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t. We dis
uss 
onne
tion between the XXZ Heisenbergspin 
hain in the limiting 
ase of zero anisotropy and some aspe
tsof enumerative 
ombinatori
s. The representation of the Bethe wavefun
tions via the S
hur fun
tions allows to apply the theory of sym-metri
 fun
tions to 
al
ulation of the 
orrelation fun
tions. We pro-vide a 
ombinatorial derivation of the dynami
al 
orrelation fun
-tions of the proje
tion operator in terms of nests of self-avoidinglatti
e paths.
§1. Introdu
tionThe theory of random walks, being one of the 
lassi
al dire
tions ofenumerative 
ombinatori
s [1℄, was su

essfully applied in various �elds:in the theory of quantum 
omputations [2℄ and in the analysis of sto
kmarkets [3℄, in biology [4℄ and in psy
hology [5℄, in self-organized 
riti
ality[6℄ and in population pro
esses [7℄.The `Random walks problem' in theoreti
al physi
s was �rst introdu
edby M. Fisher [8℄. Fas
inating 
onne
tions to other resear
h �elds, su
h asYoung diagrams, and the theory of random matri
es, have been revealedone after another [9{14℄.Some se
tions of enumerative 
ombinatori
s [1℄ and the theory of sym-metri
 fun
tions [15℄ have 
ome to play an important role in the theoryof integrable models [16, 17℄ and espe
ially in the studies of 
orrelationfun
tions [18, 19℄. The aim of this paper is to represent 
orrelation fun
-tions of XX0 spin 
hain as sums over nests of self-avoiding latti
e paths.The interpretation of 
orrelation fun
tions of bosoni
 integrable models interms of random walks in multidimensional simple
ti
al latti
es was givenin [20, 21℄.Two essentially di�erent types of vi
ious walkers may be distinguishedin 
lassi�
ation of [8℄. Suppose that there are N walkers (parti
les) on aKey words and phrases: Heisenberg spin 
hain, 
orrelation fun
tions, enumerative
ombinatori
s, S
hur fun
tions.The work was supported by Russian S
ien
e Foundation (grant no. 16-11-10218).27



28 N. BOGOLIUBOV, C. MALYSHEVone-dimensional latti
e. For the random turns model at ea
h ti
k of the
lo
k dt only a single randomly 
hosen walker moves one step to the leftor one step to the right while the rest are staying (Fig. 1). In the lo
k step

Fig. 1. Random turns walkers.version of the model at ea
h ti
k of the 
lo
k ea
h walker moves to theleft or to the right latti
e site with equal probability (Fig. 2). Traje
tories

Fig. 2. Lo
k step walkers.of random walkers 
an be viewed as dire
ted latti
e paths (i.e., the pathsthat 
annot turn ba
k), whi
h start at sites, say, on the line x and �nish



CORRELATION FUNCTIONS AS NESTS OF SELF-AVOIDING PATHS 29after m steps on sites on the line t = m. Walkers are `vi
ious' so that twoor more walkers are prohibited to arrive at the same site simultaneously.Random walks are 
losely related to plane partitions or three-dimen-sional Young diagrams. A plane partition is a two-dimensional array ofnonnegative integers ni;j that are non-in
reasing both from left to rightand from top to bottom: ni;j > ni;j+1 and ni;j > ni+1;j . Plane parti-tions may be represented as a sta
k of ni;j unit 
ubes above the point(i; j) (Fig. 3). The paper is organized as follows. In Se
tion 2 we dis
uss

Fig. 3. Plane partition.the free fermion limit of the XXZ Heisenberg model. In Se
tion 3 the
orrelation fun
tions over zero parti
les ground state are 
onsidered. The
ombinatorial des
ription of the thermal 
orrelation fun
tions is given inSe
tion 4. In Se
tion 5 the thermal 
orrelation fun
tion of the proje
tionoperator are treated in terms of sums over nests of self-avoiding latti
epaths of spe
ial type. An identity whi
h relates a trigonometri
 sum to aninteger equal to a number of self-avoiding latti
e paths is obtained. Finally,Se
tion 6 gives some 
on
luding remarks.
§2. XXZ Heisenberg spin 
hain and its zero anisotropylimitThe Heisenberg XXZ model on the 
hain of M + 1 sites is de�ned bythe HamiltonianHXXZ = −

