
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 465, 2017 Ç.A. V. Kitaev, A. G. PronkoSOME EXPLICIT RESULTS FOR THE GENERALIZEDEMPTINESS FORMATION PROBABILITY OF THESIX-VERTEX MODELAbstra
t. We study a multi-point 
orrelation fun
tion of the six-vertex model on the square latti
e with the domain wall bound-ary 
onditions whi
h is 
alled the generalized emptiness formationprobability. This fun
tion des
ribes probability of observing the fer-roele
tri
 order around all the verti
es of any Ferrer diagram � at thetop-left 
orner of the latti
e. For the free-fermion model we deriveand 
ompare expli
it formulas for this 
orrelation fun
tion for two
ases of diagram �: the square and triangle. We found a 
onne
tionof our formulas with the � -fun
tion of the sixth Painlev�e equation.
§1. Introdu
tionOne of the most interesting properties of the six-vertex model with do-main wall boundary 
onditions [1{3℄ is existen
e of the limiting shape,or phase separation phenomena [4, 5℄; for re
ent advan
es see [6℄ and ref-eren
es therein. These phenomena arise in the thermodynami
 limit andtheir detailed des
ription is 
losely related with the problem of 
al
ulationof the 
orresponding 
orrelation fun
tions. The general approa
h to thisproblem for the six-vertex model is based on the quantum integrability,whilst in the study and des
ription of the quantum 
orrelation fun
tionsan important role play mathemati
al stru
tures related with 
lassi
al in-tegrable systems [7℄, random matri
es and 
ombinatori
s [8℄.A notable progress in 
al
ulation of 
orrelation fun
tions of the six-vertex model with the domain wall boundary 
onditions is a
hieved for
orrelations near the boundaries [9, 10℄. An example of 
orrelation fun
-tion whi
h 
an be 
omputed away from the boundary, i.e., for the bulk, isprovided by the so-
alled emptiness formation probability (EFP), whi
h
an represented as a multiple 
ontour integral [11℄. By using this integralKey words and phrases: latti
e models, 
orrelation fun
tions, matrix models, dis-
rete Coulomb gas, the sixth Painlev�e equation.This work is supported in part by the Russian Foundation for Basi
 Resear
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158 A. V. KITAEV, A. G. PRONKOrepresentation an expli
it analyti
 expression for the spatial 
urve sep-arating ferroele
tri
 order from disorder | the so-
alled ar
ti
 
urve isobtained in [12℄.At the free-fermion point the EFP 
an be evaluated in various forms: asa Hankel or a Fredholm determinant, as a dis
rete random matrix model,and as solution of Toda latti
e hierar
hy [13℄. These representations leadto an interpretation of the ar
ti
 
urve as a 
urve of the third-order phasetransition [14℄ and determine thermodynami
s the six-vertex model on anL-shaped domain [15℄. In [16℄, we showed that the EFP at the free-fermionpoint is nothing but the � -fun
tion of the sixth Painlev�e equation (referedbelow as Painlev�e VI), and also that this fa
t 
an be used to 
onstru
t fullasymptoti
 expansions in the thermodynami
 limit for various regimes ofparameters.In this paper, we address similar problems in relation to the generalizedemptiness formation probability (GEFP), introdu
ed and evaluated in theform of a multiple 
ontour integral in [17℄. The GEFP is the probabilityof the ferroele
tri
 order around all verti
es whi
h belongs to a Ferrerdiagram � lo
ated at the top-left 
orner of the latti
e; the 
ase of EFP
orresponds to � of a re
tangular form. Here, we fo
us our main attentionto the GEFP in the 
ase of � having the shape of triangle. In [18℄, this
ase is mentioned as the six-vertex model on a pentagonal domain.Spe
i�
ally, here we present and 
ompare various expli
it formulas forGEFP, whi
h 
orrespond to � with the shape of square and triangle. Theformer 
ase is just a spe
ial 
ase of the EFP already studied in [13, 16℄,while the results for the triangle are new. In parti
ular, for this 
ase wedis
over a random matrix like representation for GEFP. Additionally, forspe
ial values of the dis
rete parameters we �nd relations GEFP withPainlev�e VI and point out intriguing 
ombinatorial interpretations for therelated �-fun
tion. We believe that these results would prove to be usefulin further study of the limit shape phenomena in the six-vertex model.
§2. The generalized emptiness formation probability2.1. De�nition and integral representation. Consider the six-vertexmodel (see, e.g., [19℄) on the N×N square latti
e with domain wall bound-ary 
onditions. This means that the latti
e is obtained by interse
tion of Nhorizontal and N verti
al lines, and the arrows on the external edges are�xed as follows: on the verti
al lines (top and bottom) they are in
oming(pointing downward and upward, respe
tively), while on the horizontal



