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CORRELATION FUNCTIONS AS NESTS OF
SELF-AVOIDING PATHS

ABSTRACT. We discuss connection between the X X7 Heisenberg
spin chain in the limiting case of zero anisotropy and some aspects
of enumerative combinatorics. The representation of the Bethe wave
functions via the Schur functions allows to apply the theory of sym-
metric functions to calculation of the correlation functions. We pro-
vide a combinatorial derivation of the dynamical correlation func-
tions of the projection operator in terms of nests of self-avoiding
lattice paths.

§1. INTRODUCTION

The theory of random walks, being one of the classical directions of
enumerative combinatorics [1], was successfully applied in various fields:
in the theory of quantum computations [2] and in the analysis of stock
markets [3], in biology [4] and in psychology [5], in self-organized criticality
[6] and in population processes [7].

The ‘Random walks problem’ in theoretical physics was first introduced
by M. Fisher [8]. Fascinating connections to other research fields, such as
Young diagrams, and the theory of random matrices, have been revealed
one after another [9-14].

Some sections of enumerative combinatorics [1] and the theory of sym-
metric functions [15] have come to play an important role in the theory
of integrable models [16,17] and especially in the studies of correlation
functions [18,19]. The aim of this paper is to represent correlation func-
tions of X X0 spin chain as sums over nests of self-avoiding lattice paths.
The interpretation of correlation functions of bosonic integrable models in
terms of random walks in multidimensional simplectical lattices was given
in [20,21].

Two essentially different types of vicious walkers may be distinguished
in classification of [8]. Suppose that there are N walkers (particles) on a
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one-dimensional lattice. For the random turns model at each tick of the
clock dt only a single randomly chosen walker moves one step to the left
or one step to the right while the rest are staying (Fig. 1). In the lock step
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Fig. 1. Random turns walkers.

version of the model at each tick of the clock each walker moves to the
left or to the right lattice site with equal probability (Fig. 2). Trajectories
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Fig. 2. Lock step walkers.

of random walkers can be viewed as directed lattice paths (i.e., the paths
that cannot turn back), which start at sites, say, on the line z and finish



CORRELATION FUNCTIONS AS NESTS OF SELF-AVOIDING PATHS 29

after m steps on sites on the line ¢t = m. Walkers are ‘vicious’ so that two
or more walkers are prohibited to arrive at the same site simultaneously.
Random walks are closely related to plane partitions or three-dimen-
sional Young diagrams. A plane partition is a two-dimensional array of
nonnegative integers n;; that are non-increasing both from left to right
and from top to bottom: n;; > n;j+1 and n;; > n;y1,;. Plane parti-
tions may be represented as a stack of n;; unit cubes above the point
(i,7) (Fig. 3). The paper is organized as follows. In Section 2 we discuss

Fig. 3. Plane partition.

the free fermion limit of the X XZ Heisenberg model. In Section 3 the
correlation functions over zero particles ground state are considered. The
combinatorial description of the thermal correlation functions is given in
Section 4. In Section 5 the thermal correlation function of the projection
operator are treated in terms of sums over nests of self-avoiding lattice
paths of special type. An identity which relates a trigonometric sum to an
integer equal to a number of self-avoiding lattice paths is obtained. Finally,
Section 6 gives some concluding remarks.

§2. XX Z HEISENBERG SPIN CHAIN AND ITS ZERO ANISOTROPY
LIMIT

The Heisenberg X X Z model on the chain of M + 1 sites is defined by
the Hamiltonian
M

1 _ A
Hxxyz = -5 z:(akﬂa,;L + U,:rﬂak + Bl (Ohpr0i — D) + (0f — ]I)) , (1)
k=0
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where A € R is the anisotropy parameter. The local spin operators a,:f =
1(of tio}) and of act nontrivially on k' site and obey the commutation
rules:

(0,07 ] = duof, [of,0] = £26 0]
(Ox; is the Kronecker symbol). Besides, I acts in (1) as identity operator
at k" site. The spin operators act in the space $3r,1 spanned over the
states ®kM:0 |s)k, where |s)y implies either spin “up”, |1), or spin “down”,

|l), state at k' site. The states |T) = (é) and ||) = (?) provide a

natural basis of the linear space C?. The state |{}) with all spins “up”:
Ity = ®7]§/[:0 [T)n is annihilated by the Hamiltonian (1):