12 M
∑k=0(�−k+1�+k + �+k+1�−k + �2 (�zk+1�zk − I) + (�zk − I)) ; (1)



30 N. BOGOLIUBOV, C. MALYSHEVwhere � ∈ R is the anisotropy parameter. The lo
al spin operators �±k =12 (�xk ± i�yk) and �zk a
t nontrivially on kth site and obey the 
ommutationrules: [�+k ; �−l ℄ = Ækl �zl ; [�zk; �±l ℄ = ±2 Ækl �±l(Ækl is the Krone
ker symbol). Besides, I a
ts in (1) as identity operatorat kth site. The spin operators a
t in the spa
e HM+1 spanned over thestates⊗Mk=0 |s〉k , where |s〉k implies either spin \up", |↑〉, or spin \down",
|↓〉, state at kth site. The states |↑〉 ≡

(10) and |↓〉 ≡

(01) provide anatural basis of the linear spa
e C2. The state |⇑〉 with all spins \up":
|⇑〉 ≡

⊗Mn=0 |↑〉n is annihilated by the Hamiltonian (1):HXXZ |⇑〉 = 0 : (2)The Hamiltonian (1) 
ommutes with the operator Sz of the third 
ompo-nent of the total spin:[HXXZ; Sz℄ = 0 ; Sz ≡ 12 M
∑k=0�zk :We shall 
onsider the XX Heisenberg model, whi
h is the free fermionlimit of the XXZ Heisenberg spin 
hain. The Hamiltonian of the XX spin
hain arises as the zero anisotropy limit � → 0 of the Hamiltonian (1):HXX = 12 H−

12 M
∑k=0(�zk − I) ; (3)where H is the \hopping" part:

H ≡ −
M
∑k=0(�−k+1�+k + �+k+1�−k ) : (4)The system des
ribed by the Hamiltonian (3) is of interest, for example,in the 
onstru
tion of the theory of quantum 
omputations [22℄.Consider an arbitrary state on a 
hain. It 
an be 
hara
terized by thenumber N of spins \down" and the number M ≡ M −N +1 of sites withspin \up". The N -parti
le state-ve
tors |	(uN )〉, i.e. the states with Nspins \down", are 
onvenient to express by means of the S
hur fun
tions:

|	(uN )〉 = ∑�⊆{MN}

S�(u2N )( N
∏k=1�−�k) |⇑〉 : (5)



CORRELATION FUNCTIONS AS NESTS OF SELF-AVOIDING PATHS 31The sites with spin \down" states are labeled by the 
oordinates �i, 1 6i 6 N . These 
oordinates 
onstitute a stri
tly de
reasing partition � =(�1; �2; : : : ; �N), where the numbers �i, 
alled parts, respe
t the inequalityM > �1 > �2 > : : : > �N > 0. The relation �j = �j − N + j, where1 6 j 6 N , 
onne
ts the parts of � to those of �. Therefore, we 
an write:� = �− ÆN , where ÆN is the stri
t partitionÆN ≡ (N − 1; N − 2; : : : ; 1; 0) : (6)Besides, the bold notations like u2N ≡ (u21; u22; : : : ; u2N ) imply sets of arbi-trary 
omplex numbers. The summation in (5) is over all partitions � withparts satisfying M > �1 > �2 > : : : > �N > 0.The S
hur fun
tions S� are de�ned by the Ja
obi-Trudi relation:S�(xN ) ≡ S�(x1; x2; : : : ; xN ) ≡
det(x�k+N−kj )16j;k6N