SOME EXPLICIT RESULTS 159ones (left and right) they are outgoing (pointing left and right, respe
-tively) [1{3℄.Let � be a Young diagram 
onsisting out of s lines, � = (�1; : : : ; �s),with the rows satisfying the 
onditions �j 6 N − j. Letrj = N − �j ; j = 1; : : : ; s: (1)A

ording to [17℄, the GEFP G(r1;:::;rs)N;s is de�ned as the probability ofobtaining a 
on�guration of the model in whi
h arrows of the jth (
ountedfrom the top) horizontal line lying to the left after the rjth verti
al line(
ounted from the right), are all pointing left. Equivalently, treating � as aFerrer diagram, one may de�ne GEFP as the probability that the verti
esof the top-left 
orner of the latti
e forming the shape � are all having thesame 
on�guration of arrows around them: horizontal arrow are pointingleft and verti
al ones are pointing downward. (The equivalen
e of twode�nitions is due to both the i
e rule of the six-vertex model and thedomain wall boundary 
onditions.)In [17℄ the following integral representation for GEFP was derived:G(r1;:::;rs)N;s = (−1)s ∮C0 · · ·
∮C0 s∏j=1 [(t2 − 2�t)zj + 1℄s−jzrjj (zj − 1)s−j+1

×
∏16j<k6s zj − zkt2zjzk − 2�tzj + 1 hN;s(z1; : : : ; zs) dz1 · · · dzs(2�i)s : (2)Here, C0 is a simple 
ounter
lo
kwise oriented 
ontour surrounding thepoint z = 0 and no other singularity of the integrand. The Boltzmannweights a, b, 
 of the six-vertex model are en
oded in the parameterst ≡ ba ; � = a2 + b2 − 
22ab :and they also enter impli
itly into the fun
tionhN;s(z1; : : : ; zs) = det [zk−1j (zj − 1)s−khN−k+1(zj)]j;k=1;:::;s∏16j<k6s(zj − zk) : (3)Here, the fun
tions hN−k+1(z) are polynomials of degree N − k in z, withthe 
oeÆ
ients depending on the weights of the model (i.e., on the pa-rameters t and �). These polynomials are generating fun
tions of 
ertainboundary 
orrelation fun
tion of the six-vertex model with domain-wall



160 A. V. KITAEV, A. G. PRONKOboundary 
onditions on the (N−k+1)× (N −k+1) latti
es, k = 1; : : : ; s.The expli
it form of these fun
tions is very 
ompli
ated, being simple onlyin the 
ase of the weights obeying the free-fermion 
ondition.2.2. The free-fermion model. The free-fermion 
ondition for the six-vertex model means that the weights satisfy the following equationa2 + b2 = 
2; that is � = 0:For this model, it is 
onvenient to use the parameter� = t21 + t2 ;so that the weights are parametrized su
h thata=
 = √1− �; b=
 = √�:In this 
ase [10, 11℄:hN (z) = (1 + t2z1 + t2 )N−1 = (1− �+ �z)N−1:Hen
e,hN;s(z1; : : : ; zs) = s∏j=1(1− �+ �zj)N−s ∏16j<k6s(1− �+ �zjzk):Therefore, from (2) it follows that at � = 0 the GEFP readsG(r1;:::;rs)N;s = (−1)s ∮C0 · · ·
∮C0 ∏16j<k6s(zj − zk)

×
s∏j=1 (1− �+ �zj)N−jzrjj (zj − 1)s−j+1 dz1 · · · dzs(2�i)s : (4)The presen
e of the Vandemonde determinant times a single produ
t inthe integrand implies that GEFP 
an be rewritten as a determinant.2.3. Determinant representation. Before bringing (4) in the form ofa determinant, it is useful, to redu
e to minimum subsequent 
al
ulations,



SOME EXPLICIT RESULTS 161to make a 
hange of the integration variables zj 7→ xj = (1− �+�zj)=zj .This yieldsG(r1;:::;rs)N;s = (−1) s(s−1)2 s∏j=1(1− �)N−rj ∮C∞

