2(7‘2 —DA+at)a" = (" =32 +2)(1 + a®)a”

+ % (37“4 —11r% — 4) a’ .

w? = fst1fs—1,

These polynomials satisfy the initial condition w4(0) = (:j) It is fairly
easy to see that these polynomials possess the property
2 2 r—s—1
5 r*(l—a)a
fs - S2
which implies that the EFP satisfies the equation
s?a
fg(aaa)210gfs: 72(fs+1fs—1_fs2)- (10)
(1-a)
One more relation of the similar kind is
g ARV AT | N AT\ A N
This implies the following equation
r’a
f(ady)?log fs = m(fs[7"+1]fs[7"—1]—ff)- (11)
The equations (10) and (11) are, in fact, equations of the Toda hierarchy.
For example, the equation (10) is closely related with the fact that the EFP
can be represented as the following Hankel determinant:
1 (1-w)
s—1 s(s—1)
[TEn @ °
j=0

fs:

e B

1<),k<s

This representation can be obtained by making use various linear relations
satisfied by the polynomials Pl(] ’k); for full details see [13, Sect. 2].

Finally, using Pty = (1-a")/(1-a)= Zrm_zlo a™ one can notice that
(12) can be written as a multiple sum:

1 1—a)® &
= D DI | (TR RO

s—1
sSITI(GN2 @ 7 mime=01<j<k<s
i=0

This formula represents EFP as a discrete random matrix model or a as
model of discrete Coulomb gas. Its peculiar is the presence of two hard walls
in addition to the constraint of discreteness, which both are responsible
for appearance of the third-order phase transition [14].
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3.3. Relation with the Painlevé VI. We consider here the Painlevé VI
in its o-form [22-24]. This is the following nonlinear ordinary differential
equation:

(1—a)?a?(0")? - 4[(1 —a)o’ + 0'} [aa' — 0’} o’

+ 250 [(1 —2a)0" + 20} —51(0")2 — 520" — 83 =0 (14)

here and below the prime denotes derivative with respect to a;, and sq, . .., S3
are constants, which are expressed in terms of the usual Painlevé VI mon-
odromy parameters vy,..., v, as follows:

S0 = V1V2V3Vy,

2 2 2 2
st =vy +vy +vyt+vy,

22 22 2.2 22 2 2 22
So = ViV + vy +vivy + vy +vavy + vavy,

— 2,22 2,22 2,22 2,22
Sz = Vi VyV3 + Vi VaV) + Vi V3vy + vy

It is known [22] that function o is related with the Hamiltonian function
(Hvyr) of the Painlevé VI, ¢ = a(a — 1)Hyr, and the corresponding 7-
function,

/
o:a(afl)T—+Ba+C, (15)
T
where B and C' are some normalizing constants which can be explicitly
expressed in terms of the parameters vy, ..., v,.
The EFP is related to the Painlevé VI upon setting
(r+s)? rs
= fs, B = - C = —, ].6
r=f - - (16)
and
r+s r—s
V) = V3 = — Vo = —UVy = —
1 3 5 2 4 5

This statement is particular case of a more general result proven in [16]
(see Th. 1.1 therein).

Here, as a complement to the derivation provided in [16], it seems useful
to give a hint how the connection of the EFP with the Painlevé VI can be
deduced from (12). Indeed, the essential factor here, which can be identified
with the 7-function, is the Hankel determinant. To see that this is indeed
the case, let us introduce new variable t = —%=. Then

aaa = 7t(t - I)Bt,
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and
PAY = (1 -ty LR (—r+1, -1, —r + 1;t),

where 5 F} is the Gauss hypergeometric function. These formulas show that
the determinant in (12) is, in fact, a 7-function of Painlevé VI describing
its classical solutions [23,24]. Since the change of the variables o+ t is a
symmetry of Painlevé VI, the same holds true with respect the variable a
for the determinant in (12), or, equivalently, for the whole expression in
(12).

§4. THE CASE OF TRIANGLAR DOMAIN

4.1. Explicit formulas. Another interesting case is where A has a tri-
angular shape. Again, we set N = r + s, and then we choose A = (s,s —
1,...,2,1), thatisr; =r+j—1,j=1,...,s. For this triangular domain
EFP (TDEFP) we introduce a short notation

gs 1= G(r,r+17...7r+s—1)

r+s,s .