V(xN ) ; (7)in whi
h V(xN ) is the Vandermonde determinant
V(xN ) ≡ det(xN−kj )16j;k6N = ∏16m<l6N(xl − xm) : (8)The 
onjugated state-ve
tors are given by

〈	(vN ) |= ∑�⊆{MN}

〈⇑|

( N
∏k=1 �+�k)S�(v−2N ) : (9)There is a natural 
orresponden
e between the 
oordinates of the spin\down" states � and the partition � expressed by the Young diagram (seeFig. 4).Assume that the periodi
 boundary 
onditions are imposed: �#k+(M+1) =�#k . If the parameters u2j ≡ ei�j (1 6 j 6 N) satisfy the Bethe equations,ei(M+1)�j = (−1)N−1 ; 1 6 j 6 N ; (10)then the state-ve
tors (5) be
ome the eigen-ve
tors of the Hamiltonian(3) [17℄: HXX |	(�N)〉 = EN (�N ) |	(�N )〉 : (11)The solutions �j to the Bethe equations (10) 
an be parameterized so that�j = 2�M + 1 (Ij − N − 12 ) ; 1 6 j 6 N ; (12)where Ij are integers or half-integers depending on whether N is odd oreven.
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Fig. 4. Relation of the spin \down" 
oordinates � =(8; 5; 3; 2) and partition � = (5; 3; 2; 2) for M = 8, N = 4.The eigen-energies in (11) are equal toEN (�N ) = N −
N
∑j=1 
os �j = N −

N
∑j=1 
os( 2�M + 1(Ij − N − 12 )

) : (13)The ground state of the model is the eigen-state that 
orresponds to thelowest eigen-energy EN (� gN ). It is determined by the solution to the Betheequations (12) at Ij = N − j:� gj ≡
2�M + 1 (N + 12 − j) ; 1 6 j 6 N ; (14)and is equal to EN (� gN) = N −

sin �NM+1sin �M+1 :In this paper we shall deal only with the system of a �nite size inorder to 
onsider the dynami
al 
orrelation fun
tion 
alled the persisten
eof ferromagneti
 string and related to the proje
tion operator ��n, that



CORRELATION FUNCTIONS AS NESTS OF SELF-AVOIDING PATHS 33forbids spin \down" states on n 
onse
utive sites of the 
hain [18℄:
T (� gN ; n; t) ≡

〈	(� gN ) | ��n e−tHXX ��n |	(� gN )〉
〈	(� gN ) | e−tHXX |	(� gN )〉 ; ��n ≡

n−1
∏j=0 I + �zj2 ;(15)where t∈C. Assume that ��0 is the identity operator: T (�gN ; 0; �)=1.

§3. Correlations over zero parti
les ground stateFirst, we shall 
onsider the simplest one-parti
le 
orrelation fun
tionG (j;m|t) ≡ 〈⇑| �+j e− t2H�−m |⇑〉 ; (16)where H is the Hamiltonian (4), whi
h 
an be re-expressed through theso-
alled hopping matrix � ≡ (�nm)06n;m6M [14, 23℄. In the problem ofvi
ious walkers it is more appropriate to use H expressed as follows:
H = −

M
∑n;m=0�nm�−n �+m ; �nm ≡ Æ|n−m|;1 + Æ|n−m|;M : (17)Di�erentiating G (j;m|t) with respe
t to t and applying the 
ommutationrelation [H; �−m℄ = −

M
∑n=0�nm�−n �zm ; (18)we obtain [14, 23℄ the di�eren
e{di�erential equation:ddt G (j;m|t) = 12(G (j;m− 1|t) +G (j;m+ 1|t)) : (19)Equation (19) is supplied at �xed j with the periodi
ity requirementG(j;m+M + 1|t) = G(j;m|t). An analogous requirementG(j +M + 1;m|t) = G(j;m|t)is valid for �xed m as well. Besides, the \initial 
ondition" is given byG (j;m|0) = Æjm.The 
orrelator G (j;m|t) (16) may be 
onsidered as the exponentialgenerating fun
tion of random walks. Indeed, let us introdu
e the notation