· · ·
∮C∞

∏16j<k6s(xk − xj)
×

s∏j=1 xN−jj(xj − �)N−rj (xj − 1)s−j+1 dx1 · · · dxs(2�i)s ; (5)where C∞ denotes a 
losed 
ontour of large radius, 
ounter
lo
kwise ori-ented around the origin. Using
∏16j<k6s(xk − xj) = (−1) s(s−1)2 det [xs−kj ]j;k=1;:::;s ;one 
an readily rewrite (5) as a determinantG(r1;:::;rs)N;s = s∏j=1(1− �)N−rj × det16j;k6s [P (N−rs−k+1;k)N−s+j+k−2 ] ; (6)where we have used the following notation:P (j;k)l = ∮C∞

xl(x− �)j(x− 1)k dx2�i : (7)The integral in (7) 
an be evaluated, usingP (j;k)l = 1(j − 1)!(k − 1)!�j−1� �k−1� ∮C∞

xl(x− �)(x − �) dx2�i ∣∣∣∣�=1= 1(j − 1)!(k − 1)!�j−1� �k−1� �l − �l�− � ∣∣∣∣�=1: (8)It turns out that (8) appears rather 
onvenient for 
al
ulations dis
ussedbelow, though one 
an also obtain more expli
it expressions likeP (j;k)l = l−j−k+1∑n=0 (j − 1 + nj − 1 )(l − j − nk − 1 )�n;or P (j;k)l = ( l − jk − 1) 2F1(−l + j + k − 1; j
−l + j ∣∣∣∣�):



162 A. V. KITAEV, A. G. PRONKOThese expressions show that P (j;k)l is in fa
t a polynomial of degree l− j−k + 1 in �.
§3. The 
ase of square domain3.1. Expli
it formulas. The spe
ial 
ase where � has a re
tangularshape 
orresponds to the usual emptiness formation probability (EFP) [11℄.In turn, its important parti
ular 
ase is where � has the form of a square.This 
ase is very interesting sin
e EFP has rather simple expli
it form,while still represent a nontrivial 
orrelation fun
tion of the model.It is 
onvenient to set N = r + s, so that � = (s; : : : ; s), that is rj = r,j = 1; : : : ; s. For the EFP we introdu
e a short notationfs := G(r;:::;r)r+s;s :Equation (6) impliesfs = (1− �)s2 det16j;k6s [P (s;k)r+j+k−2] ;so that, taking into a

ount (8), we getfs = (1− �)s2[(s− 1)!℄s∏s−1k=0 k!

× det16j;k6s [�s−1� �k−1� �r+j+k−2 − �r+j+k−2�− � ∣∣∣∣�=1] : (9)With the help of equation (9) one proves thatfs ≡ fs(�) ≡ 0 for r < s:and �nd expli
it expressions for EFP for some small values of s, namely,f0 = 1;f1 = 1− �r;f2 = 1− r2�r−1 + 2(r2 − 1)�r − r2�r+1 + �2r;f3=1− r2(r−1)24 (�r−2−�2r+2)+r2(r−2)(r+1)(�r−1−�2r+1)
− 3(r2−1)(r2−2)2 (�r−�2r)+r2(r+2)(r−1)(�r+1−�2r−1)
− r2(r + 1)24 (�r+2 − �2r−2)− �3r :



SOME EXPLICIT RESULTS 163As a fun
tion of �, the EFP fs = fs(�) has the following stru
turefs = (1− �)s2 f̃s(�):where f̃s(�) is a self-re
ipro
al (palindromi
) polynomial of the degree(r − s)s, whose 
oeÆ
ients are positive integers, andf̃s(0) = 1; r > s:In parti
ular,f̃1 = r−1∑m=0�m;f̃2 = 2r−2∑m=0(r + 1− |r −m− 2|3 )�m;f̃3 = r−1∑m=0(m+88 )(�3r−3−m+�m)+[ 32 (r−3)℄∑m=r−2 pm(�3(r−3)−m + �m);pr−2 = (r + 68 )
− r2(r − 1)24 ; pr−1 = (r + 78 )

− r2(5r2 − 14r + 17)4 ; : : :pr+k = (r + k + 88 )
− r24 ((r2 − 25(2k + 9)r)(k + 64 )+ Ck)− 3(k + 88 );Ck = (k + 64 )2k2 + 18k + 335 ;m = r + k; k = −2;−1; 0; 1; : : : ; [32(r − 3)]− r:Here [ · ℄ denotes the integer part of the 
orresponding number, andsgn(x) = 1 x > 00 x = 0