Equation (6) implies

gs:(lfa)

alatl) (k,k)
P) 1<det [Pr+j+k72 R

and from (8) we get

s(s+1)
2

(1-a)

r+j+k—2 _ 5r+j+k—2
———— det
(kD2 1<ik<s

— Bl] )

By using (17) one can find explicit expressions for TDEFP for some small
values of s, namely,

_ k—1qk—1 &
gs = [Ba 05

g=fi=1l-a",
ga=1—-2r+1)(1 -a)a" —a**,
g3=1—(r+1)2r+1)(a"+a*> )+ (2r+1)(2r+3)(a" ' +a*"?)
_ (T‘ + 1)(2,’, + 3) (ar+2 + a2r+1) + a3r+3,
2
=1 ( r;—?)) (a” + a3r+9)
+ (r+2)(2r +1)(2r + 3) (@™ 4+ a*?)
— (r+1)(2r +3)(2r +5) (&> + o +*)
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() ) <) 1) e

N (2r+1)(2r -:1; 3)2(2r + 5)

(1 + a2) a2r+2 + a4r+6-

As a function of a, the TDEFP g, = gs(a) has the following structure

s(s+1) _

gs=(1—a) 2 gs(a),  g:(0)=1, (18)

where gs(a) is a self-reciprocal polynomial of the degree s(r — 1), with
positive integer coefficients. In particular,

r—1
Gi=hHh=) am
m=0
2r—2
~ r+l—|r—-m-1
m=y (T

m=0

2 [%(rfl)}q%

r—1 1+ 3 —1)—
’gVB — Z <m;-5> (a3r—3—m+am)+ Z sgn (2(; ) m)
m=0

" { (m;—f)) B (2r+1)(EZ+4—m) (m;-{-?)) 3 (m;-l-?)) }

% (a3r737m + am) .

m=r

Note that for r even, the polynomial g3 is divisible by 1 + a.
For r = 1 the polynomial g; is equal to 1, that implies the following
relation for the TDEFP:
s(s+1)
gs|7‘=1 :(I—Oé) 2
In the case of r = 2, by studying various values of s we observe that
S

= X s 0 ) a 1

m=

This formula can be rewritten in terms of the Gegenbauer polynomials,

21—t (14a
=2 (s+1)(s+2) ° 1—a)/’

Js|

where 03/2() is the Gegenbauer polynomial of degree s [21].
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4.2. Equivalent representations. Even though the explicit expressions
for functions g, look even simpler than those for fs, it seems that functions
gs do not possess any simple analogues of the representations listed in Sect.
3.2 for functions f;.

There is, however, one exception which worth to be mentioned here,
since it is in fact provides a representation for the TDEFP which reminds
very much a discrete random matrix model (though, strictly speaking, it is
not). Namely, by investigating explicit expressions for functions gs, related
to g5 modulo factor (1 —a)*(T1/2 see (18), we discover, for s = 2,3, 4, 5,
that

~ 2mp —2m; +k—j
=X [[ =gt famttn o)

b — 7
o<mi <...<ms<r—1 \1<j<k<s J

We also mention here that (20) is agreement with (19) in the case of r = 2,
which have been verified for values of s = 3,4, 5, against direct counting
of configurations of the model contributing to the TDEFP.

We note that in (20) the summation is running over weakly increasing
sequences. We also note that the sum cannot be put in a fully symmet-
ric form, namely, with the summand invariant under permutations of the
summation variables, like in (13). For this reason, formula (20) is not a
usual random matrix model representation, but it is fact an analogue of
such for the EFP (13).

Definitely, the structure of the product in (20) strongly suggests that
this representation could be derived from (17) by making use known rela-
tions for the Schur polynomials [20]. However, because of peculiar structure
of the matrix in (17), the proof seems to be not straightforward, and we
leave this problem for a separate publication.

4.3. Relation with the Painlevé VI. We find that the TDEFP can be
related to the Painlevé VI is several special cases of the discrete parameters.
Besides the trivial case of s = 1, in which g1 = fi, and therefore (16)
applies, we find that the relation can also be provided for s = 2, r is
arbitrary, and r = 2, s is arbitrary; the case of s = r = 2 admits even
more special treatment.

