
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 465, 2017 Ç.N. Bogoliubov, C. MalyshevCORRELATION FUNCTIONS AS NESTS OFSELF-AVOIDING PATHSAbstrat. We disuss onnetion between the XXZ Heisenbergspin hain in the limiting ase of zero anisotropy and some aspetsof enumerative ombinatoris. The representation of the Bethe wavefuntions via the Shur funtions allows to apply the theory of sym-metri funtions to alulation of the orrelation funtions. We pro-vide a ombinatorial derivation of the dynamial orrelation fun-tions of the projetion operator in terms of nests of self-avoidinglattie paths.
§1. IntrodutionThe theory of random walks, being one of the lassial diretions ofenumerative ombinatoris [1℄, was suessfully applied in various �elds:in the theory of quantum omputations [2℄ and in the analysis of stokmarkets [3℄, in biology [4℄ and in psyhology [5℄, in self-organized ritiality[6℄ and in population proesses [7℄.The `Random walks problem' in theoretial physis was �rst introduedby M. Fisher [8℄. Fasinating onnetions to other researh �elds, suh asYoung diagrams, and the theory of random matries, have been revealedone after another [9{14℄.Some setions of enumerative ombinatoris [1℄ and the theory of sym-metri funtions [15℄ have ome to play an important role in the theoryof integrable models [16, 17℄ and espeially in the studies of orrelationfuntions [18, 19℄. The aim of this paper is to represent orrelation fun-tions of XX0 spin hain as sums over nests of self-avoiding lattie paths.The interpretation of orrelation funtions of bosoni integrable models interms of random walks in multidimensional simpletial latties was givenin [20, 21℄.Two essentially di�erent types of viious walkers may be distinguishedin lassi�ation of [8℄. Suppose that there are N walkers (partiles) on aKey words and phrases: Heisenberg spin hain, orrelation funtions, enumerativeombinatoris, Shur funtions.The work was supported by Russian Siene Foundation (grant no. 16-11-10218).27



28 N. BOGOLIUBOV, C. MALYSHEVone-dimensional lattie. For the random turns model at eah tik of thelok dt only a single randomly hosen walker moves one step to the leftor one step to the right while the rest are staying (Fig. 1). In the lok step

Fig. 1. Random turns walkers.version of the model at eah tik of the lok eah walker moves to theleft or to the right lattie site with equal probability (Fig. 2). Trajetories

Fig. 2. Lok step walkers.of random walkers an be viewed as direted lattie paths (i.e., the pathsthat annot turn bak), whih start at sites, say, on the line x and �nish



CORRELATION FUNCTIONS AS NESTS OF SELF-AVOIDING PATHS 29after m steps on sites on the line t = m. Walkers are `viious' so that twoor more walkers are prohibited to arrive at the same site simultaneously.Random walks are losely related to plane partitions or three-dimen-sional Young diagrams. A plane partition is a two-dimensional array ofnonnegative integers ni;j that are non-inreasing both from left to rightand from top to bottom: ni;j > ni;j+1 and ni;j > ni+1;j . Plane parti-tions may be represented as a stak of ni;j unit ubes above the point(i; j) (Fig. 3). The paper is organized as follows. In Setion 2 we disuss

Fig. 3. Plane partition.the free fermion limit of the XXZ Heisenberg model. In Setion 3 theorrelation funtions over zero partiles ground state are onsidered. Theombinatorial desription of the thermal orrelation funtions is given inSetion 4. In Setion 5 the thermal orrelation funtion of the projetionoperator are treated in terms of sums over nests of self-avoiding lattiepaths of speial type. An identity whih relates a trigonometri sum to aninteger equal to a number of self-avoiding lattie paths is obtained. Finally,Setion 6 gives some onluding remarks.
§2. XXZ Heisenberg spin hain and its zero anisotropylimitThe Heisenberg XXZ model on the hain of M + 1 sites is de�ned bythe HamiltonianHXXZ = −