−1 x < 0:The polynomial f̃3 has the following intriguing property: for odd r it isirredu
ible over Z. For odd r apart with the \trivial" divisor (1 + �) it isdivisible by exa
tly two self-re
ipro
al polynomials with 
oeÆ
ients in Z+



164 A. V. KITAEV, A. G. PRONKOof the degrees 6 [r + 24 ]
− 6; 6 [r4]− 4:For example,f̃3∣∣r=4 = (�+ 1)(�2 + 8�+ 1);f̃3∣∣r=5 = �6 + 9�5 + 45�4 + 65�3 + 45�2 + 9�+ 1;f̃3∣∣r=6 = (�+ 1)(�2 + 5�+ 1)(�6 + 3�5 + 21�4 + 20�3 + 21�2 + 3�+ 1);f̃3∣∣r=7 = �12 + 1 + 9(�11 + �) + 45(�10 + �2) + 165(�9 + �3)+ 495(�8 + �4) + 846(�7 + �5) + 994�6;f̃3∣∣r=8 = (�+ 1)(�6 + 6�5 + 21�4 + 28�3 + 21�2 + 6�+ 1)

× (�8 + 2�7 + 4�6 + 34�5 + 2�4 + 34�3 + 4�2 + 2�+ 1):We �nish this subse
tion by noting, that for r = s the polynomial f̃s(�)is equal to 1, that implies the following relation for the EFP:fs∣∣r=s = (1− �)s2 :If r = s+ 1, then one 
an �nd thatf̃s∣∣r=s+1 = s∑m=0( sm)2�m:This last relation is, in fa
t, a parti
ular 
ase of a more general equivalentrepresentation for the EFP in terms of random matrix model, 
onsideredbelow.3.2. Equivalent representations. The fun
tion fs has an interestingproperty: its se
ond logarithmi
 derivative with respe
t to the variablelog� is expressed in terms of square of some polynomial in �, namely,f2s �2log� log fs = fs(���)2fs − (���fs)2 = −r2�r−sw2s ;where ws is a self-re
ipro
al polynomial of the degree (s − 1)(r + 1). The�rst few polynomials read:w1 = 1;w2 = (1 + �) (1− �r)− r(1− �) (1 + �r) ;w3=(r−12 )(1+�2r+2)−(r2−1)(�+�2r+1)+(r+12 )(�2+�2r)



SOME EXPLICIT RESULTS 165+ 14r2(r2 − 1)(1 + �4)�r−1 − (r4 − 3r2 + 2)(1 + �2)�r+ 12 (3r4 − 11r2 − 4)�r+1:These polynomials satisfy the initial 
ondition ws(0) = (r−1s−1). It is fairlyeasy to see that these polynomials possess the propertyf2s − r2(1− �)2�r−s−1s2 w2s = fs+1fs−1;whi
h implies that the EFP satis�es the equationf2s (���)2 log fs = s2�(1− �)2 (fs+1fs−1 − f2s ): (10)One more relation of the similar kind isf2s − (1− �)2�r−s−1w2s = fs[r + 1℄fs[r − 1℄; fs[r ± 1℄ ≡ fs∣∣r 7→r±1:This implies the following equationf2s (���)2 log fs = r2�(1− �)2 (fs[r + 1℄fs[r − 1℄− f2s ): (11)The equations (10) and (11) are, in fa
t, equations of the Toda hierar
hy.For example, the equation (10) is 
losely related with the fa
t that the EFP
an be represented as the following Hankel determinant:fs = 1s−1∏j=0(j!)2 (1− �)s2� s(s−1)2 det16j;k6s [(���)j+k−2P (1;1)r ] : (12)This representation 
an be obtained by making use various linear relationssatis�ed by the polynomials P (j;k)l ; for full details see [13, Se
t. 2℄.Finally, using P (1;1)r = (1−�r)=(1−�) =∑r−1m=0 �m one 
an noti
e that(12) 
an be written as a multiple sum:fs= 1s! s−1∏j=0(j!)2 (1−�)s2� s(s−1)2 r−1∑m1;:::;ms=0 ∏16j<k6s(mj−mk)2�m1+:::+ms : (13)This formula represents EFP as a dis
rete random matrix model or a asmodel of dis
rete Coulomb gas. Its pe
uliar is the presen
e of two hard wallsin addition to the 
onstraint of dis
reteness, whi
h both are responsiblefor appearan
e of the third-order phase transition [14℄.