DK� for the operator of di�erentiation of K-th order with respe
t to � at



34 N. BOGOLIUBOV, C. MALYSHEVthe point � = 0. Representing the 
orrelation fun
tion (16) in the form ofa series in powers of tG(j;m|t) = ∞
∑K=0 (t=2)KK! G(j;m|K) ; (20)and a
ting by DKt=2 on G(j;m|t) (16) one obtains: (17):

G(j;m|K) = DKt=2G(j;m|t)= 〈⇑| �+j (−H)K�−m |⇑〉 = (�K)jm : (21)On the other hand, the appli
ation of the 
ommutation relation (18) gives:(−H)K�−m |⇑〉 = M
∑n=0(�K)nm�−n |⇑〉 : (22)Equation (22) may be interpreted in the following way. Position of thewalker on the 
hain is labelled by the spin \down" state, while the spin\up" states 
orrespond to empty sites. Ea
h matrix� in the produ
t (22)
orresponds to a transition between two neighboring sites. The relation(22) enables to enumerate all admissible paths of the walker starting fromthe mth site. The state 〈⇑| �+j a
ting on (22) from left allows to �x theending point of the paths be
ause of the orthogonality of the spin states,and Eq. (21) thus arises.Let |PK(m → j)| denote the number of paths between the mth andjth sites. It is 
lear that G(j;m|K) ≡ |PK(m → j)| = (�K)jm, and thegenerating fun
tion G(j;m|t) in
ludes pro
esses with all possible numbersof steps. It follows from Eq. (21) that G(j;m|K) satis�es the equation:

G(j;m|K + 1) = G(j;m− 1|K) +G(j;m+ 1|K) ; (23)with the \initial" 
ondition G(j;m|0) = Æjm.In theory of latti
e paths the following generating fun
tion is usuallyused:F (j;m|z) = ∞
∑K=0 zK〈⇑| �+j (−H)K�−m |⇑〉 ≡

∞
∑K=0 zKG(j;m|K) ; (24)



CORRELATION FUNCTIONS AS NESTS OF SELF-AVOIDING PATHS 35whi
h is the Lapla
e transform of the exponential generating fun
tion (16):
∞
∫0 G(j;m|t) e− tz dt = z〈⇑| �+j ( 11 + zH)�−m |⇑〉 = zF (j;m|z) ; ℜz > 0 :(25)Consider now the multi-parti
le 
orrelation fun
tionG(j; l|t) = 〈⇑|

( N
∏n=1�+jn) e− t2H( N

∏k=1 �−lk) |⇑〉 ; (26)whi
h is parametrized by multi-indi
esj ≡ (j1; j2; : : : ; jN ) and l ≡ (l1; l2; : : : ; lN ):This 
orrelator is the generation fun
tion of N random turns vi
ious walk-ers (see Fig. 1). Really, let |PK(j → l)| be the number of K-edge pathstra
ed by N vi
ious walkers in the random turns model. The 
ommutationrelation [H; �−l1�−l2 : : : �−lN ℄ = N
∑k=1�−l1 : : : �−lk−1 [H; �−lk ℄�−lk+1 : : : �−lN (27)enables us to see, that the average

G(j; l|K) ≡ DKt=2G(j; l|t) = 〈⇑|

( N
∏n=1�+jn) (−H)K ( N

∏k=1 �−lk) |⇑〉 (28)is equal to the number |PK(j → l)| of 
on�gurations of N random turnswalkers being initially lo
ated on the sites l1 > l2 > · · · > lN and arrivedafter K steps at the positions j1 > j2 > · · · > jN :
|PK(j→ l)| = G(j; l|K) : (29)The 
ondition that vi
ious walkers do not tou
h ea
h other up to N steps,is guaranteed by the property of the Pauli matri
es (�±k )2 = 0.Di�erentiating (26) by t and applying (27) we obtain the equation for�xed j ddt G(j; l|t) = 12 N
∑k=1(G(j; l1; l2; : : : ; lk + 1; : : : ; lN |t)+G(j; l1; l2; : : : ; lk − 1; : : : ; lN |t)) (30)