12 M
∑k=0(�−k+1�+k + �+k+1�−k + �2 (�zk+1�zk − I) + (�zk − I)) ; (1)



30 N. BOGOLIUBOV, C. MALYSHEVwhere � ∈ R is the anisotropy parameter. The loal spin operators �±k =12 (�xk ± i�yk) and �zk at nontrivially on kth site and obey the ommutationrules: [�+k ; �−l ℄ = Ækl �zl ; [�zk; �±l ℄ = ±2 Ækl �±l(Ækl is the Kroneker symbol). Besides, I ats in (1) as identity operatorat kth site. The spin operators at in the spae HM+1 spanned over thestates⊗Mk=0 |s〉k , where |s〉k implies either spin \up", |↑〉, or spin \down",
|↓〉, state at kth site. The states |↑〉 ≡

(10) and |↓〉 ≡

(01) provide anatural basis of the linear spae C2. The state |⇑〉 with all spins \up":
|⇑〉 ≡

⊗Mn=0 |↑〉n is annihilated by the Hamiltonian (1):HXXZ |⇑〉 = 0 : (2)The Hamiltonian (1) ommutes with the operator Sz of the third ompo-nent of the total spin:[HXXZ; Sz℄ = 0 ; Sz ≡ 12 M
∑k=0�zk :We shall onsider the XX Heisenberg model, whih is the free fermionlimit of the XXZ Heisenberg spin hain. The Hamiltonian of the XX spinhain arises as the zero anisotropy limit � → 0 of the Hamiltonian (1):HXX = 12 H−

12 M
∑k=0(�zk − I) ; (3)where H is the \hopping" part:

H ≡ −
M
∑k=0(�−k+1�+k + �+k+1�−k ) : (4)The system desribed by the Hamiltonian (3) is of interest, for example,in the onstrution of the theory of quantum omputations [22℄.Consider an arbitrary state on a hain. It an be haraterized by thenumber N of spins \down" and the number M ≡ M −N +1 of sites withspin \up". The N -partile state-vetors |	(uN )〉, i.e. the states with Nspins \down", are onvenient to express by means of the Shur funtions:

|	(uN )〉 = ∑�⊆{MN}

S�(u2N )( N
∏k=1�−�k) |⇑〉 : (5)



CORRELATION FUNCTIONS AS NESTS OF SELF-AVOIDING PATHS 31The sites with spin \down" states are labeled by the oordinates �i, 1 6i 6 N . These oordinates onstitute a stritly dereasing partition � =(�1; �2; : : : ; �N), where the numbers �i, alled parts, respet the inequalityM > �1 > �2 > : : : > �N > 0. The relation �j = �j − N + j, where1 6 j 6 N , onnets the parts of � to those of �. Therefore, we an write:� = �− ÆN , where ÆN is the strit partitionÆN ≡ (N − 1; N − 2; : : : ; 1; 0) : (6)Besides, the bold notations like u2N ≡ (u21; u22; : : : ; u2N ) imply sets of arbi-trary omplex numbers. The summation in (5) is over all partitions � withparts satisfying M > �1 > �2 > : : : > �N > 0.The Shur funtions S� are de�ned by the Jaobi-Trudi relation:S�(xN ) ≡ S�(x1; x2; : : : ; xN ) ≡
det(x�k+N−kj )16j;k6N

V(xN ) ; (7)in whih V(xN ) is the Vandermonde determinant
V(xN ) ≡ det(xN−kj )16j;k6N = ∏16m<l6N(xl − xm) : (8)The onjugated state-vetors are given by

〈	(vN ) |= ∑�⊆{MN}

〈⇑|

( N
∏k=1 �+�k)S�(v−2N ) : (9)There is a natural orrespondene between the oordinates of the spin\down" states � and the partition � expressed by the Young diagram (seeFig. 4).Assume that the periodi boundary onditions are imposed: �#k+(M+1) =�#k . If the parameters u2j ≡ ei�j (1 6 j 6 N) satisfy the Bethe equations,ei(M+1)�j = (−1)N−1 ; 1 6 j 6 N ; (10)then the state-vetors (5) beome the eigen-vetors of the Hamiltonian(3) [17℄: HXX |	(�N)〉 = EN (�N ) |	(�N )〉 : (11)The solutions �j to the Bethe equations (10) an be parameterized so that�j = 2�M + 1 (Ij − N − 12 ) ; 1 6 j 6 N ; (12)where Ij are integers or half-integers depending on whether N is odd oreven.
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Fig. 4. Relation of the spin \down" oordinates � =(8; 5; 3; 2) and partition � = (5; 3; 2; 2) for M = 8, N = 4.The eigen-energies in (11) are equal toEN (�N ) = N −
N
∑j=1 os �j = N −

