
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 465, 2017 Ç.A. V. Kitaev, A. G. PronkoSOME EXPLICIT RESULTS FOR THE GENERALIZEDEMPTINESS FORMATION PROBABILITY OF THESIX-VERTEX MODELAbstrat. We study a multi-point orrelation funtion of the six-vertex model on the square lattie with the domain wall bound-ary onditions whih is alled the generalized emptiness formationprobability. This funtion desribes probability of observing the fer-roeletri order around all the verties of any Ferrer diagram � at thetop-left orner of the lattie. For the free-fermion model we deriveand ompare expliit formulas for this orrelation funtion for twoases of diagram �: the square and triangle. We found a onnetionof our formulas with the � -funtion of the sixth Painlev�e equation.
§1. IntrodutionOne of the most interesting properties of the six-vertex model with do-main wall boundary onditions [1{3℄ is existene of the limiting shape,or phase separation phenomena [4, 5℄; for reent advanes see [6℄ and ref-erenes therein. These phenomena arise in the thermodynami limit andtheir detailed desription is losely related with the problem of alulationof the orresponding orrelation funtions. The general approah to thisproblem for the six-vertex model is based on the quantum integrability,whilst in the study and desription of the quantum orrelation funtionsan important role play mathematial strutures related with lassial in-tegrable systems [7℄, random matries and ombinatoris [8℄.A notable progress in alulation of orrelation funtions of the six-vertex model with the domain wall boundary onditions is ahieved fororrelations near the boundaries [9, 10℄. An example of orrelation fun-tion whih an be omputed away from the boundary, i.e., for the bulk, isprovided by the so-alled emptiness formation probability (EFP), whihan represented as a multiple ontour integral [11℄. By using this integralKey words and phrases: lattie models, orrelation funtions, matrix models, dis-rete Coulomb gas, the sixth Painlev�e equation.This work is supported in part by the Russian Foundation for Basi Researh, grantNo. 16-01-00296. 157



158 A. V. KITAEV, A. G. PRONKOrepresentation an expliit analyti expression for the spatial urve sep-arating ferroeletri order from disorder | the so-alled arti urve isobtained in [12℄.At the free-fermion point the EFP an be evaluated in various forms: asa Hankel or a Fredholm determinant, as a disrete random matrix model,and as solution of Toda lattie hierarhy [13℄. These representations leadto an interpretation of the arti urve as a urve of the third-order phasetransition [14℄ and determine thermodynamis the six-vertex model on anL-shaped domain [15℄. In [16℄, we showed that the EFP at the free-fermionpoint is nothing but the � -funtion of the sixth Painlev�e equation (referedbelow as Painlev�e VI), and also that this fat an be used to onstrut fullasymptoti expansions in the thermodynami limit for various regimes ofparameters.In this paper, we address similar problems in relation to the generalizedemptiness formation probability (GEFP), introdued and evaluated in theform of a multiple ontour integral in [17℄. The GEFP is the probabilityof the ferroeletri order around all verties whih belongs to a Ferrerdiagram � loated at the top-left orner of the lattie; the ase of EFPorresponds to � of a retangular form. Here, we fous our main attentionto the GEFP in the ase of � having the shape of triangle. In [18℄, thisase is mentioned as the six-vertex model on a pentagonal domain.Spei�ally, here we present and ompare various expliit formulas forGEFP, whih orrespond to � with the shape of square and triangle. Theformer ase is just a speial ase of the EFP already studied in [13, 16℄,while the results for the triangle are new. In partiular, for this ase wedisover a random matrix like representation for GEFP. Additionally, forspeial values of the disrete parameters we �nd relations GEFP withPainlev�e VI and point out intriguing ombinatorial interpretations for therelated �-funtion. We believe that these results would prove to be usefulin further study of the limit shape phenomena in the six-vertex model.
§2. The generalized emptiness formation probability2.1. De�nition and integral representation. Consider the six-vertexmodel (see, e.g., [19℄) on the N×N square lattie with domain wall bound-ary onditions. This means that the lattie is obtained by intersetion of Nhorizontal and N vertial lines, and the arrows on the external edges are�xed as follows: on the vertial lines (top and bottom) they are inoming(pointing downward and upward, respetively), while on the horizontal