166 A. V. KITAEV, A. G. PRONKO3.3. Relation with the Painlev�e VI. We 
onsider here the Painlev�e VIin its �-form [22{24℄. This is the following nonlinear ordinary di�erentialequation:(1− �)2�2(�′′)2 − 4[(1− �)�′ + �][��′ − �]�′+ 2s0[(1− 2�)�′ + 2�]− s1(�′)2 − s2�′ − s3 = 0 (14)here and below the prime denotes derivative with respe
t to �, and s0; : : : ; s3are 
onstants, whi
h are expressed in terms of the usual Painlev�e VI mon-odromy parameters �1; : : : ; �4 as follows:s0 = �1�2�3�4;s1 = �21 + �22 + �23 + �24 ;s2 = �21�22 + �21�23 + �21�24 + �22�23 + �22�24 + �23�24 ;s3 = �21�22�23 + �21�22�24 + �21�23�24 + �22�23�24 :It is known [22℄ that fun
tion � is related with the Hamiltonian fun
tion(HVI) of the Painlev�e VI, � = �(� − 1)HVI, and the 
orresponding � -fun
tion, � = �(�− 1)� ′� +B�+ C; (15)where B and C are some normalizing 
onstants whi
h 
an be expli
itlyexpressed in terms of the parameters �1; : : : ; �4.The EFP is related to the Painlev�e VI upon setting� = fs; B = − (r + s)24 ; C = rs2 ; (16)and �1 = �3 = −r + s2 ; �2 = −�4 = −r − s2 :This statement is parti
ular 
ase of a more general result proven in [16℄(see Th. 1.1 therein).Here, as a 
omplement to the derivation provided in [16℄, it seems usefulto give a hint how the 
onne
tion of the EFP with the Painlev�e VI 
an bededu
ed from (12). Indeed, the essential fa
tor here, whi
h 
an be identi�edwith the � -fun
tion, is the Hankel determinant. To see that this is indeedthe 
ase, let us introdu
e new variable t = ��−1 . Then��� = −t(t− 1)�t;



SOME EXPLICIT RESULTS 167and P (1;1)r = (1− t)r−12F1(−r + 1;−r;−r + 1; t);where 2F1 is the Gauss hypergeometri
 fun
tion. These formulas show thatthe determinant in (12) is, in fa
t, a � -fun
tion of Painlev�e VI des
ribingits 
lassi
al solutions [23, 24℄. Sin
e the 
hange of the variables � 7→ t is asymmetry of Painlev�e VI, the same holds true with respe
t the variable �for the determinant in (12), or, equivalently, for the whole expression in(12).
§4. The 
ase of trianglar domain4.1. Expli
it formulas. Another interesting 
ase is where � has a tri-angular shape. Again, we set N = r + s, and then we 
hoose � = (s; s −1; : : : ; 2; 1), that is rj = r + j − 1, j = 1; : : : ; s. For this triangular domainEFP (TDEFP) we introdu
e a short notationgs := G(r;r+1;:::;r+s−1)r+s;s :Equation (6) impliesgs = (1− �) s(s+1)2 det16j;k6s [P (k;k)r+j+k−2] ;and from (8) we getgs = (1− �) s(s+1)2

∏s−1k=0(k!)2 det16j;k6s[�k−1� �k−1� �r+j+k−2 − �r+j+k−2�− � ∣∣∣∣�=1] : (17)By using (17) one 
an �nd expli
it expressions for TDEFP for some smallvalues of s, namely,g1 = f1 = 1− �r;g2 = 1− (2r + 1)(1− �)�r − �2r+1;g3=1−(r+1)(2r+1)(�r+�2r+3)+(2r+1)(2r+3)(�r+1+�2r+2)
− (r + 1)(2r + 3) (�r+2 + �2r+1)+ �3r+3;g4 = 1− (2r + 33 )(�r + �3r+6)+ (r + 2)(2r + 1)(2r + 3) (�r+1 + �3r+5)
− (r + 1)(2r + 3)(2r + 5) (�r+2 + �3r+4)