N
∑j=1 os( 2�M + 1(Ij − N − 12 )

) : (13)The ground state of the model is the eigen-state that orresponds to thelowest eigen-energy EN (� gN ). It is determined by the solution to the Betheequations (12) at Ij = N − j:� gj ≡
2�M + 1 (N + 12 − j) ; 1 6 j 6 N ; (14)and is equal to EN (� gN) = N −

sin �NM+1sin �M+1 :In this paper we shall deal only with the system of a �nite size inorder to onsider the dynamial orrelation funtion alled the persisteneof ferromagneti string and related to the projetion operator ��n, that



CORRELATION FUNCTIONS AS NESTS OF SELF-AVOIDING PATHS 33forbids spin \down" states on n onseutive sites of the hain [18℄:
T (� gN ; n; t) ≡

〈	(� gN ) | ��n e−tHXX ��n |	(� gN )〉
〈	(� gN ) | e−tHXX |	(� gN )〉 ; ��n ≡

n−1
∏j=0 I + �zj2 ;(15)where t∈C. Assume that ��0 is the identity operator: T (�gN ; 0; �)=1.

§3. Correlations over zero partiles ground stateFirst, we shall onsider the simplest one-partile orrelation funtionG (j;m|t) ≡ 〈⇑| �+j e− t2H�−m |⇑〉 ; (16)where H is the Hamiltonian (4), whih an be re-expressed through theso-alled hopping matrix � ≡ (�nm)06n;m6M [14, 23℄. In the problem ofviious walkers it is more appropriate to use H expressed as follows:
H = −

M
∑n;m=0�nm�−n �+m ; �nm ≡ Æ|n−m|;1 + Æ|n−m|;M : (17)Di�erentiating G (j;m|t) with respet to t and applying the ommutationrelation [H; �−m℄ = −

M
∑n=0�nm�−n �zm ; (18)we obtain [14, 23℄ the di�erene{di�erential equation:ddt G (j;m|t) = 12(G (j;m− 1|t) +G (j;m+ 1|t)) : (19)Equation (19) is supplied at �xed j with the periodiity requirementG(j;m+M + 1|t) = G(j;m|t). An analogous requirementG(j +M + 1;m|t) = G(j;m|t)is valid for �xed m as well. Besides, the \initial ondition" is given byG (j;m|0) = Æjm.The orrelator G (j;m|t) (16) may be onsidered as the exponentialgenerating funtion of random walks. Indeed, let us introdue the notation

DK� for the operator of di�erentiation of K-th order with respet to � at



34 N. BOGOLIUBOV, C. MALYSHEVthe point � = 0. Representing the orrelation funtion (16) in the form ofa series in powers of tG(j;m|t) = ∞
∑K=0 (t=2)KK! G(j;m|K) ; (20)and ating by DKt=2 on G(j;m|t) (16) one obtains: (17):

G(j;m|K) = DKt=2G(j;m|t)= 〈⇑| �+j (−H)K�−m |⇑〉 = (�K)jm : (21)On the other hand, the appliation of the ommutation relation (18) gives:(−H)K�−m |⇑〉 = M
∑n=0(�K)nm�−n |⇑〉 : (22)Equation (22) may be interpreted in the following way. Position of thewalker on the hain is labelled by the spin \down" state, while the spin\up" states orrespond to empty sites. Eah matrix� in the produt (22)orresponds to a transition between two neighboring sites. The relation(22) enables to enumerate all admissible paths of the walker starting fromthe mth site. The state 〈⇑| �+j ating on (22) from left allows to �x theending point of the paths beause of the orthogonality of the spin states,and Eq. (21) thus arises.Let |PK(m → j)| denote the number of paths between the mth andjth sites. It is lear that G(j;m|K) ≡ |PK(m → j)| = (�K)jm, and thegenerating funtion G(j;m|t) inludes proesses with all possible numbersof steps. It follows from Eq. (21) that G(j;m|K) satis�es the equation:

G(j;m|K + 1) = G(j;m− 1|K) +G(j;m+ 1|K) ; (23)with the \initial" ondition G(j;m|0) = Æjm.In theory of lattie paths the following generating funtion is usuallyused:F (j;m|z) = ∞
∑K=0 zK〈⇑| �+j (−H)K�−m |⇑〉 ≡