Hxxz [f) = 0. (2)

The Hamiltonian (1) commutes with the operator S* of the third compo-
nent of the total spin:

[Hxxz,sz] = 0, SZ =

DN | =

M
g o -
k=0

We shall consider the X X Heisenberg model, which is the free fermion
limit of the X X Z Heisenberg spin chain. The Hamiltonian of the X X spin
chain arises as the zero anisotropy limit A — 0 of the Hamiltonian (1):

M

1 1
Hxx=5H—-5) (01, (3)
2 2
k=0
where H is the “hopping” part:
M
H=- Z(Ulc_+102_ + Ulj_-i-lo-k_) . (4)
k=0

The system described by the Hamiltonian (3) is of interest, for example,
in the construction of the theory of quantum computations [22].
Consider an arbitrary state on a chain. It can be characterized by the
number NV of spins “down” and the number M = M — N + 1 of sites with
spin “up”. The N-particle state-vectors | ¥(uy)), i.e. the states with N
spins “down”, are convenient to express by means of the Schur functions:

)= Y Sa(ud) (ﬁ a;k> ). (5)

AC{MN}
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The sites with spin “down” states are labeled by the coordinates p;, 1 <
i < N. These coordinates constitute a strictly decreasing partition g =
(1, ph2, - . , i), where the numbers p;, called parts, respect the inequality
M > pp > pe > ... > pn = 0. The relation A\j = p; — N + j, where
1 < j < N, connects the parts of A to those of u. Therefore, we can write:
A = u — 0y, where dy is the strict partition

oN=(N-1,N-2,...,1,0). (6)
Besides, the bold notations like ua, = (uf,u3,...,u%) imply sets of arbi-
trary complex numbers. The summation in (5) is over all partitions A with
parts satisfying M > Ay > X > ... 2 Ay 2> 0.
The Schur functions Sy are defined by the Jacobi-Trudi relation:

det(z)* +N_k)1< k<N
SA(XN) = SA($1,$2,...,Z’N) = . d

(7)

V(xn) ’
in which V(xn) is the Vandermonde determinant
Vixy) = det(z} hgren =[] (@ —2m). (8)
1<m<IKN
The conjugated state-vectors are given by
N
we 1= X il ([T, ) s\0id). ©

AC{MN}

There is a natural correspondence between the coordinates of the spin

“down” states p and the partition A expressed by the Young diagram (see
Fig. 4).

Assume that the periodic boundary conditions are imposed: 0’2:_<M+1) =

a,f&. If the parameters u? = e (1 < j < N) satisfy the Bethe equations,

ei(M+1)9]' — (71)N71, 1 < ] < N, (10)

then the state-vectors (5) become the eigen-vectors of the Hamiltonian
(3) [17):

Hxx |¥(0n)) = En(On) [¥(ON)) - (11)

The solutions 6; to the Bethe equations (10) can be parameterized so that
2m N -1

J M+ 1 (Ij 2 ) ) J ( )

where I; are integers or half-integers depending on whether N is odd or
even.
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Fig. 4. Relation of the spin “down” coordinates pu =
(8,5,3,2) and partition A = (5,3,2,2) for M =8, N =4.

The eigen-energies in (11) are equal to

a al o N-1
N(ON) = N—]Z:;cosﬁj = N—;COS(M+1(I]'— 5 )) (13)

The ground state of the model is the eigen-state that corresponds to the
lowest eigen-energy En (0% ). It is determined by the solution to the Bethe
equations (12) at I; = N — j:

2w N+1 .
08 = AL 1<j<N, 14
j M+1< 5 J), J (14)
and is equal to
. TN
sin
En(0%) = N - —2=.
SlnM—+1

In this paper we shall deal only with the system of a finite size in
order to consider the dynamical correlation function called the persistence
of ferromagnetic string and related to the projection operator II,, that
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forbids spin “down” states on n consecutive sites of the chain [18]:

QN

T(0%,n,t) =

(W(OF) | I, e "> IT,, | T(0F) 2
((OF) | e~tbx [W(OY)) 1;[

. (15)
where t€C. Assume that I is the identity operator: 7(6%;,0,3)=

§3. CORRELATIONS OVER ZERO PARTICLES GROUND STATE

First, we shall consider the simplest one-particle correlation function
. _t _
G (j,mlt) = (h] o) e o, M), (16)

where H is the Hamiltonian (4), which can be re-expressed through the
so-called hopping matriv A = (Apm)ogn,m<ar [14,23]. In the problem of
vicious walkers it is more appropriate to use H expressed as follows:

Z Anmg U Apm = 6\nfm\,1 + 6|nfm|,M- (17)

n,m=0

Differentiating G (7, m|t) with respect to ¢ and applying the commutation
relation

H,0,,] = Z Apmo, 05 s (18)
we obtain [14, 23] the difference-differential equation:

LaGm -1+ aGm+1l). (19)

G (j,mlt) = 5

dt

Equation (19) is supplied at fixed j with the periodicity requirement
G(j,m + M + 1|t) = G(j, m|t). An analogous requirement

G(j + M+ 1,mlt) = G(j,m|t)

is valid for fixed m as well. Besides, the “initial condition” is given by
G (]7m|0) = 6jm-

The correlator G (j,m|t) (16) may be considered as the exponential
generating function of random walks. Indeed, let us introduce the notation
DX for the operator of differentiation of K-th order with respect to A at
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the point A = 0. Representing the correlation function (16) in the form of
a series in powers of ¢

K
2 o, mIK), (20)

NE

G(j,mlt) =

=
Il

0
and acting by Df}, on G(j,m|t) (16) one obtains: (17):
= (o} (7)o 1) = (AF) . 1)

On the other hand, the application of the commutation relation (18) gives:

M

(=) o 1) =D (AF), o ). (22)

n=0

Equation (22) may be interpreted in the following way. Position of the
walker on the chain is labelled by the spin “down” state, while the spin
“up” states correspond to empty sites. Each matrix A in the product (22)
corresponds to a transition between two neighboring sites. The relation
(22) enables to enumerate all admissible paths of the walker starting from
the m'h site. The state ({| a}" acting on (22) from left allows to fix the
ending point of the paths because of the orthogonality of the spin states,
and Eq. (21) thus arises.

Let |Px(m — j)| denote the number of paths between the m™ and
j* sites. It is clear that &(j,m|K) = |Px(m — j)| = (AK)jm, and the
generating function G(j, m|t) includes processes with all possible numbers
of steps. It follows from Eq. (21) that &(j, m|K) satisfies the equation:

h

&(j,m|K +1) = 6(j,m — 1|K) + &(j,m + 1|K), (23)

with the “initial” condition &(j,m|0) = d;m.
In theory of lattice paths the following generating function is usually
used:

F(j,mlz) = > X of (1)Ko, 1) = D 2K6(,mK),  (24)

K=0 K=0
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which is the Laplace transform of the exponential generating function (16):

[P 1 .
/G(],m|t)e =dt = z({| a}" <1+z7‘l> o, M) =2F(j,m|z), Rz>0.
0

(25)
Consider now the multi-particle correlation function

GGt = 0 ( o7, ) e # (M o) 1. (26)

which is parametrized by multi-indices

J= (j17j2;---;jN) and 1= (ll,lg,...,lN).
This correlator is the generation function of N random turns vicious walk-
ers (see Fig. 1). Really, let |Px(j — 1)| be the number of K-edge paths
traced by N vicious walkers in the random turns model. The commutation
relation

[H,Ul_lal; ...alN Zall N 1 [H, Ulk]o-lk+1' Loy (27)

enables us to see, that the average

||:12

o(i ) = P, it = (ol (11 o7 ) 20 (o) ) 9

k=1

is equal to the number |Pk(j — 1)| of configurations of N random turns
walkers being initially located on the sites Iy > Iy > -+ > [ and arrived
after K steps at the positions j; > jo > -+ > jn:

[Pre(j — D] = 6(; 1K) . (29)

The condition that vicious walkers do not touch each other up to IV steps,
is guaranteed by the property of the Pauli matrices (o;7)? = 0.