SOME EXPLICIT RESULTS 159ones (left and right) they are outgoing (pointing left and right, respe-tively) [1{3℄.Let � be a Young diagram onsisting out of s lines, � = (�1; : : : ; �s),with the rows satisfying the onditions �j 6 N − j. Letrj = N − �j ; j = 1; : : : ; s: (1)Aording to [17℄, the GEFP G(r1;:::;rs)N;s is de�ned as the probability ofobtaining a on�guration of the model in whih arrows of the jth (ountedfrom the top) horizontal line lying to the left after the rjth vertial line(ounted from the right), are all pointing left. Equivalently, treating � as aFerrer diagram, one may de�ne GEFP as the probability that the vertiesof the top-left orner of the lattie forming the shape � are all having thesame on�guration of arrows around them: horizontal arrow are pointingleft and vertial ones are pointing downward. (The equivalene of twode�nitions is due to both the ie rule of the six-vertex model and thedomain wall boundary onditions.)In [17℄ the following integral representation for GEFP was derived:G(r1;:::;rs)N;s = (−1)s ∮C0 · · ·
∮C0 s∏j=1 [(t2 − 2�t)zj + 1℄s−jzrjj (zj − 1)s−j+1

×
∏16j<k6s zj − zkt2zjzk − 2�tzj + 1 hN;s(z1; : : : ; zs) dz1 · · · dzs(2�i)s : (2)Here, C0 is a simple ounterlokwise oriented ontour surrounding thepoint z = 0 and no other singularity of the integrand. The Boltzmannweights a, b,  of the six-vertex model are enoded in the parameterst ≡ ba ; � = a2 + b2 − 22ab :and they also enter impliitly into the funtionhN;s(z1; : : : ; zs) = det [zk−1j (zj − 1)s−khN−k+1(zj)]j;k=1;:::;s∏16j<k6s(zj − zk) : (3)Here, the funtions hN−k+1(z) are polynomials of degree N − k in z, withthe oeÆients depending on the weights of the model (i.e., on the pa-rameters t and �). These polynomials are generating funtions of ertainboundary orrelation funtion of the six-vertex model with domain-wall



160 A. V. KITAEV, A. G. PRONKOboundary onditions on the (N−k+1)× (N −k+1) latties, k = 1; : : : ; s.The expliit form of these funtions is very ompliated, being simple onlyin the ase of the weights obeying the free-fermion ondition.2.2. The free-fermion model. The free-fermion ondition for the six-vertex model means that the weights satisfy the following equationa2 + b2 = 2; that is � = 0:For this model, it is onvenient to use the parameter� = t21 + t2 ;so that the weights are parametrized suh thata= = √1− �; b= = √�:In this ase [10, 11℄:hN (z) = (1 + t2z1 + t2 )N−1 = (1− �+ �z)N−1:Hene,hN;s(z1; : : : ; zs) = s∏j=1(1− �+ �zj)N−s ∏16j<k6s(1− �+ �zjzk):Therefore, from (2) it follows that at � = 0 the GEFP readsG(r1;:::;rs)N;s = (−1)s ∮C0 · · ·
∮C0 ∏16j<k6s(zj − zk)

×
s∏j=1 (1− �+ �zj)N−jzrjj (zj − 1)s−j+1 dz1 · · · dzs(2�i)s : (4)The presene of the Vandemonde determinant times a single produt inthe integrand implies that GEFP an be rewritten as a determinant.2.3. Determinant representation. Before bringing (4) in the form ofa determinant, it is useful, to redue to minimum subsequent alulations,



SOME EXPLICIT RESULTS 161to make a hange of the integration variables zj 7→ xj = (1− �+�zj)=zj .This yieldsG(r1;:::;rs)N;s = (−1) s(s−1)2 s∏j=1(1− �)N−rj ∮C∞