∞
∑K=0 zKG(j;m|K) ; (24)



CORRELATION FUNCTIONS AS NESTS OF SELF-AVOIDING PATHS 35whih is the Laplae transform of the exponential generating funtion (16):
∞
∫0 G(j;m|t) e− tz dt = z〈⇑| �+j ( 11 + zH)�−m |⇑〉 = zF (j;m|z) ; ℜz > 0 :(25)Consider now the multi-partile orrelation funtionG(j; l|t) = 〈⇑|

( N
∏n=1�+jn) e− t2H( N

∏k=1 �−lk) |⇑〉 ; (26)whih is parametrized by multi-indiesj ≡ (j1; j2; : : : ; jN ) and l ≡ (l1; l2; : : : ; lN ):This orrelator is the generation funtion of N random turns viious walk-ers (see Fig. 1). Really, let |PK(j → l)| be the number of K-edge pathstraed by N viious walkers in the random turns model. The ommutationrelation [H; �−l1�−l2 : : : �−lN ℄ = N
∑k=1�−l1 : : : �−lk−1 [H; �−lk ℄�−lk+1 : : : �−lN (27)enables us to see, that the average

G(j; l|K) ≡ DKt=2G(j; l|t) = 〈⇑|

( N
∏n=1�+jn) (−H)K ( N

∏k=1 �−lk) |⇑〉 (28)is equal to the number |PK(j → l)| of on�gurations of N random turnswalkers being initially loated on the sites l1 > l2 > · · · > lN and arrivedafter K steps at the positions j1 > j2 > · · · > jN :
|PK(j→ l)| = G(j; l|K) : (29)The ondition that viious walkers do not touh eah other up to N steps,is guaranteed by the property of the Pauli matries (�±k )2 = 0.Di�erentiating (26) by t and applying (27) we obtain the equation for�xed j ddt G(j; l|t) = 12 N
∑k=1(G(j; l1; l2; : : : ; lk + 1; : : : ; lN |t)+G(j; l1; l2; : : : ; lk − 1; : : : ; lN |t)) (30)



36 N. BOGOLIUBOV, C. MALYSHEV(and a similar one for �xed l). The non-intersetion ondition means thatG(j; l|t) = 0 if lk = lp (or jk = jp) for any 1 6 k; p 6 N . The \initialondition" is: G(j; l|0) =∏Nm=1 Æjm;lm .The generating funtion G(j; l|t) satisfying Eq. (30) is given by thefollowingProposition. Solution to Eq. (30) takes the form:G(j; l|t) = etN(M + 1)N ∑

{�N}

e−tEN(�N )|V(ei�N )|2 S�L(ei�N )S�R(e−i�N ) ;(31)where the strit partitions j and l and the partitions �L and �R are related:�L = j− ÆN , �R = l− ÆN . The eigen-energy EN (�N ) is de�ned by (13),e±i�N ≡ (e±i�1 ; e±i�2 ; : : : ; e±i�N ), and V(ei�N ) is de�ned by (8).Proof. It is easy to verify that the solution of (30) is given byG(j; l|t) = det(G(jr; ls|t))16r;s6N ; (32)where G(j; l|t) is the one-partile generating funtion (16) satisfying (19).The solution (32) may be expressed in the form:G(j; l|t) = 1(M + 1)N N ! M
∑s1;:::;sN=0 et N

∑m=1 os�sm det(ei(jr−ls)�sr )16r;s6N ;(33)where the parametrization is the same as in (31). The antisymmetry of thesummand with respet to permutations of �1; : : : ; �N enables to transformdet(ei(jr−ls)�sr )16r;s6N in (33) into the produt of det(eijr�sr )16r;s6Nand det(e−ils�sr )16r;s6N . So, the right-hand side of (33) is expressed interms of the Shur funtions (7), and the representation (31) is thus valid.It is lear that Eq. (31) at N = 1 gives the solution to (19). �Corollary. From Eqs. (28) and (31) we obtain that G(j; l|K) (28) is rep-resented as the trigonometri sum:
G(j; l|K) = 1(M + 1)N ∑

{�N}

(2 N
∑m=1 os�m)K

× |V(ei�N )|2 S�L(ei�N )S�R(e−i�N ) ; (34)whih takes the integer value |PK(j → l)| aording to (29).



