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BIRATIONAL DARBOUX COORDINATES ON
NILPOTENT COADJOINT ORBITS CLASSICAL
COMPLEX LIE GROUPS, JORDAN BLOCKS 2 x 2

ABSTRACT. A problem of the constructing of the birational Darboux
coordinates on the nilpotent coadjoint orbits of the complex Lie
groups SO(N,C) and Sp(N,C) is considered. The nilpotent case
is the most difficult case of the orbits. The difficulties arise if the
Jordan blocks of the different parities of the sizes present in the
Jordan form of the matrices from the orbit. The desired coordinates
has been found on the orbits consisting of the matrices with the
Jordan blocks of the sizes one and two. The explicit formulae for
the coordinates are presented.

§1. INTRODUCTION. NOTATIONS

Any coadjoint orbit of a Lie group equipped with the canonical Lie-
Poison—Kirillov-Kostant two-form is the symplectic manifold. Classical
Darboux theorem states that there are such coordinates that the form
has the canonical form > dpy A dgs, but it is non-trivial problem to find

k

such coordinates.

The rational Darboux coordinates on the orbits of the classical Lie
groups were constructed in [2]. The only restriction was made for the
Jordan type of the orbits for the orthogonal and the symplectic groups:
there should not be Jordan blocks in the zero root-space. We consider the
complicated case of the nilpotent orbits now, and present the canonical
coordinates for the case of the presence of 2 x 2 Jordan blocks, in other
words we consider the case of matrices from the algebras so(N,C) and
sp(NV, C) satisfying A% = 0.

From the beginning we consider the orthogonal and the symplectic
cases simultaneously. The groups SO(N) and Sp(N) preserve the scalar
product (---,---) on C¥ that is either symmetric or skew-symmetric.

Key words and phrases: coadjoint orbit, classical Lie groups, Lie-Poisson—Kirillov—
Kostant form, symplectic fibration, projection-flag coordinates.
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Let us numerate basic vectors e; symmetrically, index ¢ belongs to a set
+[N/2],£([N/2] —1),...,£1 and the zero value for odd N.

Definition 1. A basis is called standard if its Gram matriz* g is

0.0~ 0 7 0 7

0 1 0 0l "\, o)

T 0 0
where T is a square anti-diagonal matriz, consisting of units. It is the
matriz of the inversion:

0 0 0 1
0 0 10
= e
01 ... 00
10 ... 00

For the orthogonal groups g2 = I, for the symplectic groups g? = —1I, in
any cases g7 =g~ '.

Our ground field is C, consequently there are non-zero isotropic vectors
(€,€) =0 even in the orthogonal case.

Definition 2. The subspace L is called isotropic, if it consists of the
isotropic vectors: £ € L = (£,£) = 0.

If a standard basis has given, an example of isotropic space is a coor-
dinate subspace enveloping several coordinate vectors with the indexes of
the same sign.

An orthogonal complement L™ to the space L is called a set of all vectors
orthogonal to all vectors of L:

nelt e (né=0VeEeL.

An orthogonal complement to a subspace is a subspace too. For the
non-zero isotropic L, L C L+ # V, consequently L + L+ = L+ # V.
Nevertheless some usual identities take place

o (LYYt =1,
e dimL+dimL+ =dimV.

LA Gram matrix of the set of vectors f1, f2,... is a matrix of their pairwise products

gij = (fi, f5)-
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There is a simple orthogonal transformation that transforms a given
isotropic subspace to the coordinate subspace of the same dimension. The
transformation has the triangular form and can be easily factorized on
the product of two projections parallel to the coordinate subspaces of the
standard basis:

An eigenspace (the kernel) is not isotropic in the case of the orthogonal
or symplectic nilpotent matrix. It is the sours of all the difficulties in the
case. Nevertheless there are isotropic subspaces of the kernel, namely the
intersections of the kernel and the images of the powers of the matrix.
Always the image and the kernel are the orthogonal complements of each
other. In our case A2 = 0, the kernel contains the image, so the isotropic
subspace in question is just the image. It simplifies the formulae and makes
possible to tolwe the problem.