· · ·
∮C∞

∏16j<k6s(xk − xj)
×

s∏j=1 xN−jj(xj − �)N−rj (xj − 1)s−j+1 dx1 · · · dxs(2�i)s ; (5)where C∞ denotes a losed ontour of large radius, ounterlokwise ori-ented around the origin. Using
∏16j<k6s(xk − xj) = (−1) s(s−1)2 det [xs−kj ]j;k=1;:::;s ;one an readily rewrite (5) as a determinantG(r1;:::;rs)N;s = s∏j=1(1− �)N−rj × det16j;k6s [P (N−rs−k+1;k)N−s+j+k−2 ] ; (6)where we have used the following notation:P (j;k)l = ∮C∞

xl(x− �)j(x− 1)k dx2�i : (7)The integral in (7) an be evaluated, usingP (j;k)l = 1(j − 1)!(k − 1)!�j−1� �k−1� ∮C∞

xl(x− �)(x − �) dx2�i ∣∣∣∣�=1= 1(j − 1)!(k − 1)!�j−1� �k−1� �l − �l�− � ∣∣∣∣�=1: (8)It turns out that (8) appears rather onvenient for alulations disussedbelow, though one an also obtain more expliit expressions likeP (j;k)l = l−j−k+1∑n=0 (j − 1 + nj − 1 )(l − j − nk − 1 )�n;or P (j;k)l = ( l − jk − 1) 2F1(−l + j + k − 1; j
−l + j ∣∣∣∣�):



162 A. V. KITAEV, A. G. PRONKOThese expressions show that P (j;k)l is in fat a polynomial of degree l− j−k + 1 in �.
§3. The ase of square domain3.1. Expliit formulas. The speial ase where � has a retangularshape orresponds to the usual emptiness formation probability (EFP) [11℄.In turn, its important partiular ase is where � has the form of a square.This ase is very interesting sine EFP has rather simple expliit form,while still represent a nontrivial orrelation funtion of the model.It is onvenient to set N = r + s, so that � = (s; : : : ; s), that is rj = r,j = 1; : : : ; s. For the EFP we introdue a short notationfs := G(r;:::;r)r+s;s :Equation (6) impliesfs = (1− �)s2 det16j;k6s [P (s;k)r+j+k−2] ;so that, taking into aount (8), we getfs = (1− �)s2[(s− 1)!℄s∏s−1k=0 k!

× det16j;k6s [�s−1� �k−1� �r+j+k−2 − �r+j+k−2�− � ∣∣∣∣�=1] : (9)With the help of equation (9) one proves thatfs ≡ fs(�) ≡ 0 for r < s:and �nd expliit expressions for EFP for some small values of s, namely,f0 = 1;f1 = 1− �r;f2 = 1− r2�r−1 + 2(r2 − 1)�r − r2�r+1 + �2r;f3=1− r2(r−1)24 (�r−2−�2r+2)+r2(r−2)(r+1)(�r−1−�2r+1)
− 3(r2−1)(r2−2)2 (�r−�2r)+r2(r+2)(r−1)(�r+1−�2r−1)
− r2(r + 1)24 (�r+2 − �2r−2)− �3r :



SOME EXPLICIT RESULTS 163As a funtion of �, the EFP fs = fs(�) has the following struturefs = (1− �)s2 f̃s(�):where f̃s(�) is a self-reiproal (palindromi) polynomial of the degree(r − s)s, whose oeÆients are positive integers, andf̃s(0) = 1; r > s:In partiular,f̃1 = r−1∑m=0�m;f̃2 = 2r−2∑m=0(r + 1− |r −m− 2|3 )�m;f̃3 = r−1∑m=0(m+88 )(�3r−3−m+�m)+[ 32 (r−3)℄∑m=r−2 pm(�3(r−3)−m + �m);pr−2 = (r + 68 )
− r2(r − 1)24 ; pr−1 = (r + 78 )