168 A. V. KITAEV, A. G. PRONKO+(2r + 53 )(�r+3 + �3r+3)− 2r + 32 (2r + 43 )(1 + �4)�2r+1+ (2r + 1)(2r + 3)2(2r + 5)3 (1 + �2)�2r+2 + �4r+6:As a fun
tion of �, the TDEFP gs = gs(�) has the following stru
turegs = (1− �) s(s+1)2 g̃s(�); g̃s(0) = 1; (18)where g̃s(�) is a self-re
ipro
al polynomial of the degree s(r − 1), withpositive integer 
oeÆ
ients. In parti
ular,g̃1 = f̃1 = r−1∑m=0�m;g̃2 = 2r−2∑m=0(r + 1− |r −m− 1|2 )�m;g̃3= r−1∑m=0(m+55 )(�3r−3−m+�m)+2[32 (r−1)]+2∑m=r 1+sgn( 32 (r−1)−m)2
×
{(m+55 )

− (2r+1)(5r+4−m)4 (m−r+33 )
−
(m−r+35 )}

×
(�3r−3−m + �m) :Note that for r even, the polynomial g̃3 is divisible by 1 + �.For r = 1 the polynomial g̃s is equal to 1, that implies the followingrelation for the TDEFP: gs∣∣r=1 = (1− �) s(s+1)2 :In the 
ase of r = 2, by studying various values of s we observe thatg̃s∣∣r=2 = s∑m=0 s+ 1(s−m+ 1)(m+ 1)( sm)2�m: (19)This formula 
an be rewritten in terms of the Gegenbauer polynomials,g̃s∣∣r=2 = 2(1− �) 12 s(s+3)(s+ 1)(s+ 2) C3=2s (1 + �1− �) ;where C3=2s (·) is the Gegenbauer polynomial of degree s [21℄.



SOME EXPLICIT RESULTS 1694.2. Equivalent representations. Even though the expli
it expressionsfor fun
tions gs look even simpler than those for fs, it seems that fun
tionsgs do not possess any simple analogues of the representations listed in Se
t.3.2 for fun
tions fs.There is, however, one ex
eption whi
h worth to be mentioned here,sin
e it is in fa
t provides a representation for the TDEFP whi
h remindsvery mu
h a dis
rete random matrix model (though, stri
tly speaking, it isnot). Namely, by investigating expli
it expressions for fun
tions g̃s, relatedto gs modulo fa
tor (1−�)s(s+1)=2, see (18), we dis
over, for s = 2; 3; 4; 5,thatg̃s = ∑06m16:::6ms6r−1 ∏16j<k6s 2mk − 2mj + k − jk − j 

�m1+:::+ms : (20)We also mention here that (20) is agreement with (19) in the 
ase of r = 2,whi
h have been veri�ed for values of s = 3; 4; 5, against dire
t 
ountingof 
on�gurations of the model 
ontributing to the TDEFP.We note that in (20) the summation is running over weakly in
reasingsequen
es. We also note that the sum 
annot be put in a fully symmet-ri
 form, namely, with the summand invariant under permutations of thesummation variables, like in (13). For this reason, formula (20) is not ausual random matrix model representation, but it is fa
t an analogue ofsu
h for the EFP (13).De�nitely, the stru
ture of the produ
t in (20) strongly suggests thatthis representation 
ould be derived from (17) by making use known rela-tions for the S
hur polynomials [20℄. However, be
ause of pe
uliar stru
tureof the matrix in (17), the proof seems to be not straightforward, and weleave this problem for a separate publi
ation.4.3. Relation with the Painlev�e VI. We �nd that the TDEFP 
an berelated to the Painlev�e VI is several spe
ial 
ases of the dis
rete parameters.Besides the trivial 
ase of s = 1, in whi
h g1 = f1, and therefore (16)applies, we �nd that the relation 
an also be provided for s = 2, r isarbitrary, and r = 2, s is arbitrary; the 
ase of s = r = 2 admits evenmore spe
ial treatment.Case s = 2, r is arbitrary. In this 
ase the TDEFP is given byg2 = (1− �)3 2r−2∑m=0(r + 1− |r −m− 1|2 )�m:
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an be dire
tly veri�ed, for arbitrary values of r > 3 (with theex
eption of the 
ase of r = 2 
onsidered separately below), the �-formof Painlev�e VI (14) 
annot be ful�lled with any 
hoi
e of parameters B,C and s0; : : : ; s3. Nevertheless, let us 
onsider the �rst-order derivative ofthis fun
tion, g′2 = −(2r + 1)(1− �)2�r−1 r−1∑m=0(r −m)�m:Sin
e the sum here is in fa
t a trun
ating Gauss hypergeometri
 series,one might expe
t that it 
an serve as the � -fun
tion for Painlev�e VI.Indeed, by dire
t inspe
tion for various values of r = 3; 4; 5; 6; : : :, wehave found that (14) is satis�ed with� = g′2; B = − (r + 1)2 + 44 ; C = r + 34 ;and
{�1; : : : ; �4} = {−r − 12 ; r − 12 ; r + 12 ; r + 32 } ;where the values of the parameters �1; : : : ; �4 
an be rearranged arbitrarily(below we use the in
reasing order).Case r = 2, s is arbitrary. In this 
ase, as it follows from (18) and (19),gs∣∣r=2 = (1− �) s(s+1)2 s∑m=0 s+ 1(s−m+ 1)(m+ 1)( sm)2�m: (21)The �-form of Painlev�e VI (14) is ful�lled with the following 
hoi
e in (15):� = g∣∣r=2; B = −