Differentiating (26) by t and applying (27) we obtain the equation for
fixed j

N
1
_G.])l|t 52 J)l17l27 . 7lk+17"'7lN|t)

+G(.]al17l27 7lk7]—771N|t)) (30)
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(and a similar one for fixed 1). The non-intersection condition means that
GG lt) = 0if ly =1, (or jr, = jp) for any 1 < k,p < N. The “initial
condition” is: G(j;1]0) = Han:1 d;

The generating function G(j;1|¢) satisfying Eq. (30) is given by the
following

mslm -

Proposition. Solution to Eq. (30) takes the form:

tN

e - @ : B
_ Z e tEN(qu)'V(e ¢N)|2 Sy (e ¢N)S)‘R(e (i)N)’

G@§;1t) = W{d) :

(31)
where the strict partitions j and 1 and the partitions A and AF are related:
AL =j—6n, AR =1—0x. The eigen-energy Ex(¢y) is defined by (13),
eTiON = (eFi01 eti02 | eFiON) and V(e!®n) is defined by (8).

Proof. It is easy to verify that the solution of (30) is given by

G(3;1t) = det(G(jr, ls[t)) (32)

1<r,s<N’

where G(j,1|t) is the one-particle generating function (16) satisfying (19).
The solution (32) may be expressed in the form:

M

N
. 1 t > cosds,, i(jr—Lls) s
G; 1) = S E e m=1 det (e (Gr=Lo)9 ")

1<r,s<N

(33)
where the parametrization is the same as in (31). The antisymmetry of the
summand with respect to permutations of ¢, ..., ¢ enables to transform
det (ei(j"*ls)d’%)lgm@v in (33) into the product of det(e”r?=r )1<r,s<N
and det (e~ %) _ .. So, the right-hand side of (33) is expressed in
terms of the Schur functions (7), and the representation (31) is thus valid.
It is clear that Eq. (31) at N =1 gives the solution to (19). O

81,...,s8n=0

Corollary. From Egs. (28) and (31) we obtain that &(j;1|K) (28) is rep-
resented as the trigonometric sum:

: 1 = K

X V(e )2 Sxr (€"7) San (€7 (34)
which takes the integer value |Px (j — 1)| according to (29).
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In the particular case when j = 1= dn, with dn defined by (6), parti-
tions AP = AR = (0,0, ...,0) and Schur functions

5(0,0....,0) (e'~) = 5(0,0,...,0) (e7"~) =1.
Equation (34) takes the form
1 ol K
O ONIK) = w2 (220 cosdm ) VP (39)
(on)  m=1
In the thermodynamic limit the sum (35) becomes the Gross-Witten par-

tition function [25] and expresses, as well, the distribution of the length of
the longest increasing subsequence of random permutations [26].

§4. LATTICE PATHS INTERPRETATIONS OF THE DETERMINANTAL
REPRESENTATIONS

In this section an algebraic approach to the calculation of the correla-
tion functions 7 (05, n,t) (15) is developed. The approach is based on the
Cauchy-Binet formula for the Schur functions:

N det T(x,y)
Pralyx)= 3 S©S() = (Hyfw?) TN
A\nC{(L—n)N} paiey VN (X)VN(y)

(36)
where 35\ ,,c((r—n)~} implies summation over all non-strict partitions A
with the parts satisfying the inequality:

L—-n>2M-n>2X—-n=>...2Av—n2=0.
The entries (Tk; (x,¥))1<k,j<n of the N x N matrix T(x,y) in right-hand

side of (36) are expressed as

1 — (zpyy)" N

Ty =
ki 1—zpy;

(37)

The scalar products of the state-vectors, as well as the correlation func-
tions, are connected with the generating functions of boxed plane par-
titions [19]. To study the asymptotical behaviour of the introduced cor-
relation functions, we need the Cauchy-Binet relation (36) taken in the
g-parameterization
N) N—l) )

y=a=(¢,¢,-..,¢"), x=q/q=(1,q,...,¢
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Letting L = M, we obtain from (36):
> Sx(a)Sx(a/q)

M\nC{(M-n)N}

_ qu2 o (1 N q(M+17n)(j+k71) )
Vn(@)Vn(q/q) 1 —githk-t 1<G k<N
= "N O ME) et <[2];7[V i _11]> (38)
+7 - 1<i, i <M—n
="V Z,(N,N,M —n). (39)

The entries in (38) are the g-binomial coefficients defined as
R| _ [R]! 1—gq"
H - M=

Besides, Z,(N, N, M —n) in (39) is the MacMahon generating function of
plane partitions in the box B(N, N, M —n) of size N x N x (M —n):

(40)