Let us split the standard basis on three sets of vectors in accordance
with the dimension of the image of A:

{e} = {e,,eo, e+}7

the number of vectors in e+ is equal to the dimension of the image of A,
it is the number of the Jordan blocks 2 x 2. The number of vectors in eqg
is the number of eigenvectors without the generalized eigenvectors.

If the first set of the basic vectors forms the image of A (the image is
contained in the kernel), and the second set of the basic vectors compleats

0 0 p
the kernel, the matrix from the orbit takes the form [0 0 p |, where p
0 0 0

and p are some matrix blocks.
Let us denote a matrix of the projection of the the first set e_ of the

I 0O

basic vectors on the image of A paralleltoegUe_by [ ¢ I 0], and
g 0 I

denote the matrix of the projection of the set eg on the kernel of A parallel

I 00
toepr by [0 I O
0 ¢ I
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We get a representation

-1

I 0 O 0 0 p 0 0
A=[q¢ 1000 F)lq T 0O
g0 ¢ I) \0 0 0/ \go q I

of A from the algebraically open subset of the orbit.

Let us denote the transposing with respect to the antidiagonal by the
superscript “+7: A" = 1A4T7 (A7) = (A7)

Conditions that f belongs to the group and A belongs to the algebra are
fTgf = gand ATg+gA = 0. In the standard basis g = I, where I = I for
the orthogonal group, and I = diag(I, —I) for the symplectic group. The
conditions can be rewritten as

IffIf=1, A" =-14I,

in the standard basis.
From this symmetry follows that p = 0, consequently

-1

I 0 O 0 0 p I 0 O
A=|q T 0 0 0 O qg 1 0
g ¢ I) \0O 0 0/ \gqo q I

Let us treat I as symbol of variable size, like unit matrix I. So in our for-
mulae square matrices 1,1 have the sizes that are necessary for the present
situation.

I 00
The factor [ ¢ I 0] belongs to the group, it implies ¢ = fq'_f’_,
o q I

and g + qE + q'_Tq = 0. The simple verifications shows that these are the
only restrictions on the matrix-value parameters g, g, p:

prEp=0, qoEeh=7qTqg,

where the upper sign corresponds to the orthogonal groups and the lower
sign corresponds to the symplectic groups. In other words ¢ is arbitrary,
p is arbitrary skew-symmetric (or symmetric), go has arbitrary skew-
symmetric (or symmetric) part and its symmetric (skew-symmetric) part
is uniquely defined by q.
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§2. CALCULATION OF THE SYMPLECTIC FORM.

The Lie-Poisson—Kirillov-Kostant forms ws, and wg, on the orbits in
so(N,C) and sp(IN,C) are the contractions of the form wy; living on the
corresponding orbit in gl(N,C), the ws, and ws, -orbits are the submani-
folds of the orbit of the general linear group, consequently we can use the
formula for gl(N,C) from [1] for the calculation in so(N,C) and sp(N, C).

The calculation gives:

I 0 0\ /0 —pg p\ /I 0 0
A=|q T 0|0 0o ofl|lqg I 0o , G=-¢T,
qDOI 0O 0 O qDOI

consequently for both types of groups
w = trd(pq") AT dg + tr dp N\ dqg.

It is not the finite answer because elements of the matrices in the formula
are not independent. The further consideration depends on the parity of
the number of rows of ¢, it is the dimension of eg. In the case of the
symplectic group Sp(N,C) this number is always even, it is a simple case
that we consider in the afterword. The same method can be applied to
the orbit of the orthogonal group too, but in that partial case when the
number of the eigenvectors without the generalized eigenvectors is even.
Otherwise we should apply the general formulae from the next section.

§3. ORBITS OF THE ORTHOGONAL GROUP.

From now let all indexes takes the natural values and numerates rows
and columns of our blocks in a usual way. Let p be nondegenerated an-
tisymmetrical 2n x 2n matrix: p= = —p and I = diag(I, —I) be constant
antisymmetrical matrix?. We need a following version of the Lagrangian
method of the diagonalization of the quadratic form by the triangular
transformation.