− r2(5r2 − 14r + 17)4 ; : : :pr+k = (r + k + 88 )
− r24 ((r2 − 25(2k + 9)r)(k + 64 )+ Ck)− 3(k + 88 );Ck = (k + 64 )2k2 + 18k + 335 ;m = r + k; k = −2;−1; 0; 1; : : : ; [32(r − 3)]− r:Here [ · ℄ denotes the integer part of the orresponding number, andsgn(x) = 1 x > 00 x = 0

−1 x < 0:The polynomial f̃3 has the following intriguing property: for odd r it isirreduible over Z. For odd r apart with the \trivial" divisor (1 + �) it isdivisible by exatly two self-reiproal polynomials with oeÆients in Z+



164 A. V. KITAEV, A. G. PRONKOof the degrees 6 [r + 24 ]
− 6; 6 [r4]− 4:For example,f̃3∣∣r=4 = (�+ 1)(�2 + 8�+ 1);f̃3∣∣r=5 = �6 + 9�5 + 45�4 + 65�3 + 45�2 + 9�+ 1;f̃3∣∣r=6 = (�+ 1)(�2 + 5�+ 1)(�6 + 3�5 + 21�4 + 20�3 + 21�2 + 3�+ 1);f̃3∣∣r=7 = �12 + 1 + 9(�11 + �) + 45(�10 + �2) + 165(�9 + �3)+ 495(�8 + �4) + 846(�7 + �5) + 994�6;f̃3∣∣r=8 = (�+ 1)(�6 + 6�5 + 21�4 + 28�3 + 21�2 + 6�+ 1)

× (�8 + 2�7 + 4�6 + 34�5 + 2�4 + 34�3 + 4�2 + 2�+ 1):We �nish this subsetion by noting, that for r = s the polynomial f̃s(�)is equal to 1, that implies the following relation for the EFP:fs∣∣r=s = (1− �)s2 :If r = s+ 1, then one an �nd thatf̃s∣∣r=s+1 = s∑m=0( sm)2�m:This last relation is, in fat, a partiular ase of a more general equivalentrepresentation for the EFP in terms of random matrix model, onsideredbelow.3.2. Equivalent representations. The funtion fs has an interestingproperty: its seond logarithmi derivative with respet to the variablelog� is expressed in terms of square of some polynomial in �, namely,f2s �2log� log fs = fs(���)2fs − (���fs)2 = −r2�r−sw2s ;where ws is a self-reiproal polynomial of the degree (s − 1)(r + 1). The�rst few polynomials read:w1 = 1;w2 = (1 + �) (1− �r)− r(1− �) (1 + �r) ;w3=(r−12 )(1+�2r+2)−(r2−1)(�+�2r+1)+(r+12 )(�2+�2r)



SOME EXPLICIT RESULTS 165+ 14r2(r2 − 1)(1 + �4)�r−1 − (r4 − 3r2 + 2)(1 + �2)�r+ 12 (3r4 − 11r2 − 4)�r+1:These polynomials satisfy the initial ondition ws(0) = (r−1s−1). It is fairlyeasy to see that these polynomials possess the propertyf2s − r2(1− �)2�r−s−1s2 w2s = fs+1fs−1;whih implies that the EFP satis�es the equationf2s (���)2 log fs = s2�(1− �)2 (fs+1fs−1 − f2s ): (10)One more relation of the similar kind isf2s − (1− �)2�r−s−1w2s = fs[r + 1℄fs[r − 1℄; fs[r ± 1℄ ≡ fs∣∣r 7→r±1:This implies the following equationf2s (���)2 log fs = r2�(1− �)2 (fs[r + 1℄fs[r − 1℄− f2s ): (11)The equations (10) and (11) are, in fat, equations of the Toda hierarhy.For example, the equation (10) is losely related with the fat that the EFPan be represented as the following Hankel determinant:fs = 1s−1∏j=0(j!)2 (1− �)s2� s(s−1)2 det16j;k6s [(���)j+k−2P (1;1)r ] : (12)This representation an be obtained by making use various linear relationssatis�ed by the polynomials P (j;k)l ; for full details see [13, Set. 2℄.Finally, using P (1;1)r = (1−�r)=(1−�) =∑r−1m=0 �m one an notie that(12) an be written as a multiple sum:fs= 1s! s−1∏j=0(j!)2 (1−�)s2� s(s−1)2 r−1∑m1;:::;ms=0 ∏16j<k6s(mj−mk)2�m1+:::+ms : (13)This formula represents EFP as a disrete random matrix model or a asmodel of disrete Coulomb gas. Its peuliar is the presene of two hard wallsin addition to the onstraint of disreteness, whih both are responsiblefor appearane of the third-order phase transition [14℄.