36 N. BOGOLIUBOV, C. MALYSHEV(and a similar one for �xed l). The non-interse
tion 
ondition means thatG(j; l|t) = 0 if lk = lp (or jk = jp) for any 1 6 k; p 6 N . The \initial
ondition" is: G(j; l|0) =∏Nm=1 Æjm;lm .The generating fun
tion G(j; l|t) satisfying Eq. (30) is given by thefollowingProposition. Solution to Eq. (30) takes the form:G(j; l|t) = etN(M + 1)N ∑

{�N}

e−tEN(�N )|V(ei�N )|2 S�L(ei�N )S�R(e−i�N ) ;(31)where the stri
t partitions j and l and the partitions �L and �R are related:�L = j− ÆN , �R = l− ÆN . The eigen-energy EN (�N ) is de�ned by (13),e±i�N ≡ (e±i�1 ; e±i�2 ; : : : ; e±i�N ), and V(ei�N ) is de�ned by (8).Proof. It is easy to verify that the solution of (30) is given byG(j; l|t) = det(G(jr; ls|t))16r;s6N ; (32)where G(j; l|t) is the one-parti
le generating fun
tion (16) satisfying (19).The solution (32) may be expressed in the form:G(j; l|t) = 1(M + 1)N N ! M
∑s1;:::;sN=0 et N

∑m=1 
os�sm det(ei(jr−ls)�sr )16r;s6N ;(33)where the parametrization is the same as in (31). The antisymmetry of thesummand with respe
t to permutations of �1; : : : ; �N enables to transformdet(ei(jr−ls)�sr )16r;s6N in (33) into the produ
t of det(eijr�sr )16r;s6Nand det(e−ils�sr )16r;s6N . So, the right-hand side of (33) is expressed interms of the S
hur fun
tions (7), and the representation (31) is thus valid.It is 
lear that Eq. (31) at N = 1 gives the solution to (19). �Corollary. From Eqs. (28) and (31) we obtain that G(j; l|K) (28) is rep-resented as the trigonometri
 sum:
G(j; l|K) = 1(M + 1)N ∑

{�N}

(2 N
∑m=1 
os�m)K

× |V(ei�N )|2 S�L(ei�N )S�R(e−i�N ) ; (34)whi
h takes the integer value |PK(j → l)| a

ording to (29).



CORRELATION FUNCTIONS AS NESTS OF SELF-AVOIDING PATHS 37In the parti
ular 
ase when j = l = ÆN , with ÆN de�ned by (6), parti-tions �L = �R = (0; 0; : : : ; 0) and S
hur fun
tionsS(0;0;:::;0)(ei�N ) = S(0;0;:::;0)(e−i�N ) = 1 :Equation (34) takes the form
G(ÆN ; ÆN |K) = 1(M + 1)N ∑

{�N}

(2 N
∑m=1 
os�m)K |V(ei�N )|2 : (35)In the thermodynami
 limit the sum (35) be
omes the Gross-Witten par-tition fun
tion [25℄ and expresses, as well, the distribution of the length ofthe longest in
reasing subsequen
e of random permutations [26℄.