CORRELATION FUNCTIONS AS NESTS OF SELF-AVOIDING PATHS 37In the partiular ase when j = l = ÆN , with ÆN de�ned by (6), parti-tions �L = �R = (0; 0; : : : ; 0) and Shur funtionsS(0;0;:::;0)(ei�N ) = S(0;0;:::;0)(e−i�N ) = 1 :Equation (34) takes the form
G(ÆN ; ÆN |K) = 1(M + 1)N ∑

{�N}

(2 N
∑m=1 os�m)K |V(ei�N )|2 : (35)In the thermodynami limit the sum (35) beomes the Gross-Witten par-tition funtion [25℄ and expresses, as well, the distribution of the length ofthe longest inreasing subsequene of random permutations [26℄.

§4. Lattie paths interpretations of the determinantalrepresentationsIn this setion an algebrai approah to the alulation of the orrela-tion funtions T (� gN ; n; t) (15) is developed. The approah is based on theCauhy-Binet formula for the Shur funtions:
PL−n(y;x) ≡ ∑�\n⊆{(L−n)N}

S�(x)S�(y) = ( N
∏l=1 ynl xnl ) detN×N T (x;y)

VN (x)VN (y) ;(36)where ∑�\n⊆{(L−n)N} implies summation over all non-strit partitions �with the parts satisfying the inequality:L− n > �1 − n > �2 − n > : : : > �N − n > 0 :The entries (Tkj(x;y))16k;j6N of the N ×N matrix T (x;y) in right-handside of (36) are expressed asTkj = 1− (xkyj)L−n+N1− xkyj : (37)The salar produts of the state-vetors, as well as the orrelation fun-tions, are onneted with the generating funtions of boxed plane par-titions [19℄. To study the asymptotial behaviour of the introdued or-relation funtions, we need the Cauhy-Binet relation (36) taken in theq-parameterizationy = q ≡ (q; q2; : : : ; qN ) ; x = q=q ≡ (1; q; : : : ; qN−1) :



38 N. BOGOLIUBOV, C. MALYSHEVLetting L = M, we obtain from (36):
∑�\n⊆{(M−n)N}

S�(q)S�(q=q)= qnN2
VN(q)VN (q=q) det(1− q(M+1−n)(j+k−1)1− qj+k−1 )16j;k6N= qnN2 qN(M−n)2 (1−M+n) det([2N + i− 1N + j − 1 ])16i;j6M−n (38)= qnN2Zq(N;N;M− n) : (39)The entries in (38) are the q-binomial oeÆients de�ned as
[Rr ] ≡

[R℄![r℄! [R − r℄! ; [n℄ ≡ 1− qn1− q : (40)Besides, Zq(N;N;M−n) in (39) is the MaMahon generating funtion ofplane partitions in the box B(N;N;M− n) of size N ×N × (M− n):Zq(N;N;M− n) = N
∏k=1 N

∏j=1 1− qM−n+j+k−11− qj+k−1 : (41)The number of plane partitions in B(N;N;M− n) is obtained from (41)at q → 1 and is equal toA(N;N;M− n) = N
∏k=1 N

∏j=1 M− n+ j + k − 1j + k − 1 : (42)A ombinatorial desription of the Shur funtions may be given interms of semi-standard Young tableaux [24℄, whih are in one-to-one or-respondene with the nests of self-avoiding lattie paths. A semi-standardYoung tableau T of shape � is a diagram, whose ells are �lled with positiveintegers n ∈ N weakly inreasing along rows and stritly inreasing alongolumns. Provided a semi-standard tableau T is given, the orrespondingShur funtion is de�ned asS�(x1; x2; : : : ; xm) =∑
{T} xT ; xT ≡

∏i;j xTij ; (43)where the monomial xT is the weight equal to the produt over all entriesTij (i and j label rows and olumns of tableau T). The sum in (43) is