N N :
1— q./\/l—n+]+k—1
ZyN,NM=n) =] [] et (41)
k=1j=1

The number of plane partitions in B(N, N, M — n) is obtained from (41)
at ¢ — 1 and is equal to

N N .
M-n+jij+k-1
AN N, M=-n)=][]] [ (42)
k=1j=1

A combinatorial description of the Schur functions may be given in
terms of semi-standard Young tableauz [24], which are in one-to-one cor-
respondence with the nests of self-avoiding lattice paths. A semi-standard
Young tableau T of shape A is a diagram, whose cells are filled with positive
integers n € N weakly increasing along rows and strictly increasing along
columns. Provided a semi-standard tableau T is given, the corresponding
Schur function is defined as

SA(xlax%---axm):ZxTa XTEHxTija (43)
{T} 2

where the monomial x" is the weight equal to the product over all entries
T;; (¢ and j label rows and columns of tableau T). The sum in (43) is
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over all tableaux T of shape An with the entries taken from the set [m] =
{1,2,...,m}, m > N.

There is a natural way of representing each semi-standard tableau of
shape A with entries not exceeding IV as a nest of self-avoiding lattice paths
with prescribed start and end points. Let Tj; be an entry in " row and
§*® column of tableau T. The i*! lattice path (counted from the top of T')
encodes the i*? row of the tableau (i = 1,..., N). A nest C consists of paths
going from points C; = (i, N —i) to points (N, u; = A\;+N —i) (see Fig. 5).
Each path makes \; steps to the north so that the steps along the line z;
correspond to occurrences of the letter j in the tableau 7'. The power [; of
x; in the weight of any particular nest of paths is the number of steps to
north taken along the vertical line x;. Thus, an equivalent representation
of the Schur function is

N
5A($1,$2,---,$N)=ZH$? (44)
{¢} =1
where summation is over all admissible nests C.

1f1]1|1]3]4]
2]2]2
3034

4]

Fig. 5. A semistandard tableau of shape A = (6,3,3,1)
as a nest C of lattice paths. The weight of C is z}z3z5x}

From (44) it follows that the number of the described nests of paths is

sm=1= ]| A]_?c;—?”k: [T 428 )

{c} 1<j<k<K 1<j<h<K
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where Sx (1) = Sx(1,1,...,1), [15].

The k! lattice path is contained within a rectangle of the size \j, x (N —
k), 1 < k < N. The starting point of each path is the lower left vertex. We
define the volume of the path as the number of cells below the path within
the corresponding rectangle. The volume of the nest of lattice paths C is
equal to the volume of lattice paths:

N N
[Cle =) (N =9l =D (= Din—js1. (46)
j=1 j=1
It follows that the g-parametrized Schur function is a partition function of
the described nest:

SA(Q) — Zq\ﬁ\c — q|>\| Zq\ﬂc ’ (47)
{c} {c}

where |A] = lecvﬂ Ar is the weight of partition.
The Schur function corresponding to the conjugate nest of self-avoiding
paths is equal to

N
M—1;
Sx(yr g2, un) =Y [[y (48)
{B} j=1
where summation is over all admissible nests B of IV self-avoiding lattice
paths (see Fig. 6). The volume of the nest B is given by

N
| Cls = (=DM 1), (49)
j=1
and the partition function of B (see Fig. 6) is obtained from (48) in the
parametrization y = qn/q:

anvy _ Y3 (1) (M=b;5)
S3 () =0 : (50)
{B}
where Eq. (49) is used, and summation is over all admissible nests B of N
self-avoiding lattice paths.

The scalar product, being the product of two Schur functions, may be
graphically expressed as a nest of NV self-avoiding lattice paths starting at
the equidistant points C; and terminating at the equidistant points B; (1 <
i < N). This configuration, known as a watermelon, is presented in Fig. 7.
The scalar product is given by the sum of all such watermelons. Rotating
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X5 X6 X7 Xs
Fig. 6. Conjugated nest B of lattice paths.
Fig. 7 by Z counter-clockwise we see that the watermelon configuration
4 g

is a particular case of configuration of paths for lock step random walkers
(see Fig. 2).

X1 X2 X3 X4 X5 X6 X7 X

(A)

Fig. 7. Watermelon configuration and correspondent
plane partition.
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Using definitions (5) and (9) enables one to obtain the g-parameterized
average of the projection operator IT,, (15) (see (39)):

(Un(q %) | T | Un((a/g)?))