166 A. V. KITAEV, A. G. PRONKO3.3. Relation with the Painlev�e VI. We onsider here the Painlev�e VIin its �-form [22{24℄. This is the following nonlinear ordinary di�erentialequation:(1− �)2�2(�′′)2 − 4[(1− �)�′ + �][��′ − �]�′+ 2s0[(1− 2�)�′ + 2�]− s1(�′)2 − s2�′ − s3 = 0 (14)here and below the prime denotes derivative with respet to �, and s0; : : : ; s3are onstants, whih are expressed in terms of the usual Painlev�e VI mon-odromy parameters �1; : : : ; �4 as follows:s0 = �1�2�3�4;s1 = �21 + �22 + �23 + �24 ;s2 = �21�22 + �21�23 + �21�24 + �22�23 + �22�24 + �23�24 ;s3 = �21�22�23 + �21�22�24 + �21�23�24 + �22�23�24 :It is known [22℄ that funtion � is related with the Hamiltonian funtion(HVI) of the Painlev�e VI, � = �(� − 1)HVI, and the orresponding � -funtion, � = �(�− 1)� ′� +B�+ C; (15)where B and C are some normalizing onstants whih an be expliitlyexpressed in terms of the parameters �1; : : : ; �4.The EFP is related to the Painlev�e VI upon setting� = fs; B = − (r + s)24 ; C = rs2 ; (16)and �1 = �3 = −r + s2 ; �2 = −�4 = −r − s2 :This statement is partiular ase of a more general result proven in [16℄(see Th. 1.1 therein).Here, as a omplement to the derivation provided in [16℄, it seems usefulto give a hint how the onnetion of the EFP with the Painlev�e VI an bededued from (12). Indeed, the essential fator here, whih an be identi�edwith the � -funtion, is the Hankel determinant. To see that this is indeedthe ase, let us introdue new variable t = ��−1 . Then��� = −t(t− 1)�t;



SOME EXPLICIT RESULTS 167and P (1;1)r = (1− t)r−12F1(−r + 1;−r;−r + 1; t);where 2F1 is the Gauss hypergeometri funtion. These formulas show thatthe determinant in (12) is, in fat, a � -funtion of Painlev�e VI desribingits lassial solutions [23, 24℄. Sine the hange of the variables � 7→ t is asymmetry of Painlev�e VI, the same holds true with respet the variable �for the determinant in (12), or, equivalently, for the whole expression in(12).
§4. The ase of trianglar domain4.1. Expliit formulas. Another interesting ase is where � has a tri-angular shape. Again, we set N = r + s, and then we hoose � = (s; s −1; : : : ; 2; 1), that is rj = r + j − 1, j = 1; : : : ; s. For this triangular domainEFP (TDEFP) we introdue a short notationgs := G(r;r+1;:::;r+s−1)r+s;s :Equation (6) impliesgs = (1− �) s(s+1)2 det16j;k6s [P (k;k)r+j+k−2] ;and from (8) we getgs = (1− �) s(s+1)2