(s+ 22 ); C = (s+ 22 )
− 12 ;and we have also set�1 = 0; �2 = 1; �3 = s+ 1; �4 = s+ 2:The fun
tion (21) 
an be also presented in various ways in terms of�nite hypergeometri
 series. For example,gs∣∣r=2 = (1− �) 12 s(s+1) (1 + (s+ 1)s2 � 3F2(1;−s; 1− s; 2; 3;�)) :
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h representations one 
an �nd the following asymptoti
s:� =�→∞
−�+ 12 + ∞∑k=1(−1)k+1 ak�k ;� =�→0 C +B�+ � ∞∑k=1(−1)k+1ak�k;where ak k = 1; 2; : : : is the following sequen
e of positive integers:a1 = 112s(s+ 3)(s+ 2)(s+ 1);a2 = 148s2(s+ 1)(s+ 2)(s+ 3)2;a3 = a215(4s2 + 12s− 1);a4 = a2180(13s4 + 78s3 + 109s2 − 24s+ 4);a5 = a21680(3s2 + 9s− 2)(11s4 + 66s3 + 95s2 − 12s+ 8):Case s = r = 2. In the 
ase of s = r = 2, the TDEFP has the followingform g2∣∣r=2 = (1− �)3(�2 + 3�+ 1):It 
an be easily seen that �-form of Painlev�e VI (14) is ful�lled with thefollowing 
hoi
e in (15)� = g2∣∣r=2; B = −6; C = 112 ;and �1 = 0; �2 = 1; �3 = 3; �4 = 4:Expli
itly, the �-fun
tion in this 
ase has the form� = 112 − �− � 5(1 + �)1 + 3�+ �2 :Here, the rational fun
tion given by the ratio in the last term, whi
h isobviously invariant under the 
hange � 7→ 1=�, has the following � → 0expansion5(1 + �)1 + 3�+ �2 = 5− 10�+25�2− 65�3+170�4− 445�5+1165�6+O(�7):



172 A. V. KITAEV, A. G. PRONKOThe integer sequen
e5; 10; 25; 65; 170; 445; 1165; 3050; 7985; : : : ;
an be found in OEIS [25℄. These numbers are the sums of squares of theLu
as and Fibona

i numbers,L(n)2 + L(n+ 1)2 = 5(F (n)2 + F (n+ 1)2)= F (n− 2)2 + (n+ 3)2; n ∈ Z+:We re
all that the Lu
as numbers are de�ned asL(0) = 2; L(1) = 1; L(n+ 1) = L(n) + L(n− 1);and they form the sequen
e {2; 1; 3; 4; 7; 11; : : :}; the Fibona

i numbersare de�ned asF (−1) = 1; F (0) = 0; F (n+ 1) = F (n) + F (n− 1);and they form the sequen
e {1; 0; 1; 1; 2; 3; 5; : : :}.As a 
omment to this intriguing 
ombinatorial interpretation in thes = r = 2 
ase, we mention that the similar sequen
es arising in � → 0 (or� → ∞) expansions for the �-fun
tions dis
ussed above, even if they areall given purely in terms of integers, seem to have no obvious 
ombinatorialtreatment.The authors are indebted to N. M. Bogoliubov and F. Colomo for stim-ulating dis
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