= Y Sa@Sala/a)=¢"VZ(N,N,M—n). (51)
AMnC{(M-n)N}

The partition function of watermelons with the end points C;, B;, 1 < i <
N (the generating function of watermelons) is given by (51) at n = 0.

§5. CORRELATIONS OVER IN-PARTICLES GROUND STATE

The transition amplitude

(U(vw) | T e " T, | ¥ (uy)) (52)
= > Sar (Vi) Sar(uy) GAT; AT [ 1) (53)
ALEA\nC{(M-n)N}
= Kl ALV JoArR(UN Y
K=0 T ALR\nC{(M-n)N}

is calculated with the help of Egs. (5) and (9) [19]. In the above formulas
&(ul; uf|K) is given either by (28) or (34), ux and vy stand for an
arbitrary parametrization, and two independent summations over A% =
pl-B — §y are analogous to those in (36).

Substituting (31) into (53), we obtain the transition amplitude in the
form, [18]:

M N
_ ~ 1 t > cosopm
—tH = m=
((vn) | Oy e T T, |O(uy)) = (M + 1)NN! > Oe ’
81,0, SN=

X |V(ei¢N)|2 ,Pan(v_Qa ei¢N) ,Pan(e_i(‘bN ) 112) ) (55)

where Ppq_y, is the sum (36).
Let us consider the expansion of the transition amplitude in the case
when u%; = vi = (1,1,...,1). From (52)—(54) we obtain for the K*" term:

(U(1) | 11 (1) 1T | % (1))

= > Sxr (1) Sar(1) [P (p" — ph),  (56)
AL T\C{(M-n)¥}
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where |Pg (uf — pr)| are integers given by (29), the values of the Schur
functions Syz (1) and Syr(1) are given by (45) and are integers. Hence,
the sum in (56) is an integer number.

If we put u% = v& = (1,1,...,1) in (55) we get an alternative to (56)
representation:

N
W) | Mo (<1 T, 1 9(0) = e 3 (23 cosém)”
{on} m=1

X |V(ei‘i’N)|2 Pr—n(1, eid’N) PM,n(e*id’N, 1). (57)

Since left-hand sides of (56) and (57) coincide, the following equality of
two sums is valid:

N . | |
ﬁ Z (2 Z cos ¢m) V(™) Pay_n(L, e~
{¢N} m=1

= > Sz (1) Sxr (1) |Pr(pn® — puh)]. (58)
AL-R\nC {(M-n)N}

Notice, since the sum in right-hand side of (58) is an integer number the
trigonometric sum in left-hand side of (58) is an integer number as well.

Summarising the graphical representations of functions involved in right-
hand side of (56), we can give the graphical representation of the K*® term
of the transition amplitude in terms of nests of self-avoiding lattice paths.
The particles are doing the first steps according to the lock step rules start-
ing from sites C; and finishing at accessible intermediate positions p*. The
number of these nests is Syr(1). The next K steps particles are doing ac-
cording to the random turns rules starting from sites u’ and terminating
at p’'. The number of these nests is |Px (u” — p®)|. The final steps are
made again by the lock step rules from p!* up to B;, and the number of
these nests is Syr(1). An example of the described nest of lattice paths is
depicted in Fig. 8.

Eventually, we use (55) and obtain the persistence of ferromagnetic
string 7 (0%, n,t) (15):

1

T(0,n,t) = = Z e~ tEn(On)—EN(85))
T 0%)(M + 1)N
MR DY 2

X VN (6%) Pagn(e™0N )| (59)
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Fig. 8. Nest of paths contributing to (¥(1) | IT; (—H)¥ I1, | ¥(1)).

where summation is over all independent solutions of the Bethe equations
(10). The sum Pa(_, (e "N, ¢®x) is given by (36) on the solutions to
Egs. (10), and N?(0%) is the squared norm of the ground state: N*(0%) =
(T(0X) |T(OX)), where 85 are given by (14).

§6. CONCLUSION

The representation of Schur functions in terms of nests of self-avoiding
lattice paths of lock step type, as well as the representation of the averages
(28) in terms of random turns walks, made it possible to represent the cor-
relation function of persistence of ferromagnetic string (15) in the graphical
way. Equation (58) is the main technical result of the paper obtained by
means of the developed graphical approach.
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