CORRELATION FUNCTIONS AS NESTS OF SELF-AVOIDING PATHS 39over all tableaux T of shape �N with the entries taken from the set [m℄ ≡
{1; 2; : : : ;m}, m > N .There is a natural way of representing eah semi-standard tableau ofshape � with entries not exeedingN as a nest of self-avoiding lattie pathswith presribed start and end points. Let Tij be an entry in ith row andjth olumn of tableau T . The ith lattie path (ounted from the top of T )enodes the ith row of the tableau (i = 1; : : : ; N). A nest C onsists of pathsgoing from points Ci = (i; N−i) to points (N;�i = �i+N−i) (see Fig. 5).Eah path makes �i steps to the north so that the steps along the line xjorrespond to ourrenes of the letter j in the tableau T . The power lj ofxj in the weight of any partiular nest of paths is the number of steps tonorth taken along the vertial line xj . Thus, an equivalent representationof the Shur funtion isS�(x1; x2; : : : ; xN ) =∑

{C}

N
∏j=1 xljj ; (44)where summation is over all admissible nests C.

Fig. 5. A semistandard tableau of shape � = (6; 3; 3; 1)as a nest C of lattie paths. The weight of C is x41x32x33x34.From (44) it follows that the number of the desribed nests of paths isS�(1) =∑
{C}

1 = ∏16j<k6K �j − j − �k + kk − j = ∏16j<k6K �j − �kk − j ; (45)



40 N. BOGOLIUBOV, C. MALYSHEVwhere S�(1) ≡ S�(1; 1; : : : ; 1), [15℄.The kth lattie path is ontained within a retangle of the size �k×(N−k), 1 6 k 6 N . The starting point of eah path is the lower left vertex. Wede�ne the volume of the path as the number of ells below the path withinthe orresponding retangle. The volume of the nest of lattie paths C isequal to the volume of lattie paths:
| � |C = N

∑j=1(N − j)lj = N
∑j=1(j − 1)lN−j+1: (46)It follows that the q-parametrized Shur funtion is a partition funtion ofthe desribed nest: S�(q) =∑

{C}

q|�|C = q|�|∑
{C}

q|�|C ; (47)where |�| =∑Nk=1 �k is the weight of partition.The Shur funtion orresponding to the onjugate nest of self-avoidingpaths is equal to S�(y1; y2; : : : ; yN ) =∑
{B}

N
∏j=1 yM−ljj ; (48)where summation is over all admissible nests B of N self-avoiding lattiepaths (see Fig. 6). The volume of the nest B is given by

| � |B = N
∑j=1(j − 1)(M − lj) ; (49)and the partition funtion of B (see Fig. 6) is obtained from (48) in theparametrization y = qN=q:S�(qNq ) =∑
{B}

q∑Nj=1(j−1)(M−bj ) ; (50)where Eq. (49) is used, and summation is over all admissible nests B of Nself-avoiding lattie paths.The salar produt, being the produt of two Shur funtions, may begraphially expressed as a nest of N self-avoiding lattie paths starting atthe equidistant points Ci and terminating at the equidistant points Bi (1 6i 6 N). This on�guration, known as a watermelon, is presented in Fig. 7.The salar produt is given by the sum of all suh watermelons. Rotating
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Fig. 6. Conjugated nest B of lattie paths.Fig. 7 by �4 ounter-lokwise we see that the watermelon on�gurationis a partiular ase of on�guration of paths for lok step random walkers(see Fig. 2).

Fig. 7. Watermelon on�guration and orrespondentplane partition.



42 N. BOGOLIUBOV, C. MALYSHEVUsing de�nitions (5) and (9) enables one to obtain the q-parameterizedaverage of the projetion operator ��n (15) (see (39)):
〈	N (q− 12 ) | ��n | 	N((q=q) 12 )〉= ∑�\n⊆{(M−n)N}

S�(q)S�(q=q) = qnN2Z(N;N;M− n) : (51)The partition funtion of watermelons with the end points Ci, Bi, 1 6 i 6N (the generating funtion of watermelons) is given by (51) at n = 0.
§5. Correlations over N-partiles ground stateThe transition amplitude

〈	(vN ) | ��n e− t2H ��n |	(uN )〉 (52)= ∑�L;R\n⊆{(M−n)N}

S�L(v−2N )S�R(u2N )G(�L;�R | t) (53)= ∞
∑K=0 (t=2)KK! ∑�L;R\n⊆{(M−n)N}

S�L(v−2N )S�R(u2N )G(�L;�R|K) (54)is alulated with the help of Eqs. (5) and (9) [19℄. In the above formulas
G(�L;�R|K) is given either by (28) or (34), uN and vN stand for anarbitrary parametrization, and two independent summations over �L;R =�L;R − ÆN are analogous to those in (36).Substituting (31) into (53), we obtain the transition amplitude in theform, [18℄:
〈	(vN ) | ��n e−tH ��n |	(uN )〉 = 1(M + 1)NN ! M