§4. Latti
e paths interpretations of the determinantalrepresentationsIn this se
tion an algebrai
 approa
h to the 
al
ulation of the 
orrela-tion fun
tions T (� gN ; n; t) (15) is developed. The approa
h is based on theCau
hy-Binet formula for the S
hur fun
tions:
PL−n(y;x) ≡ ∑�\n⊆{(L−n)N}

S�(x)S�(y) = ( N
∏l=1 ynl xnl ) detN×N T (x;y)

VN (x)VN (y) ;(36)where ∑�\n⊆{(L−n)N} implies summation over all non-stri
t partitions �with the parts satisfying the inequality:L− n > �1 − n > �2 − n > : : : > �N − n > 0 :The entries (Tkj(x;y))16k;j6N of the N ×N matrix T (x;y) in right-handside of (36) are expressed asTkj = 1− (xkyj)L−n+N1− xkyj : (37)The s
alar produ
ts of the state-ve
tors, as well as the 
orrelation fun
-tions, are 
onne
ted with the generating fun
tions of boxed plane par-titions [19℄. To study the asymptoti
al behaviour of the introdu
ed 
or-relation fun
tions, we need the Cau
hy-Binet relation (36) taken in theq-parameterizationy = q ≡ (q; q2; : : : ; qN ) ; x = q=q ≡ (1; q; : : : ; qN−1) :



38 N. BOGOLIUBOV, C. MALYSHEVLetting L = M, we obtain from (36):
∑�\n⊆{(M−n)N}

S�(q)S�(q=q)= qnN2
VN(q)VN (q=q) det(1− q(M+1−n)(j+k−1)1− qj+k−1 )16j;k6N= qnN2 qN(M−n)2 (1−M+n) det([2N + i− 1N + j − 1 ])16i;j6M−n (38)= qnN2Zq(N;N;M− n) : (39)The entries in (38) are the q-binomial 
oeÆ
ients de�ned as
[Rr ] ≡

[R℄![r℄! [R − r℄! ; [n℄ ≡ 1− qn1− q : (40)Besides, Zq(N;N;M−n) in (39) is the Ma
Mahon generating fun
tion ofplane partitions in the box B(N;N;M− n) of size N ×N × (M− n):Zq(N;N;M− n) = N
∏k=1 N

∏j=1 1− qM−n+j+k−11− qj+k−1 : (41)The number of plane partitions in B(N;N;M− n) is obtained from (41)at q → 1 and is equal toA(N;N;M− n) = N
∏k=1 N

∏j=1 M− n+ j + k − 1j + k − 1 : (42)A 
ombinatorial des
ription of the S
hur fun
tions may be given interms of semi-standard Young tableaux [24℄, whi
h are in one-to-one 
or-responden
e with the nests of self-avoiding latti
e paths. A semi-standardYoung tableau T of shape � is a diagram, whose 
ells are �lled with positiveintegers n ∈ N weakly in
reasing along rows and stri
tly in
reasing along
olumns. Provided a semi-standard tableau T is given, the 
orrespondingS
hur fun
tion is de�ned asS�(x1; x2; : : : ; xm) =∑
{T} xT ; xT ≡

∏i;j xTij ; (43)where the monomial xT is the weight equal to the produ
t over all entriesTij (i and j label rows and 
olumns of tableau T). The sum in (43) is



CORRELATION FUNCTIONS AS NESTS OF SELF-AVOIDING PATHS 39over all tableaux T of shape �N with the entries taken from the set [m℄ ≡
{1; 2; : : : ;m}, m > N .There is a natural way of representing ea
h semi-standard tableau ofshape � with entries not ex
eedingN as a nest of self-avoiding latti
e pathswith pres
ribed start and end points. Let Tij be an entry in ith row andjth 
olumn of tableau T . The ith latti
e path (
ounted from the top of T )en
odes the ith row of the tableau (i = 1; : : : ; N). A nest C 
onsists of pathsgoing from points Ci = (i; N−i) to points (N;�i = �i+N−i) (see Fig. 5).Ea
h path makes �i steps to the north so that the steps along the line xj
orrespond to o

urren
es of the letter j in the tableau T . The power lj ofxj in the weight of any parti
ular nest of paths is the number of steps tonorth taken along the verti
al line xj . Thus, an equivalent representationof the S
hur fun
tion isS�(x1; x2; : : : ; xN ) =∑

{C}

N
∏j=1 xljj ; (44)where summation is over all admissible nests C.