∏s−1k=0(k!)2 det16j;k6s[�k−1� �k−1� �r+j+k−2 − �r+j+k−2�− � ∣∣∣∣�=1] : (17)By using (17) one an �nd expliit expressions for TDEFP for some smallvalues of s, namely,g1 = f1 = 1− �r;g2 = 1− (2r + 1)(1− �)�r − �2r+1;g3=1−(r+1)(2r+1)(�r+�2r+3)+(2r+1)(2r+3)(�r+1+�2r+2)
− (r + 1)(2r + 3) (�r+2 + �2r+1)+ �3r+3;g4 = 1− (2r + 33 )(�r + �3r+6)+ (r + 2)(2r + 1)(2r + 3) (�r+1 + �3r+5)
− (r + 1)(2r + 3)(2r + 5) (�r+2 + �3r+4)



168 A. V. KITAEV, A. G. PRONKO+(2r + 53 )(�r+3 + �3r+3)− 2r + 32 (2r + 43 )(1 + �4)�2r+1+ (2r + 1)(2r + 3)2(2r + 5)3 (1 + �2)�2r+2 + �4r+6:As a funtion of �, the TDEFP gs = gs(�) has the following struturegs = (1− �) s(s+1)2 g̃s(�); g̃s(0) = 1; (18)where g̃s(�) is a self-reiproal polynomial of the degree s(r − 1), withpositive integer oeÆients. In partiular,g̃1 = f̃1 = r−1∑m=0�m;g̃2 = 2r−2∑m=0(r + 1− |r −m− 1|2 )�m;g̃3= r−1∑m=0(m+55 )(�3r−3−m+�m)+2[32 (r−1)]+2∑m=r 1+sgn( 32 (r−1)−m)2
×
{(m+55 )

− (2r+1)(5r+4−m)4 (m−r+33 )
−
(m−r+35 )}

×
(�3r−3−m + �m) :Note that for r even, the polynomial g̃3 is divisible by 1 + �.For r = 1 the polynomial g̃s is equal to 1, that implies the followingrelation for the TDEFP: gs∣∣r=1 = (1− �) s(s+1)2 :In the ase of r = 2, by studying various values of s we observe thatg̃s∣∣r=2 = s∑m=0 s+ 1(s−m+ 1)(m+ 1)( sm)2�m: (19)This formula an be rewritten in terms of the Gegenbauer polynomials,g̃s∣∣r=2 = 2(1− �) 12 s(s+3)(s+ 1)(s+ 2) C3=2s (1 + �1− �) ;where C3=2s (·) is the Gegenbauer polynomial of degree s [21℄.



SOME EXPLICIT RESULTS 1694.2. Equivalent representations. Even though the expliit expressionsfor funtions gs look even simpler than those for fs, it seems that funtionsgs do not possess any simple analogues of the representations listed in Set.3.2 for funtions fs.There is, however, one exeption whih worth to be mentioned here,sine it is in fat provides a representation for the TDEFP whih remindsvery muh a disrete random matrix model (though, stritly speaking, it isnot). Namely, by investigating expliit expressions for funtions g̃s, relatedto gs modulo fator (1−�)s(s+1)=2, see (18), we disover, for s = 2; 3; 4; 5,thatg̃s = ∑06m16:::6ms6r−1 ∏16j<k6s 2mk − 2mj + k − jk − j 

�m1+:::+ms : (20)We also mention here that (20) is agreement with (19) in the ase of r = 2,whih have been veri�ed for values of s = 3; 4; 5, against diret ountingof on�gurations of the model ontributing to the TDEFP.We note that in (20) the summation is running over weakly inreasingsequenes. We also note that the sum annot be put in a fully symmet-ri form, namely, with the summand invariant under permutations of thesummation variables, like in (13). For this reason, formula (20) is not ausual random matrix model representation, but it is fat an analogue ofsuh for the EFP (13).De�nitely, the struture of the produt in (20) strongly suggests thatthis representation ould be derived from (17) by making use known rela-tions for the Shur polynomials [20℄. However, beause of peuliar strutureof the matrix in (17), the proof seems to be not straightforward, and weleave this problem for a separate publiation.4.3. Relation with the Painlev�e VI. We �nd that the TDEFP an berelated to the Painlev�e VI is several speial ases of the disrete parameters.Besides the trivial ase of s = 1, in whih g1 = f1, and therefore (16)applies, we �nd that the relation an also be provided for s = 2, r isarbitrary, and r = 2, s is arbitrary; the ase of s = r = 2 admits evenmore speial treatment.Case s = 2, r is arbitrary. In this ase the TDEFP is given byg2 = (1− �)3 2r−2∑m=0(r + 1− |r −m− 1|2 )�m:



170 A. V. KITAEV, A. G. PRONKOAs it an be diretly veri�ed, for arbitrary values of r > 3 (with theexeption of the ase of r = 2 onsidered separately below), the �-formof Painlev�e VI (14) annot be ful�lled with any hoie of parameters B,C and s0; : : : ; s3. Nevertheless, let us onsider the �rst-order derivative ofthis funtion, g′2 = −(2r + 1)(1− �)2�r−1 r−1∑m=0(r −m)�m:Sine the sum here is in fat a trunating Gauss hypergeometri series,one might expet that it an serve as the � -funtion for Painlev�e VI.Indeed, by diret inspetion for various values of r = 3; 4; 5; 6; : : :, wehave found that (14) is satis�ed with� = g′2; B = − (r + 1)2 + 44 ; C = r + 34 ;and
{�1; : : : ; �4} = {−r − 12 ; r − 12 ; r + 12 ; r + 32 } ;where the values of the parameters �1; : : : ; �4 an be rearranged arbitrarily(below we use the inreasing order).Case r = 2, s is arbitrary. In this ase, as it follows from (18) and (19),gs∣∣r=2 = (1− �) s(s+1)2 s∑m=0 s+ 1(s−m+ 1)(m+ 1)( sm)2�m: (21)The �-form of Painlev�e VI (14) is ful�lled with the following hoie in (15):� = g∣∣r=2; B = −

(s+ 22 ); C = (s+ 22 )
− 12 ;and we have also set�1 = 0; �2 = 1; �3 = s+ 1; �4 = s+ 2:The funtion (21) an be also presented in various ways in terms of�nite hypergeometri series. For example,gs∣∣r=2 = (1− �) 12 s(s+1) (1 + (s+ 1)s2 � 3F2(1;−s; 1− s; 2; 3;�)) :



SOME EXPLICIT RESULTS 171Using suh representations one an �nd the following asymptotis:� =�→∞
−�+ 12 + ∞∑k=1(−1)k+1 ak�k ;� =�→0 C +B�+ � ∞∑k=1(−1)k+1ak�k;where ak k = 1; 2; : : : is the following sequene of positive integers:a1 = 112s(s+ 3)(s+ 2)(s+ 1);a2 = 148s2(s+ 1)(s+ 2)(s+ 3)2;a3 = a215(4s2 + 12s− 1);a4 = a2180(13s4 + 78s3 + 109s2 − 24s+ 4);a5 = a21680(3s2 + 9s− 2)(11s4 + 66s3 + 95s2 − 12s+ 8):Case s = r = 2. In the ase of s = r = 2, the TDEFP has the followingform g2∣∣r=2 = (1− �)3(�2 + 3�+ 1):It an be easily seen that �-form of Painlev�e VI (14) is ful�lled with thefollowing hoie in (15)� = g2∣∣r=2; B = −6; C = 112 ;and �1 = 0; �2 = 1; �3 = 3; �4 = 4:Expliitly, the �-funtion in this ase has the form� = 112 − �− � 5(1 + �)1 + 3�+ �2 :Here, the rational funtion given by the ratio in the last term, whih isobviously invariant under the hange � 7→ 1=�, has the following � → 0expansion5(1 + �)1 + 3�+ �2 = 5− 10�+25�2− 65�3+170�4− 445�5+1165�6+O(�7):
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