∑s1;:::;sN=0 et N
∑m=0 os�m

× |V(ei�N )|2 PM−n(v−2; ei�N )PM−n(e−i�N ;u2) ; (55)where PM−n is the sum (36).Let us onsider the expansion of the transition amplitude in the asewhen u2N = v2N = (1; 1; : : : ; 1). From (52){(54) we obtain for theKth term:
〈	(1) | ��n (−H)K ��n |	(1)〉= ∑�L;R\n⊆{(M−n)N}

S�L(1)S�R(1) |PK(�R → �L)| ; (56)



CORRELATION FUNCTIONS AS NESTS OF SELF-AVOIDING PATHS 43where |PK(�R → �L)| are integers given by (29), the values of the Shurfuntions S�L(1) and S�R(1) are given by (45) and are integers. Hene,the sum in (56) is an integer number.If we put u2N = v2N = (1; 1; : : : ; 1) in (55) we get an alternative to (56)representation:
〈	(1) | ��n (−H)K ��n |	(1)〉 = 1(M + 1)N ∑

{�N}

(2 N
∑m=1 os�m)K

× |V(ei�N )|2 PM−n(1; ei�N )PM−n(e−i�N ;1) : (57)Sine left-hand sides of (56) and (57) oinide, the following equality oftwo sums is valid:1(M + 1)N ∑

{�N}

(2 N
∑m=1 os�m)K |V(ei�N )PM−n(1; ei�N )|2= ∑�L;R\n⊆{(M−n)N}

S�L(1)S�R(1) |PK(�R → �L)| : (58)Notie, sine the sum in right-hand side of (58) is an integer number thetrigonometri sum in left-hand side of (58) is an integer number as well.Summarising the graphial representations of funtions involved in right-hand side of (56), we an give the graphial representation of the Kth termof the transition amplitude in terms of nests of self-avoiding lattie paths.The partiles are doing the �rst steps aording to the lok step rules start-ing from sites Ci and �nishing at aessible intermediate positions �R. Thenumber of these nests is S�R(1). The next K steps partiles are doing a-ording to the random turns rules starting from sites �L and terminatingat �R. The number of these nests is |PK(�L → �R)|. The �nal steps aremade again by the lok step rules from �R up to Bi, and the number ofthese nests is S�R(1). An example of the desribed nest of lattie paths isdepited in Fig. 8.Eventually, we use (55) and obtain the persistene of ferromagnetistring T (� gN ; n; t) (15):
T (� gN ; n; t) = 1

N 2(� gN )(M + 1)N ∑

{�N}

e−t(EN(�N )−EN (� gN ))
×
∣

∣VN (ei�N )PM−n(e−i�N ; ei� gN )∣∣2 ; (59)
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Fig. 8. Nest of paths ontributing to 〈	(1) | ��1 (−H)K ��1 |	(1)〉.where summation is over all independent solutions of the Bethe equations(10). The sum PM−n(e−i�N ; ei� gN ) is given by (36) on the solutions toEqs. (10), and N 2(� gN ) is the squared norm of the ground state: N 2(� gN ) =
〈	(� gN) |	(� gN)〉, where � gN are given by (14).

§6. ConlusionThe representation of Shur funtions in terms of nests of self-avoidinglattie paths of lok step type, as well as the representation of the averages(28) in terms of random turns walks, made it possible to represent the or-relation funtion of persistene of ferromagneti string (15) in the graphialway. Equation (58) is the main tehnial result of the paper obtained bymeans of the developed graphial approah.Referenes1. R. Stanley, Enumerative Combinatoris, vol. 2. Cambridge University Press, Cam-bridge, 1999.2. C. Williams, Explorations in Quantum Computing. Springer, 2010.3. E. Fama, Random walks in stok market pries. { Fin. Anal. J. 51, 75 (1995).4. K. Sneppen, Models of Life. Cambridge University Press, 2014.
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