Fig. 5. A semistandard tableau of shape � = (6; 3; 3; 1)as a nest C of latti
e paths. The weight of C is x41x32x33x34.From (44) it follows that the number of the des
ribed nests of paths isS�(1) =∑
{C}

1 = ∏16j<k6K �j − j − �k + kk − j = ∏16j<k6K �j − �kk − j ; (45)



40 N. BOGOLIUBOV, C. MALYSHEVwhere S�(1) ≡ S�(1; 1; : : : ; 1), [15℄.The kth latti
e path is 
ontained within a re
tangle of the size �k×(N−k), 1 6 k 6 N . The starting point of ea
h path is the lower left vertex. Wede�ne the volume of the path as the number of 
ells below the path withinthe 
orresponding re
tangle. The volume of the nest of latti
e paths C isequal to the volume of latti
e paths:
| � |C = N

∑j=1(N − j)lj = N
∑j=1(j − 1)lN−j+1: (46)It follows that the q-parametrized S
hur fun
tion is a partition fun
tion ofthe des
ribed nest: S�(q) =∑

{C}

q|�|C = q|�|∑
{C}

q|�|C ; (47)where |�| =∑Nk=1 �k is the weight of partition.The S
hur fun
tion 
orresponding to the 
onjugate nest of self-avoidingpaths is equal to S�(y1; y2; : : : ; yN ) =∑
{B}

N
∏j=1 yM−ljj ; (48)where summation is over all admissible nests B of N self-avoiding latti
epaths (see Fig. 6). The volume of the nest B is given by

| � |B = N
∑j=1(j − 1)(M − lj) ; (49)and the partition fun
tion of B (see Fig. 6) is obtained from (48) in theparametrization y = qN=q:S�(qNq ) =∑
{B}

q∑Nj=1(j−1)(M−bj ) ; (50)where Eq. (49) is used, and summation is over all admissible nests B of Nself-avoiding latti
e paths.The s
alar produ
t, being the produ
t of two S
hur fun
tions, may begraphi
ally expressed as a nest of N self-avoiding latti
e paths starting atthe equidistant points Ci and terminating at the equidistant points Bi (1 6i 6 N). This 
on�guration, known as a watermelon, is presented in Fig. 7.The s
alar produ
t is given by the sum of all su
h watermelons. Rotating
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Fig. 6. Conjugated nest B of latti
e paths.Fig. 7 by �4 
ounter-
lo
kwise we see that the watermelon 
on�gurationis a parti
ular 
ase of 
on�guration of paths for lo
k step random walkers(see Fig. 2).

Fig. 7. Watermelon 
on�guration and 
orrespondentplane partition.



42 N. BOGOLIUBOV, C. MALYSHEVUsing de�nitions (5) and (9) enables one to obtain the q-parameterizedaverage of the proje
tion operator ��n (15) (see (39)):
〈	N (q− 12 ) | ��n | 	N((q=q) 12 )〉= ∑�\n⊆{(M−n)N}

S�(q)S�(q=q) = qnN2Z(N;N;M− n) : (51)The partition fun
tion of watermelons with the end points Ci, Bi, 1 6 i 6N (the generating fun
tion of watermelons) is given by (51) at n = 0.
§5. Correlations over N-parti
les ground stateThe transition amplitude

〈	(vN ) | ��n e− t2H ��n |	(uN )〉 (52)= ∑�L;R\n⊆{(M−n)N}

S�L(v−2N )S�R(u2N )G(�L;�R | t) (53)= ∞
∑K=0 (t=2)KK! ∑�L;R\n⊆{(M−n)N}

S�L(v−2N )S�R(u2N )G(�L;�R|K) (54)is 
al
ulated with the help of Eqs. (5) and (9) [19℄. In the above formulas
G(�L;�R|K) is given either by (28) or (34), uN and vN stand for anarbitrary parametrization, and two independent summations over �L;R =�L;R − ÆN are analogous to those in (36).Substituting (31) into (53), we obtain the transition amplitude in theform, [18℄:
〈	(vN ) | ��n e−tH ��n |	(uN )〉 = 1(M + 1)NN ! M