Lemma 1. Matriz p can be rationally factorized to the product p = olo™
on the algebraically open subset of the set of antisymmetrical matrices.

2We consider the symmetry with respect to the antidiagonal.



10 M. V. BABICH

Matriz o has the form

Cl 0 DR 0 0 DR 0 0
bg’l Co 0 0 0 a2 2n
c, 0O
o= bij 0o 1 a1
b2n71,1 0 . 0 0 . 1 a2n—1,2n
0 0 0 0 01

The indexes i,j satisfy ¢ > j,i +j < 2n + 1, and indezes k,l satisfy
i < j,i+j>2n+ 1. Functions a; j(p), bri(p), cm(p) are 2n(2n —1)/2 free
rational parameters of an arbitrary antisymmetrical 2n X 2n matriz p.

Proof. Let us denote the values “on the boundary” of p in the following
way':

c ca 0
p=|b p —dc|, ceC, beC™? ac(C™ 2",
0 —b" —c

it can be done on the open subset p; 1 =: ¢ # 0. The multiplication gives

c ca 0 c 0 O 1 0 0 1 a O
b p —ae]l=(b I o b pp O 0O I 0},
0 —b" —c 0 0 1 0 0 -1 0 v ¢

where p; = p+ a"b" — ba is a new antisymmetrical matrix of the smaller

size. The process can be iterated. O

Lemma 2. For any matrices A, B,C with the proper sizes
trd(AB) AdC =trdA ANd(CB) +trdB A d(CA).
Proof. Let us rewrite the summand from the left-hand side in coordinates:
d(Aiijk) ANdCh; = dAij A Bjdeki + dBjk A (dei)Aij
=dA;j Nd(Bjr,Cri) + dBji A d(Cri Aij)
- (dAZJ A (dBJk)CkZ + dBjk A CkldAl]) .
The last bracket is zero because df A gdh = g(df Adh) = —dh Agdf. O
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For SO(N, C) the symplectic form is equal tr d(pq™) A dg + tr dp A dgg.
The substitution of p = olo" and transformation using the derived formula,
gives

w = trd(olo"¢") A dq + tr dolo™ A dgo
= trqu'l_ ANdgy + trdo Ao" (q%q + qg) )

where ¢ := qo, qx := qO — qE. B

Let us consider the summand tr Idg}| Adg;. Matrix ¢ (and ¢; too) has an
even number of columns 2n because orthogonal matrix has even number of
the Jordan blocks of the even sizes, let us split ¢; on two halves (¢_,qy) :=
q1 = qo. We can transform the summand:

- -
trIdgt Adg = trd <(I) _OI> (Zt) Ad(g—,q4) = 2trdg| Adg—

We can see that the canonical coordinates on the orbit are the corre-
sponding couples of the matriz elements (q:)ij and (g—);j; and the couples
of the non-trivial matrix elements of o and the corresponding matriz ele-

ments OfTO'}_ (qu +qo — qE).

§4. ORBITS OF THE SYMPLECTIC GROUP.
In the symplectic case the formula for w can be transformed much easier.

Matrix ¢ has an even number of rows, we split it on two halves: ¢ =: (3) ,
+

it gives: trd(pg") AT"dg = tr d(2pg}) Ndg— —trdp Ad(g”g4). The formula

for w becomes trd(2pq;) A dgy — trdp Ad(gn — ¢~ q4), and finitely

w=trd(2pq}) Adgy +trdp Ad(go + b — ¢"qr —dq-)/2.

We symmetrized matrix ¢o — ¢~ g4 because p is symmetric.

Finitely the canonical coordinates for the orbit of Sp(N,C) are the cou-
ples (2pd}y )ij, (a4)ji, and the couples (p)ij, (qo+ g —q- a4 — dfq-)ji for
i+j < 2n+1 and the anti-diagonal entries (p)i2n+1—i, (qO0—4q"q+)i2nt1—i
fori=1,2n.
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