Case s = 2, r is arbitrary. In this case the TDEFP is given by

2r—2
r+l—|r—m-1
p=0-0a0) ( |2 |>am.

m=0
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As it can be directly verified, for arbitrary values of r > 3 (with the
exception of the case of r = 2 considered separately below), the o-form
of Painlevé VI (14) cannot be fulfilled with any choice of parameters B,
C and sg, ..., ss. Nevertheless, let us consider the first-order derivative of
this function,

r—1

gp=—2r+1)(1 - )’ Z (r—m)a™.

m=0

Since the sum here is in fact a truncating Gauss hypergeometric series,

one might expect that it can serve as the m-function for Painlevé VI.
Indeed, by direct inspection for various values of r = 3,4,5,6,..., we

have found that (14) is satisfied with

(r+1)2+4 r+3

0 YT

T:géa B=-

and

( ) r—1r—1r+1r+3
Viy...,U. = —
1 s V4 2 ) 2 ) 2 ) ) ’

where the values of the parameters vy, ..., v4 can be rearranged arbitrarily
(below we use the increasing order).

Case r = 2, s is arbitrary. In this case, as it follows from (18) and (19),

slat1) o s+1 s\’ m
el = (1 =07 Z(sm+1)(m+1)<m> o

m=0

The o-form of Painlevé VI (14) is fulfilled with the following choice in (15):

s+2 s+ 2 1
= B =— = — =
T 97:27 ( 2 ), C ( 9 ) 2,

and we have also set
=0, =1, wvs=s+1, vy=s5+2.

The function (21) can be also presented in various ways in terms of
finite hypergeometric series. For example,

(s+1)s

gs,_y = (1 — )25+ <1 + o asF(l s 1 - 5;2,3;a)) :
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Using such representations one can find the following asymptotics:

a—00 ak ’

o = —Oz-|-1+i(fl)k+la—]c
2 =

(o)
o = C + Ba+ aZ(fl)k“akak,

a—
k=1

where a; k = 1,2,... is the following sequence of positive integers:

1
a, = Es(s +3)(s+2)(s+1),

1
ay = E,92(,9 + 1)(s +2)(s + 3)?,
_ 42,2 _
as = 15(43 +12s — 1),
as = %(1334 +785% + 109s% — 245 + 4),
a5 = 7= (35% + 05 — 2)(11s" + 665 +955° — 125 + ).

Case s = r = 2. In the case of s = r = 2, the TDEFP has the following
form

gg‘ =(1-a)*@®+3a+1).

r=2 "
It can be easily seen that o-form of Painlevé VI (14) is fulfilled with the
following choice in (15)

T:gg‘r:2, B = -6, C=—,

and
V1:0, V2:1, 1/3:3, 1/4:4.
Explicitly, the o-function in this case has the form

11 51+ «)
c=——-—a—a————.
2 14 3a+ a2
Here, the rational function given by the ratio in the last term, which is
obviously invariant under the change o — 1/, has the following & — 0

expansion

51+ «)

To30ral 5 —10a + 250° — 650> + 170a* — 4450° 4+ 116505 + O(a").
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The integer sequence
5, 10, 25, 65, 170, 445, 1165, 3050, 7985, .. .,

can be found in OEIS [25]. These numbers are the sums of squares of the
Lucas and Fibonacci numbers,

L(n)® + L(n+1)* = 5(F(n)* + F(n + 1))
=Fn-2°+n+3)?  necZ;.
We recall that the Lucas numbers are defined as
L(0)=2, L(1)=1, L(n+1)=L(n)+L(n—1),

and they form the sequence {2,1,3,4,7,11,...}; the Fibonacci numbers
are defined as

F(-1)=1, F(0)=0, F(n+1)=F([)+Fn-1),

and they form the sequence {1,0,1,1,2,3,5,...}.

As a comment to this intriguing combinatorial interpretation in the
s =r = 2 case, we mention that the similar sequences arising in o — 0 (or
a — 00) expansions for the o-functions discussed above, even if they are
all given purely in terms of integers, seem to have no obvious combinatorial
treatment.

The authors are indebted to N. M. Bogoliubov and F. Colomo for stim-
ulating discussions.
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