∑s1;:::;sN=0 et N
∑m=0 
os�m

× |V(ei�N )|2 PM−n(v−2; ei�N )PM−n(e−i�N ;u2) ; (55)where PM−n is the sum (36).Let us 
onsider the expansion of the transition amplitude in the 
asewhen u2N = v2N = (1; 1; : : : ; 1). From (52){(54) we obtain for theKth term:
〈	(1) | ��n (−H)K ��n |	(1)〉= ∑�L;R\n⊆{(M−n)N}

S�L(1)S�R(1) |PK(�R → �L)| ; (56)



CORRELATION FUNCTIONS AS NESTS OF SELF-AVOIDING PATHS 43where |PK(�R → �L)| are integers given by (29), the values of the S
hurfun
tions S�L(1) and S�R(1) are given by (45) and are integers. Hen
e,the sum in (56) is an integer number.If we put u2N = v2N = (1; 1; : : : ; 1) in (55) we get an alternative to (56)representation:
〈	(1) | ��n (−H)K ��n |	(1)〉 = 1(M + 1)N ∑

{�N}

(2 N
∑m=1 
os�m)K

× |V(ei�N )|2 PM−n(1; ei�N )PM−n(e−i�N ;1) : (57)Sin
e left-hand sides of (56) and (57) 
oin
ide, the following equality oftwo sums is valid:1(M + 1)N ∑

{�N}

(2 N
∑m=1 
os�m)K |V(ei�N )PM−n(1; ei�N )|2= ∑�L;R\n⊆{(M−n)N}

S�L(1)S�R(1) |PK(�R → �L)| : (58)Noti
e, sin
e the sum in right-hand side of (58) is an integer number thetrigonometri
 sum in left-hand side of (58) is an integer number as well.Summarising the graphi
al representations of fun
tions involved in right-hand side of (56), we 
an give the graphi
al representation of the Kth termof the transition amplitude in terms of nests of self-avoiding latti
e paths.The parti
les are doing the �rst steps a

ording to the lo
k step rules start-ing from sites Ci and �nishing at a

essible intermediate positions �R. Thenumber of these nests is S�R(1). The next K steps parti
les are doing a
-
ording to the random turns rules starting from sites �L and terminatingat �R. The number of these nests is |PK(�L → �R)|. The �nal steps aremade again by the lo
k step rules from �R up to Bi, and the number ofthese nests is S�R(1). An example of the des
ribed nest of latti
e paths isdepi
ted in Fig. 8.Eventually, we use (55) and obtain the persisten
e of ferromagneti
string T (� gN ; n; t) (15):
T (� gN ; n; t) = 1

N 2(� gN )(M + 1)N ∑

{�N}

e−t(EN(�N )−EN (� gN ))
×
∣

∣VN (ei�N )PM−n(e−i�N ; ei� gN )∣∣2 ; (59)
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Fig. 8. Nest of paths 
ontributing to 〈	(1) | ��1 (−H)K ��1 |	(1)〉.where summation is over all independent solutions of the Bethe equations(10). The sum PM−n(e−i�N ; ei� gN ) is given by (36) on the solutions toEqs. (10), and N 2(� gN ) is the squared norm of the ground state: N 2(� gN ) =
〈	(� gN) |	(� gN)〉, where � gN are given by (14).

§6. Con
lusionThe representation of S
hur fun
tions in terms of nests of self-avoidinglatti
e paths of lo
k step type, as well as the representation of the averages(28) in terms of random turns walks, made it possible to represent the 
or-relation fun
tion of persisten
e of ferromagneti
 string (15) in the graphi
alway. Equation (58) is the main te
hni
al result of the paper obtained bymeans of the developed graphi
al approa
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